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Transient non-Gaussian noise in gravitational wave detectors, commonly referred to as glitches, pose

challenges for detection and inference of the astrophysical properties of detected signals when the two

are coincident in time. Current analyses aim toward modeling and subtracting the glitches from the data

using a flexible, morphology-independent model in terms of sine-Gaussian wavelets before the signal

source properties are inferred using templates for the compact binary signal. We present a new analysis of

gravitational wave data that contain both a signal and glitches by simultaneously modeling the compact

binary signal in terms of templates and the instrumental glitches using sine-Gaussian wavelets. The model

for the glitches is generic and can thus be applied to a wide range of glitch morphologies without

any special tuning. The simultaneous modeling of the astrophysical signal with templates allows us to

efficiently separate the signal from the glitches, as we demonstrate using simulated signals injected around

real O2 glitches in the two LIGO detectors. We show that our new proposed analysis can separate

overlapping glitches and signals, estimate the compact binary parameters, and provide ready-to-use glitch-

subtracted data for downstream inference analyses.

DOI: 10.1103/PhysRevD.103.044013

I. INTRODUCTION

During the first half of their third observing run (O3a),

the advanced ground based gravitational wave (GW)

detectors LIGO [1] and Virgo [2] observed an astrophysical

transient signal about every 5 days of data [3]. The large

detection rate increases the chance of observing an event

while one of the detectors experiences transient non-

Gaussian noise, also known as instrumental glitches.

Indeed, this scenario has come to pass for one event from

the second observing run (O2) [4] and 8 events from the

first half of the third observing run [3].

Such coincidences are expected to become even more

frequent in the coming years. Planned improvements

in the detectors’ sensitivity will be directly reflected

by an even larger rate of astrophysical discoveries [5].

Moreover, O3a was characterized by an increase in the

rate of glitch occurrence in the two LIGO detectors, a

trend that might persist during the fourth observing run

(O4) as the decreased average detector noise might help

reveal weaker sources of transient noise. For example

the rate of glitches in the LIGO Livingston detector

increased from 0.2 per minute in O2 to 0.8 per minute

in O3a [3].

The presence of a non Gaussian noise feature in the

data, a glitch, poses challenges for nearly all inference

analyses. GW inference is based on a model for the detector

noise, expressed through the likelihood function. In the

absence of glitches, detector noise is colored and Gaussian

to a very good approximation [6], with a spectrum that is

described through the noise power spectral density (PSD).

The above considerations give rise to a Gaussian likelihood

function whose variance is the noise PSD, a choice that is

almost ubiquitous [7,8]. Different choices for estimating

the PSD or treating its uncertainty can result in different

functional forms for the likelihood, but they are all based on

the assumption of colored Gaussian noise [9,10].

Since instrumental glitches violate the basic assumptions

of GW inference, they need to be effectively mitigated

before the data are analyzed. One option is to remove

the offending data all together [4,11–13], which can be

done quickly, allowing for low latency estimation of

source parameters that enable followup observations [4].
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The downside of this approach is that part of the astro-

physical signal is lost making it prohibitive for binary black

hole (BBH) signals whose duration is comparable to the

glitch duration. In order to avoid signal, and thus informa-

tion loss, another option is to model the glitch and regress it

from the data, leaving behind not only the astrophysical

signal but also the Gaussian noise. This approach is the

topic of the current study.
1

The wide variety of glitch morphologies, and even

variations within a certain glitch type, make constructing

exact models for glitches challenging [21]. A more flexible

approach is based on BayesWave [22,23] which models

various components of the GW data in a morphology-

independent way. Non-Gaussian features in the data are

modeled in terms of sums of sine-Gaussian wavelets whose

number and parameters are marginalized over with a suite

of Markov Chain Monte Carlo (MCMC) and Reversible

Jump MCMC (RJMCMC) [24] samplers. Coherent fea-

tures (i.e., features that appear in all detectors in a manner

consistent with an astrophysical signal originating from a

specific sky location) are modeled by a single sum of

wavelets that is projected onto the detector network; these

features are interpreted as having an astrophysical origin.

Incoherent features are instead modeled by independent

sums of wavelets in each GW detector and are interpreted

as instrumental glitches. The PSD of the Gaussian noise

is also modeled in terms of splines and Lorentzians using

an algorithm sometimes known as BayesLine [6,25].

