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RESEARCH ARTICLE Open Access

Modeling complex genetic and environmental
influences on comorbid bipolar disorder with
tobacco use disorder
Richard C McEachin1,2*, Nancy L Saccone3, Scott F Saccone4, Yelena D Kleyman-Smith5, Tiara Kar5, Rajesh K Kare5,

Alex S Ade2, Maureen A Sartor2, James D Cavalcoli2, Melvin G McInnis1,2

Abstract

Background: Comorbidity of psychiatric and substance use disorders represents a significant complication in the

clinical course of both disorders. Bipolar Disorder (BD) is a psychiatric disorder characterized by severe mood

swings, ranging from mania to depression, and up to a 70% rate of comorbid Tobacco Use Disorder (TUD). We

found epidemiological evidence consistent with a common underlying etiology for BD and TUD, as well as

evidence of both genetic and environmental influences on BD and TUD. Therefore, we hypothesized a common

underlying genetic etiology, interacting with nicotine exposure, influencing susceptibility to both BD and TUD.

Methods: Using meta-analysis, we compared TUD rates for BD patients and the general population. We identified

candidate genes showing statistically significant, replicated, evidence of association with both BD and TUD. We

assessed commonality among these candidate genes and hypothesized broader, multi-gene network influences on

the comorbidity. Using Fisher Exact tests we tested our hypothesized genetic networks for association with the

comorbidity, then compared the inferences drawn with those derived from the commonality assessment. Finally,

we prioritized candidate SNPs for validation.

Results: We estimate risk for TUD among BD patients at 2.4 times that of the general population. We found three

candidate genes associated with both BD and TUD (COMT, SLC6A3, and SLC6A4) and commonality analysis

suggests that these genes interact in predisposing psychiatric and substance use disorders. We identified a 69

gene network that influences neurotransmitter signaling and shows significant over-representation of genes

associated with BD and TUD, as well as genes differentially expressed with exposure to tobacco smoke. Twenty

four of these genes are known drug targets.

Conclusions: This work highlights novel bioinformatics resources and demonstrates the effectiveness of using an

integrated bioinformatics approach to improve our understanding of complex disease etiology. We illustrate the

development and testing of hypotheses for a comorbidity predisposed by both genetic and environmental

influences. Consistent with our hypothesis, the selected network models multiple interacting genetic influences on

comorbid BD with TUD, as well as the environmental influence of nicotine. This network nominates candidate

genes for validation and drug testing, and we offer a panel of SNPs prioritized for follow-up.

Background

Bipolar Disorder (BD) is a severe psychiatric disorder,

characterized by periods of mania and depression, which

affects approximately 1% of the U.S. population, or 3 -

5% if BD spectrum disorders (BPII and BP-NOS) are

included [1,2]. Tobacco Use Disorder (TUD) is the

single greatest cause of preventable death in the United

States [3,4] and it disproportionately affects psychiatric

patients [5]. Note that TUD is defined as “Tobacco used

to the detriment of a person’s health or social function-

ing. Tobacco dependence is included.”, according to the

Medical Subject Heading (MeSH) index [6]. In earlier

work, various research groups used “nicotine depen-

dence”, “nicotine addiction”, “tobacco dependence”, or* Correspondence: mceachin@umich.edu
1Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
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“smoking” to characterize the phenotype, but there is no

clear standard term in the literature. We use the MeSH

term, TUD, in these analyses because it incorporates the

information derived from these multiple sources and

facilitates the bioinformatics analyses. There is evidence

of increased risk for TUD among BD patients [1,7-12]

as well as evidence that smokers may be at increased

risk for BD [1,9]. While it is possible that TUD could

predispose individuals to BD, or BD could predispose

individuals to TUD, the observed bi-directional

increased risk for both disorders is consistent with some

common underlying etiology for BD and TUD.

There is epidemiological evidence of multiple genetic

influences on both BD [13] and TUD [14]. In family and

twin studies, heritability of BD is estimated at 75 to 85%

[15,16], consistent with one or more genetic influences

on BD susceptibility. Still, even for monozygotic twins,

concordance is estimated at only about 67% [17], consis-

tent with environmental influences on BD susceptibility.