BayesWave and BayesLine are fully integrated and

we will refer to the combined analysis with the name

BayesWave in this paper.

Modeling instrumental glitches with BayesWave and

subtracting them from the data in order to make ready-to-

use data for downstream inference has been a standard step

of LIGO/Virgo analyses since O2 [3,4]. The GW signal

from the first binary neutron star (BNS) coalescence

detection, GW170817, overlapped with a glitch in the

LIGO Livingston detector approximately 1.1s before coa-

lescence [4]. The glitch was modeled with BayesWave ’s

glitch model in terms of a sum of wavelets and removed

from the data, a procedure documented and released in

[26]. Despite the glitch overlapping with the actual astro-

physical signal, the subtraction process was robust against

inadvertently removing the signal together with the glitch.

The reason is that the specific glitch was short in duration

(less than a second) and extended in frequency, unlike

the signal that lasted for about 2 minutes in the detector

sensitive band. As such, the sine-Gaussian wavelets that

would fit the glitch and the signal are distinct in terms of

their time-frequency features; the wavelets that model the

glitch are short and hence do not model the long-lasting

BNS signal. This procedure was further shown to not

introduce biases in the astrophysical parameter inference

of the underlying signal by analyzing simulated signals

injected on instances of the same glitch type in LIGO

Livingston data [27].

Motivated by the success of this first attempt at glitch

mitigation and in preparation for the increased detection

rate of O3, BayesWave was extended to be able to

simultaneously model both the signal and the glitch

[23]. Both signals and glitches are modeled with a sum

of sine-Gaussian wavelets, the only difference being that

the signal is coherent across the detectors in the network,

while the glitch is not. The analysis effectively uses data

from all detectors available to determine which part of the

non-Gaussian data are coherent (and would thus corre-

spond to an astrophysical signal), and which part is

incoherent (and would thus correspond to an instrumental

glitch). The combined signalþ glitch analysis was applied

to one O3a detection [3], enabling glitch mitigation even

for data that contained short-duration BBH signals.

The signalþ glitch analysis models compact binary

coalescence (CBC) signals in terms of wavelets, and is

thus agnostic to the signal morphology. However, accurate

models exist for CBCs in terms of solutions to the Einstein

field equations that are routinely used both for detection

and parameter estimation. In this paper we take another

step toward efficient separation of CBCs and glitches by

constructing an analysis that simultaneously models the

CBC signal in terms of CBC templates and the glitch in

terms of sine-Gaussian wavelets. Similar to the initial

glitch-only analysis and the subsequent signalþ glitch

analysis, we also model and marginalize over the detector

noise PSD. We test our analysis using public O2 data that

contain common glitch types and simulated CBC signals.

We demonstrate that we can efficiently separate the glitch

from the CBC, estimate the CBC parameters, and provide

ready-to-use glitch-subtracted data for downstream infer-

ence analyses.

The rest of the paper is organized as follows. In Sec. II

we describe the updates to the standard BayesWave

algorithm in terms of the CBC analysis. In Sec. III we

apply our analysis to simulated signal overlapping with

known detector glitches from O2 data. In Sec. IV we

analyze a selection of detected signals, namely GW170817

and GW150914. Finally, in Sec. V we conclude and point

to future work.

II. GENERAL ALGORITHM DESCRIPTION

The combined BayesWave algorithm is presented in

detail in [23] and here we describe only the features

relevant to our study. BayesWave simultaneously models

signals, glitches, and Gaussian noise in GW data by means

of different models. The signal model describes astrophysi-

cal signals through a sum of Morlet Gabor wavelets that are

1
An independent effort to mitigate the effect of broadband

and/or nonstationary detector noise is based on information from
auxiliary sensors [14–20]. This approach does not remove entire
data segments either and thus is not expected to lead to loss of
information.
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coherent across the detector network. The number of

wavelets and the parameters of each are marginalized over,

as are the extrinsic parameters that determine how the

signal is projected in each detector. The glitch model

describes instrumental glitches with an incoherent sum

of Morlet Gabor wavelets whose number and parameters

are again marginalized over. Glitch power in each detector

is described by an independent sum of such wavelets. The

noise model describes the Gaussian noise PSD with a

broadband spline model and sharp Lorentzians. As above,

the number of spline points and Lorentzians as well as their

parameters are marginalized over.

In order to sample the multidimensional posterior

density of all models, BayesWave uses a blocked

Gibbs sampler that takes turns between sampling each

model with completely independent MCMC or RJMCMC

samplers. This includes (i) an RJMCMC that samples the

signal and glitch wavelet parameters, (ii) an MCMC that

samples the signal extrinsic parameters, and (iii) an

RJMCMC that samples the splines and Lorentzians for

the noise PSD. Each sampler in turn updates its parameters

for a predetermined number of iterations, typically Oð102Þ,
while all other parameters are kept fixed. For example, the

extrinsic sampler updates the extrinsic signal parameters

while the wavelet parameters and noise PSD are kept

constant. Once the predetermined number of updates has

been reached, the extrinsic sampler returns its current

parameters and the noise sampler begins updating the

noise model while keeping the wavelet and extrinsic

parameters fixed. This process of alternating sampling

between different blocks of model parameters is repeated

for Oð104Þ iterations.
The construction of the algorithm in terms of a blocked

Gibbs sampler makes adding further models and samplers

straightforward. In the current version described in [23],

the astrophysical signal is modeled with coherent sine-

Gaussian wavelets that allow us to describe signals with a

large level of flexibility. We extend BayesWave ’s

blocked Gibbs sampler by adding one more element,

namely a model of the signal in terms of quasicircular

CBC waveforms. In fashion with the existing implementa-

tion, the MCMC that samples the posterior distribution for

the CBC parameters is completely independent from the

remaining code samplers. The result is a flexible algorithm

that can be used with any combination of CBC, signal,
2

glitch, and noise models for the detector data.

The CBC model is integrated with LALSimulation [28]

and can operate with any nonprecessing model available

there.
3
The eleven parameters of a spin-aligned quasicir-

cular CBC signal, namely the four intrinsic parameters (the

two masses and spin magnitudes) and seven extrinsic

parameters (the time of coalescence, the phase of coales-

cence, two sky location angles, the polarization angle and

the inclination angle the distance), are updated in over-

lapping blocks. Common to both blocks is the phase of

coalescence since BayesWave ’s extrinsic sampler

updates the overall phase of the signal as described in

[23]. The CBC MCMC sampler updates the four intrinsic

parameters, the time of coalescence, the phase of coales-

cence, and the distance. The existing extrinsic sampler in

BayesWave updates the two sky angles, the polarization

angle, the inclination angle, and the phase of coalescence

while holding all other parameters fixed. We use standard

priors for all parameters: uniform over the detector-frame

masses and spin magnitudes, uniform in time and phase,

and uniform in luminosity volume.

The CBC sampler is custom and not based on any

existing samplers used in LIGO-Virgo parameter estima-

tion. The CBC sampler is taken from the recently devel-

oped QuickCBC [29] analysis pipeline. A closely related

sampler [30] has been developed for analyzing data from

the future Laser Interferometer Space Antenna. The CBC

sampler is a replica exchange (parallel tempered) Markov

Chain Monte Carlo (PTMCMC) algorithm that uses a

mixture of proposal distributions. The default collection of

proposals are: Gaussian jumps along eigenvectors of the

Fisher information matrix, scaled by the reciprocal of the

square root of the corresponding eigenvalue; differential

evolution using a rolling history array at each temperature,

updated every 10 iterations and holding 1000 past samples;

and small, Gaussian jumps along each parameter direction.

Each chain carries its own Fisher information matrix, which

is updated periodically. The Fisher and differential evolu-

tion proposals are effective at exploring parameter corre-

lations, while the small jumps prevent the chains from

getting stuck in regions where the Fisher matrix becomes

ill-conditioned.

The CBC sampler is not optimized for blindly finding

signals, so it is best to initialize the sampler with a good

starting solution for the source parameters such as the

output from a CBC search pipeline, or the injected

parameters for a simulated signal. Alternatively the sampler

can be initialized using a custom built CBC search

algorithm from the QuickCBC [29] analysis pipeline that

has been incorporated into the BayesWave preprocessing

steps. The search is broken into two stages, a rapid

network-coherent search with analytic maximization over

2
We retain the original model names in BayesWave, hence

the signal model refers to the wavelet signal model, while the
CBC model refers to the model in terms of CBC templates. Both
models target astrophysical signals. Since we do not use the
signal model in the remainder of the paper, we trust that this will
not lead to confusion.