Heritability of TUD is estimated at 37 to 56% for initia-

tion of smoking, and 59 to 70% for transition to nicotine

dependence [18,19], consistent with one or more genetic

influences on TUD susceptibility. In addition, nicotine

binds to cell surface nicotinic acetylcholine receptors,

and so represents an environmental effect which would

be expected to influence intracellular signal transduction

pathways. Given the potential for some common under-

lying etiology for BD and TUD, as well as evidence of

genetic and environmental influences on both BD and

TUD, we hypothesized a common underlying genetic

etiology, interacting with environmental nicotine expo-

sure, influencing susceptibility for both BD and TUD.

Figure 1 outlines the overall analysis flow. After asses-

sing the strength of evidence for comorbidity of BD and

TUD via meta-analysis, and seeing an increased Relative

Risk consistent with some common etiology, we identi-

fied candidate genes for the comorbidity. The analysis

then followed two parallel paths. First, in complex dis-

eases multiple genetic influences converge on a single

phenotype (in this case, co-morbid BD with TUD). We

presume that to influence a single phenotype these mul-

tiple genetic influences must impact some common ele-

ment(s) associated with the phenotype (e.g., a common

pathway, tissue, cellular function, disease or other pro-

cess). We exploited this convergence on a single pheno-

type by identifying significant commonality among the

selected candidate genes. We then used this commonal-

ity to improve our understanding of the roles of these

genes in both BD and TUD. In a parallel analysis, we

generated networks of genes that interact with our

selected candidate genes. Based on these interactions,

we hypothesized models of the larger set of genetic

influences on co-morbid BD with TUD, then tested

each of these hypotheses for enrichment of BD and

TUD associated genes. As with the commonality analy-

sis, analysis of gene networks enriched for BD and TUD

associated genes may improve our understanding of the

comorbidity, so we compared lessons learned in the

commonality and network analyses. Finally, while no

GWA studies have yet been conducted specifically to

identify candidate genes for this co-morbidity, we priori-

tized Single Nucleotide Polymorphisms (SNPs) for fol-

low-on studies by functional data, as well as by

combining evidence from two GWA studies (one for BD

and one for TUD).

Methods

Meta-analysis (Figure 1a)

We first assessed the strength of evidence for comorbid-

ity of BD and TUD, based on the published literature.

Querying all of PubMed, we found seven studies pub-

lished on the subject between 1986 and 2008 [1,7-12].

From each study, we selected the data specific to

comorbid BD with TUD and ensured that the pheno-

types studied were consistent, then generated a com-

bined spreadsheet of the raw data (Additional file 1,

Forest Notes). Using MIX Meta-Analysis software

[20,21] (version 1.7), we generated an annotated forest

plot of Relative Risk, using first a fixed effects model

Figure 1 analysis flow. Analysis proceeds from meta-analysis, to

hypothesis generation, to candidate gene selection, common

elements assessment, network hypothesis generation, hypothesis

testing, comparison of results, and SNP prioritization.
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with Mantel-Haenszel weighting then a random effects

model with DerSimonian-Laird weighting. All other

MIX parameters were set at the default values, under

the Analysis/preferences tab. For details of the meta-

analysis see Additional file 2, MOOSE Checklist [22].

Candidate gene selection (Figure 1b)

We used Gene2MeSH [23], a novel bioinformatics

resource from the National Center for Integrative Bio-

medical Informatics (NCIBI), to select candidate genes

for comorbid BD with TUD on 8 April, 2009. Gene2-

MeSH identifies genes and MeSH terms that co-occur

in PubMed-indexed manuscripts that are annotated for

both the genes referenced and the MeSH terms

assigned. Gene2MeSH allows the user to input a MeSH

term and find all genes significantly over-represented in

publications annotated for that term. In this mode, Gen-

e2MeSH requires MeSH terms as input and we used the

MeSH database [6] to identify appropriate MeSH terms

to query Gene2MeSH for genes related to BD and TUD.

MeSH has only one term for BD, “bipolar disorder”,

which we used in the Gene2MeSH query to identify a

preliminary set of human BD candidate genes. In addi-

tion to TUD, MeSH has two related terms so we quer-

ied “tobacco use disorder”, “nicotine” and “smoking”,

then used the union of these three human gene sets as a

preliminary set of TUD candidate genes.