3
Both the sampling and the jump proposals for the CBC

parameters are constructed to expect the signal amplitude and
phase from the waveform generator. There is therefore no
fundamental limitation to nonprecessing signals and we plan
to extend our analysis to include the effect of spin-precession in
the future.
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extrinsic parameters, followed by a fast MCMC over the

extrinsic parameters using a likelihood function that pre-

computes the waveform inner products [31]. This pro-

cedure returns the starting point for all 11 CBC parameters.

More details about the initial search step and discussion of

its robustness against instrumental glitches are presented

in [29].

III. SIMULATED SIGNALS

We test the efficacy of separating CBCs from glitches

with our CBCþ glitch model by selecting 3 common

glitch types from O2 data [32,33] that are known to have

an adverse effect on searches for CBCs [3]. We then add

simulated CBC signals consistent with a BBH with

detector-frame masses of 36 M⊙ and 29 M⊙ and vanishing

spin at different times with respect to the glitch. All

simulated signals have a signal-to-noise (SNR) ratio of 15.

We use the IMRPhenomD [34,35] waveform model both

for simulation and recovery as implemented in LALSimulation

[28]. We then analyze the data from the two LIGO detectors

with our CBCþ glitchþ noise model, where the coherent

signal is modeled by the CBC template, the glitch is

modeled by incoherent wavelets, and the noise PSD is

modeled with splines and Lorenzians. Spectrograms for the

3 glitches are shown in Fig. 1: blip glitch (left), scattered

light (middle), and blue mountain (right). Further details

and run settings for each type of glitch are shown in Table I.

A. Glitch type 1: Blip

Blip glitches are one of the most common glitch types for

the two LIGO detectors. They are characterized by short

duration, and hence pose a challenge for the detection

of high mass BBH signals [36]. Their origin is largely

unknown. Figures 2–5 show our results for simulated

signals injected at different times with respect to a blip

glitch in the LIGO Hanford detector during O2. Details

about the glitch, including its GPS time, and the run

settings are presented in Table I. A spectrogram of the

data containing the glitch is given on the left panel of Fig. 1,

where the short duration and large frequency extent

are shown.

The whitened data and reconstructions for the CBC

signal and the glitch are shown in Fig. 2 where we plot the

90% credible intervals for each reconstruction in LIGO

Hanford (top) and LIGO Livingston (bottom). The glitch is

easily visible in LIGO Hanford as a short duration ∼15σ

noise excursion. No glitch power is identified in LIGO

Livingston at that time, but the CBC signal is clearly

identified. This allows us to separate the corresponding

coherent CBC signal in LIGO Hanford from the instru-

mental glitch, even when the latter overlaps with the merger

phase of the signal (left panel). The glitch reconstruction

is also consistent across the three simulated signals,

suggesting that the glitch model is not fitting any part of

the CBC signal.

Source parameters for the simulated CBC are presented

in Figs. 3 and 4 both for the CBCþ glitchþ noise analysis

and a CBCþ noise analysis for selected recovered para-

meters for the leftmost simulated CBC signal together with

the injected values with black crosses or vertical lines as

appropriate. Figure 3 shows the mass ratio q, the effective
spin χeff , and the detector frame chirp mass M, while

Fig. 4 shows the luminosity distance and the cosine of the

inclination angle. In all cases the posterior distributions

recovered under the CBCþ glitchþ noise model are con-

sistent with the injected parameters, though the margin-

alized posteriors do not peak at the injected values, as

FIG. 1. Spectrograms for the three glitches of different types studied here: blip glitch (left), scattered light (middle), blue mountain

(right). The three types of glitches are characterized by very different time-frequency properties.

TABLE I. Settings for the runs of Sec. III. From left to right, columns correspond to the type of glitch, the GPS time, the affected

detector, the segment length, the sampling rate, to low frequency cut off, the maximum quality factor of the glitch wavelets, and the SNR

of the injected signals.

Glitch GPS time (s) Detector Segment length (s) Sampling rate (Hz) flow (Hz) Qmax CBC SNR

Blip 1168989748 Hanford 4 2048 16 40 15

Scattered light 1172917779 Livingston 8 2048 8 160 15

Blue mountain 1165069536 Hanford 16 2048 16 40 15
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expected from inference of signals in Gaussian noise. For

reference, we show posteriors under the CBCþ noise

model in orange that assumes that the data are consisted

of just a CBC signal and Gaussian noise, without any

provision for a glitch. Since this assumption is violated by

the presence of the blip glitch, the resulting posteriors are

expected to be biased compared to the true parameters and

the orange contours in Figs. 3 and 4 quantify this bias. We

find that the extrinsic parameters that are primarily deter-

mined by the signal amplitude are more biased than the

intrinsic ones that are measured through the GW phase, as

also discussed in [37].

The separation of the CBC signal from the glitch

demonstrated in Fig. 2 can be used to produce ready-to-

use deglitched data for downstream inference analyses, as

was done in [3]. An estimate of the glitch reconstruction

(the median or a fair draw from the glitch model posterior)

is subtracted from the data to produce strain data that

contain only the CBC signal and Gaussian noise. The result

of the glitch subtraction is shown in the spectrograms

of Fig. 5 that show the LIGO Hanford data before (left)

and after (middle) the subtraction of a fair draw glitch

reconstruction for the leftmost injection of Fig. 2. The left

panel includes both the chirping signal and the blip glitch,

while only the former is visible in the middle panel. The

right panel shows the data after a fair draw from both the

CBC and the glitch models has been subtracted, resulting in

residual Gaussian noise only.

B. Glitch type 2: Scattered light

Glitches caused by scattered light in the interferometer

became particularly prominent during O3 [3]. Unlike the

blip glitches studied above, scattered light glitches have a

FIG. 2. Credible intervals for the glitch (orange) and the CBC (blue) signal reconstruction for data containing a blip glitch in LIGO

Hanford and a simulated CBC signal at 3 different times with respect to the glitch (left to right). Shaded regions correspond to 90%

credible intervals for the whitened reconstruction, while in grey dashed lines we plot the data whitened with a fair draw PSD from our

noise model posterior. The top row corresponds to LIGO Hanford and the bottom row corresponds to LIGO Livingston.

FIG. 3. One- and two-dimensional posterior distributions for

selected source parameters of the simulated signal from the left

panel of Fig. 2 injected on top of a LIGO Hanford blip glitch. We

include the mass ratio q, the effective spin χeff , and the detector

frame chirp mass M posteriors, while black crosses or black

vertical lines denote the true parameters of the injection. Blue

(orange) contours and lines correspond to the CBCþ glitchþ
noise (CBCþ noise) run.

FIG. 4. Two-dimensional posterior distributions for the lumi-

nosity distance and the binary inclination of the simulated signal

from the left panel of Fig. 2 injected on top of a LIGO Hanford

blip glitch. A black cross at (1,1200 Mpc) denotes the true

parameters of the injection. Blue (orange) contours correspond to

the CBCþ glitchþ noise (CBCþ noise) run.
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longer temporal duration of a few seconds and are

characterized by arches in a time-frequency spectrogram

[38,39], as depicted in the middle panel of Fig. 1. We inject

simulated signals on an instance of such a glitch in LIGO

Livingston and analyze the data from both LIGO detectors

with our CBCþ glitchþ noise model. Details of the glitch

and the run settings are given in Table I. Due to the duration

of the glitch and its low frequency power we extend our

analysis duration and bandwidth. The longer duration

helps the noise model determine the low-frequency

Gaussian noise PSD and thus separate the low frequency

part of the glitch from Gaussian noise. We also increase the

maximum quality factor Qmax of the wavelets due to the

glitch’s long duration.

Figure 6 shows the data and reconstructed CBC and

glitch models. We zoom in around the CBC signals, though

the glitch extends beyond the time range plotted. In all

cases the CBC signal is separated from the glitch, aided

by the presence of a coherent signal in LIGO Hanford.

The glitch reconstruction is also consistent for all 3

simulated signals, as expected for runs on the same glitch.

The reconstruction exhibits oscillations at around 32 Hz

and 16 Hz, consistent with expectations from the glitch

spectrogram. Figure 7 shows posterior distributions for

selected source parameters for the left-most injection in

blue, as well as the injected parameters. In all cases the

recovered parameters are consistent with their injected

values. In orange, we plot results from a CBCþ noise

run and find small biases in the source intrinsic parameters,

most notably the mass ratio.

Finally, Fig. 8 shows the spectrogram of the data before

and after various components of the model have been

subtracted from the data. The left panel corresponds to data

that contain both a signal and the glitch and thus both the

signal chirp and the characteristic glitch arches are visible.