Gene2Mesh generates a Fisher Exact p-value to quan-

tify the over-representation of genes occurring in publi-

cations annotated for a given MeSH term, relative to all

papers in PubMed, and select genes based on a thresh-

old of Fisher Exact p-value ≤ 10-4. However, co-occur-

rence of genes with MeSH terms is not the same as

association. We tested each preliminary candidate gene

for evidence of association between the gene and the

appropriate phenotype (i.e., BD or TUD) by reading the

papers cited by Gene2MeSH. We accepted in our final

“overlapping” set only those preliminary candidate genes

for which we found at least two studies that showed sta-

tistically significant positive association (Bonferroni cor-

rected p-value ≤ 0.05) with both BD and TUD, in the

peer reviewed literature. We did not consider power, as

this parameter is generally not reported in the literature.

Common elements (Figure 1c)

In complex diseases, multiple genetic influences con-

verge on a single phenotype, consistent with some com-

mon element(s) among these genetic influences (e.g., a

common disease process, metabolic or signaling path-

way, cellular component, or tissue expression). Under-

standing commonality among our candidate genes may

yield useful inference on how multiple genetic influences

converge on the co-morbidity. We assessed two

resources available for commonality testing: PDG-ACE

(Prioritizing Disease Genes by Analysis of Common Ele-

ments) [24,25] from NCIBI, and GRAIL (Gene

Relationships Across Implicated Loci) [26] from the

Broad Institute. Both PDG-ACE and GRAIL generate

hypotheses on gene-gene interactions and also provide

quantitative measures of the strength of evidence in

support of each hypothesis.

PDG-ACE identifies significant commonality across

genetic loci based on text in the Entrez Gene records of

genes at locus pairs. We submitted our set of three

overlapping candidates to PDG-ACE in pairs, performed

107 iterations for significance testing using PDG-ACE’s

MeSH-derived controlled vocabulary of 2,531 keywords,

applied a Bonferroni correction for these 2,531 hypoth-

esis tests, and stored the keywords that were signifi-

cantly over-represented (corrected p-value ≤ 0.05) at

each locus pair. For these stored keywords, we assessed

the context of each keyword in the Entrez Gene records

for each locus and retained those keywords that were

used in the same context at both loci. Since the Entrez

Gene records for these genes include links to the

PubMed abstracts, we followed each of these links to

identify trends that may be useful in understanding the

roles of these genes in co-morbid BD with TUD.

GRAIL also finds commonality among genes, though,

with GRAIL commonality is based on PubMed abstracts.

On 8 July, 2009, we input our overlapping candidates to

the GRAIL server and set the query regions to equal the

seed regions, as recommended in the GRAIL FAQs

when the number of input genes is small. We compared

the returned keywords associating the overlapping can-

didate genes to our PDG-ACE results and assessed their

context with respect to comorbid BD with TUD.

Hypothesis generation: network model building (Figure

1d)

We assessed three resources for building models of

genetic interactions among our candidate genes: MiMI

(Michigan Molecular Interactions) from NCIBI [27],

STRING (Search Tool for the Retrieval of Interacting

Genes/Proteins) from the European Molecular Biology

Lab [28,29], and MetaCore [30] from GeneGo Inc. Each

of the models developed using these resources repre-

sents one hypothesis on how multiple genetic variants

could interact to influence the comorbidity. To focus on

the interactions most closely tied to the overlapping

candidate genes (and, we assume, most likely to influ-

ence comorbid BD with TUD), we set input parameters

to accept only the highest quality interactions data and

to build the smallest network that includes all of the

overlapping candidate genes in a single model.

MiMI includes comprehensive protein interaction

information that has been integrated and merged from

diverse protein interaction databases. For input of multi-

ple genes, MiMI is implemented as a plug-in for Cytos-

cape [31] (version 2.6.0), an open source bioinformatics

platform for visualizing molecular interaction networks.

McEachin et al. BMC Medical Genetics 2010, 11:14
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MiMI does not have a parameter for selecting the level

of confidence for interactions. We input our list of three

overlapping candidate genes and selected the “Interac-

tions among query genes” option. This network did not

include all three of the overlapping candidates in a sin-

gle network so we moved to the “Query Genes + Near-

est Neighbors” option and this produced a single

network including all three overlapping candidates. We

downloaded the network in both graphical and text

formats.