In the middle panel we plot data after a fair draw from the

glitch model has been subtracted, resulting in both the high

and the low frequency arches of the glitch having been

regressed, leaving only the chirping signal behind. The

right panel corresponds to data where a fair draw from the

CBC model has further been subtracted and is consistent

with Gaussian noise.

C. Glitch type 3: Blue mountain

The final type of glitch we consider is the blue mountain;

the spectrogram of the LIGO Hanford instance of a blue

mountain glitch we consider is shown in the right panel of

Fig. 1. The glitch has a duration of multiple seconds and is

characterized by higher frequencies ∼200 Hz. We inject

simulated signals at different times relative to the glitch and

FIG. 5. Spectrogram of the LIGO Hanford data around the time of the blip glitch for the leftmost injection from Fig. 2. Left panel: data

containing the blip glitch and the simulated CBC signal. Middle panel: data after a fair draw from the glitch model has been subtracted

leaving behind only the chirping CBC signal. Right panel: data after a fair draw from the glitch and CBC models has been subtracted,

leaving behind only Gaussian detector noise.

FIG. 6. Credible intervals for the glitch (orange) and the CBC (blue) signal reconstruction for data containing a scattered light glitch in

LIGO Livingston and a simulated CBC signal at 3 different times with respect to the glitch (left to right). Shaded regions correspond

to 90% credible intervals, while in grey dashed lines we plot the data whitened with a fair draw PSD from our noise model posterior.

The top row corresponds to LIGO Hanford while the bottom row corresponds to LIGO Livingston.
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again analyze data from the two LIGO detectors with

the CBCþ glitchþ noise model with settings shown in

Table I. Due to the large glitch duration we have to increase

the length of the analyzed segment even further to 16s.

Despite the glitch’s overall long duration, we do not find it

necessary to increase the wavelet maximum quality factor

Qmax, as the glitch is composed of short individual bursts of

power, each of which is modeled by individual wavelets

with a small quality factor.

Figure 9 shows the whitened data and credible intervals

for the whitened CBC and glitch reconstruction in each

detector for each of the injected signals. Due to the large

glitch duration, the signals are injected sufficiently wide

apart that the reconstruction plots show non overlapping

parts of the data and the glitch. The glitch reconstructions

are therefore not expected to match. As expected from the

glitch spectrogram, the glitch is characterized by a series of

short high frequency bursts, each of which is modeled by

different wavelets within our glitch model. Figure 10 shows

posterior distributions for selected source parameters for

the left-most injection in blue, as well as the injected

parameters. In all cases the recovered parameters are

consistent with their injected values, suggesting that the

FIG. 7. One- and two-dimensional posterior distribution for

selected source parameters of the simulated signal from the left

panels of Fig. 6 injected on top of a LIGO Livingston scattered

light glitch. We include the mass ratio q, the effective spin χeff ,

and the detector frame chirp mass M posteriors, while black

crosses or black vertical lines denote the true parameters of the

injection. Blue (orange) contours and lines correspond to the

CBCþ glitchþ noise (CBCþ noise) run.

FIG. 8. Spectrogram of the LIGO Livingston data around the time of the scattered light glitch for the leftmost injection from Fig. 6.

Left panel: data containing the scattered light glitch and the simulated CBC signal. Middle panel: data after a fair draw from the glitch

model has been subtracted leaving behind only the chirping CBC signal. Right panel: data after a fair draw from the glitch and CBC

models has been subtracted, leaving behind only Gaussian detector noise.

FIG. 9. Credible intervals for the glitch (orange) and the CBC (blue) signal reconstruction for data containing a blue mountain glitch in

LIGO Hanford and a simulated CBC signal at 3 different times with respect to the glitch (left to right). Shaded regions correspond to

90% credible intervals, while in grey dashed lines we plot the data whitened with a fair draw PSD from our noise model posterior. The

top row corresponds to LIGO Hanford while the bottom row corresponds to LIGO Livingston.
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presence of the glitch does not incur biases on the inferred

source properties if the two are modeled simultaneously. As

before, we also plot results from a CBCþ noise run that

neglects the glitch in the data in orange and again find small

biases by the presence of the glitch in the source intrinsic

parameters.

The glitch subtraction process is detailed in Fig. 11 that

again shows spectrograms of the original data containing

both the glitch and the signal (left), data after a fair draw

glitch model has been subtracted (middle), and data after

both the glitch and the fair draw CBC model have been

removed (right). As before, data from the middle panel

could be used for further data processing. The right panel

shows data where a model for both the glitch and the CBC

have been subtracted. Even though the majority of the

glitch power is absent (compare the left and right panels),

some small non Gaussian power might be left behind.

The reason for this is that the blue mountain glitch is

manifested as individual short bursts of glitch power,

which our flexible analysis attempts to model completely

independently. Indeed, the glitch model for this run uses

Oð70Þ wavelets. Each of these wavelets, needs to model

sufficient non-Gaussian power in the data in order to

overcome the parsimony penalty incurred by adding more

parameters to the model. As such, we expect that some of

the weaker “bursts” of the glitch will not be recovered.

Possible ways to alleviate this are discussed in Sec. V.

IV. GRAVITATIONAL WAVE EVENTS

As a further demonstration of our CBCþ glitchþ noise

model, we also analyze two astrophysical events, GW170817

[4] and GW150914 [40] whose data are available from

GWOSC [32,33]. Though not the main focus of this paper,

the analysis presented below also provides an estimate of the

effect ofmarginalizing over the noise PSD has on the inferred

astrophysical parameters. More details about this effect will

be presented in a separate study.

A. GW170817

Perhaps the most known instance of a GW signal over-

lapping with an instrumental glitch is GW170817 [4].

Inference on the GW170817 source properties is performed

on data where the glitch in LIGO Livingston has been

modeled with BayesWave ’s glitch-only model and

subtracted. Analysis of simulated signals suggests that this

procedure leads to unbiased inference, while any analysis

on data that contain the glitch results in highly biased

source parameters [27]. Both versions of the data are

publicly available, both with and without the glitch [26],

so we analyze them both with different models. We use data

from the LIGO Hanford and the LIGO Livingston detectors

and analyze 64s of data from 16 Hz to 2048 Hz using the

IMRPhenomD_NRTides waveform model that includes

finite-size effects [41]. We employ our CBCþ glitchþ
noise model on the data with the glitch and the CBCþ
noise model on data where the glitch has already been

subtracted. For the CBCþ glitchþ noise case we use

GlitchBuster [23] to provide a quick fit to the glitch

and use that as a starting point for our glitch model during

sampling.

FIG. 10. One- and two-dimensional posterior distribution for

selected source parameters of the simulated signal from the left

panels of Fig. 9 injected on top of a LIGO Hanford blue mountain

glitch. We include the mass ratio q, the effective spin χeff , and the
detector frame chirp mass M posteriors, while black crosses or

black vertical lines denote the true parameters of the injection.

FIG. 11. Spectrogram of the LIGO Livingston data around the time of the blue mountain glitch for the leftmost injection from Fig. 9.

Left panel: data containing the blue mountain glitch and the simulated CBC signal. Middle panel: data after a fair draw from the glitch

model has been subtracted leaving behind only the chirping CBC signal. Right panel: data after a fair draw from the glitch and CBC

models has been subtracted, leaving behind only Gaussian detector noise.
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Credible intervals for the signal and glitch reconstruc-

tions are shown in Fig. 12 for each detector for ∼150 ms of

data around the glitch. Despite its high SNR, GW170817

had a relatively low amplitude, so the LIGO Hanford plot

has been zoomed in to make the signal visible. The LIGO

Livingston data are dominated by the glitch, peaking at

∼150σ relative to the background detector Gaussian noise.

The signal is not visible in the LIGO Livingston data given

the plotting scale. Figure 13 shows selected source param-

eters obtained from data both with and without the glitch.

We find consistent results, showing that our combined

CBCþ glitchþ noise analysis can faithfully fit the CBC

signal and the glitch simultaneously, without the need for

the two step process of first removing the glitch and then

reanalyzing the data.

B. GW150914

The first GW signal directly detected by the LIGO

detectors, GW150914 [40], did not overlap with an

instrumental glitch [42]. However, since it is one of the

best studied and loudest signals, we select it as a demon-

stration of our analysis on data without glitches. Our glitch

model has the flexibility to use no glitch wavelets, we

therefore expect many samples in the glitch model posterior

to contain exactly zero glitch power. We analyze 4s of data

starting at 16 Hz and with a sampling rate of 2048 Hz.

We perform two runs, one with the CBCþ glitchþ noise

model and one with the CBCþ glitch model using other-

wise identical settings.

Relevant results are shown in Figs. 14 and 15 where as

before we plot the CBC and glitch reconstructions of the

CBCþ glitchþ noise model in the two detectors and the

recovered source parameters. The CBC reconstruction of

Fig. 14 is consistent with previous results [43]. The glitch

reconstruction is too small to identify in the scale of the

plot, as we find that 86% and 14% of our posterior samples

had exactly zero glitch wavelets in LIGO Hanford and

LIGO Livingston respectively. Figure 15 shows the

FIG. 12. Credible intervals for the glitch (orange) and the CBC

(blue) signal reconstruction for GW170817. Shaded regions

correspond to 90% credible intervals, while in grey dashed lines

we plot the data whitened with a fair draw PSD from our noise

model posterior. The top row corresponds to LIGO Hanford

while the bottom row corresponds to LIGO Livingston. The

LIGO Hanford plot zooms in to show the signal that is invisible

in the LIGO Livingston plot due to the size of the glitch; note the

y-scale difference in the two plots.

FIG. 13. One- and two-dimensional posterior distribution for

selected source parameters for GW170817. We include the mass

ratio q, the effective spin χeff , and the detector frame chirp mass

M posteriors. Blue curves show posteriors under the CBCþ
glitchþ noise model on the full data, while orange curves

correspond to the CBCþ noise model on data where the glitch

has already been subtracted. The two sets of results are consistent

with each other.

FIG. 14. Credible intervals for the glitch (orange) and the CBC

(blue) signal reconstruction for GW150914. Shaded regions

correspond to 90% credible intervals, while in grey dashed lines

we plot the data whitened with a fair draw PSD from our noise

model posterior. The top row corresponds to LIGOHanford while

the bottom row corresponds to LIGO Livingston. Our glitch

model recovers essentially no incoherent power coincident with

the astrophysical signal and therefore the reconstruction is not

visible in the scale of the plot.
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posterior distribution for selected source parameters of

GW150914 obtained under the CBCþ glitchþ noise and

the CBCþ noise models. The two posteriors yield con-

sistent results, showing that the glitch model does not affect

the CBC parameters when no glitch is present in the data.

V. CONCLUSIONS

We construct and validate an analysis of GW data that

simultaneously models astrophysical CBC signals and

instrumental glitches. We test the analysis against real

instances of glitches in the two LIGO detectors from O2

data and simulated CBC signals injected at different times

with respect to the glitch. We find that our analysis can

separate the two, and provide both estimates for the CBC

source parameters and glitch-subtracted data for sub-

sequent analyses. The glitch model we employ is a sum

of sine-Gaussian wavelets that is not tuned to any specific

glitch type and morphology; it can thus handle even novel

glitch types that might first appear during O4. Even though

this flexibility is desirable given the unpredictable and

evolving nature of glitches, the efficacy of glitch subtrac-

tion can be improved by employing targeted priors for

different glitch types. One such example would be a prior

that anticipates arches at frequency multiples in the case of

scattered light glitches. We leave such targeted priors to

future work.

Our analysis considered only simulated BBH signals,

though we also present an analysis of the BNS GW170817.

We expect overlapping CBCs and glitches of similar

duration to be a worse-case-scenario due to their similar

morphology [44,45]. Given that, we plan to carry out a

larger scale study of our CBCþ glitch analysis that

includes more glitch types and CBC classes, such as

BNSs and lower mass BBHs. Additionally, the analysis

presented here did not make use of GlitchBuster [23]

to provide initial fits to the glitch, apart from the

GW170817 case. In the future we plan to investigate

interfacing GlitchBuster and BayesWave in more

detail, in the hopes that an efficient starting point for the

glitch model during sampling will decrease the sampler’s

convergence time and result in ready-to-use glitch-sub-

tracted data more quickly. We hope that our analysis will

contribute to robust and efficient glitch mitigation against

the increased event rate anticipated in O4; our goal is to

facilitate analysis of as much data as possible and maximize

the science output of the upcoming observations.
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FIG. 15. One- and two-dimensional posterior distribution for

selected source parameters for GW150914. We include the mass

ratio q, the effective spin χeff , and the detector frame chirp

mass M posteriors. Blue curves show posteriors under the

CBCþ glitchþ noise model, while orange curves correspond

to the CBCþ noise model. The two sets of results are consistent

with each other.
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