STRING is a database of known and predicted protein

interactions including: direct (physical) and indirect

(functional) associations derived from genomic context,

high-throughput experiments, conserved co-expression,

and publications. We input our list of overlapping can-

didate genes, set the minimum combined score to 0.900

(highest confidence) and built the network. The result-

ing network did not connect the three overlapping can-

didate genes, so we had STRING add nodes to the

network, one at a time, until all of the overlapping can-

didate genes were included in a single network. We

downloaded the network in both graphical and text

formats.

MetaCore (GeneGo Inc.) is a commercial database of

human curated data on gene-gene, gene-DNA, and

gene-small molecule interactions. The types of interac-

tions data available are equivalent to those available in

STRING. Starting with our three overlapping candidates,

we set parameters for the “Shortest Paths” network

building algorithm and “curated only” data, accepting

unspecified effects as well as functional and binding

interactions (MetaCore version 6.0). We first looked for

direct interactions, then increased the number of nodes

allowed between the overlapping candidate genes until

they were all included in a single network. The resulting

network is comparable to the MiMI and STRING

networks.

An important feature of GeneGo, not yet available in

MiMI or STRING, is that it allows the user to add

selected nodes (genes, small molecules, etc.) to an estab-

lished network. To help assess the environmental impact

of nicotine on the hypothesized network for comorbid

BD with TUD, we added nicotine to the network. Gen-

eGo has a built in test for over-representation of genes

in documented pathways, so we tested the network for

pathway association. We downloaded both GeneGo net-

works, one excluding nicotine and one including nico-

tine, in both graphical and text formats.

Hypothesis testing (Figure 1e)

For each of our hypothesized networks, we first used the

Genetic Association Database (GAD) [32] via the

DAVID interface (Database for Annotation, Visualiza-

tion and Integrated Discovery) [33,34], to test for over-

representation of genes associated with BD and TUD. In

addition, since nicotine represents an environmental

influence on our hypothesized networks and differential

gene expression is one of the most important ways that

cells respond to the environment, we used NCIBI’s Con-

ceptGen [35] software application to test for differential

gene expression related to BD and/or TUD.

GAD is an archive of results from human genetic asso-

ciation studies of complex diseases and disorders, which

has been made available for assessment of gene sets via

DAVID. If, based on GAD data, a given network is over-

represented for genes associated with both BD and TUD,

the network may lead us to a clearer understanding of

how the multiple genetic influences converge on the

comorbidity. GAD provides dichotomous annotation of

genes, based on published evidence, where each gene

either has shown evidence or has not (yet) shown evidence

of association with a specific phenotype (e.g. BD or TUD).

DAVID uses this dichotomous annotation in a modified

Fisher Exact test, where the count of positive agreement is

reduced by 1 to make a more conservative test, to assess

gene sets for over-representation of genes annotated for

specific phenotypes. For each of the gene sets nominated

by our network building tools (MiMI, STRING, and two

GeneGo networks), we set DAVID to assess GENETI-

C_ASSOCIATION_DB_DISEASE functional annotation.

The resulting tables provide test data including the False

Discovery Rates (FDR) for specific disease phenotypes. We

set FDR ≤ 5% as the threshold for over-representation of

genes for any GAD phenotype. Each network, as a whole,

may be over-represented for genes associated with BD

and/or TUD. However, each of these networks includes

the three overlapping candidates, which are already docu-

mented to be associated with both BD and TUD. As such,

we tested each network a second time, excluding the over-

lapping candidates. The first test for each network serves

as a positive control, where we expect to find evidence in

GAD supporting association with BD and TUD. The sec-

ond test, excluding the overlapping candidates, tests

whether the network provides significant new information

on association with BD and/or TUD, beyond the influence

of the overlapping candidates.

In a second phase of hypothesis testing, we used Con-

ceptGen [35] to test the genes in the larger GeneGo

network for over-representation of genes differentially

expressed with nicotine exposure. ConceptGen uses a

custom-built analysis pipeline for processing Affymetrix

GEO [36] datasets from raw data, testing for differen-

tially expressed genes [37], then building concepts to

represent the expression profiles. ConceptGen assesses

over-representation of gene groups for given concepts

by enrichment testing, using the same modified Fisher

Exact test as in DAVID. After seeing significant over-

representation of genes associated with BD and TUD in

the GeneGo network that includes nicotine, we queried

McEachin et al. BMC Medical Genetics 2010, 11:14
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ConceptGen for “Gene Expression” concepts that show

over-representation of the genes in this network. As in

our GAD analysis, we set a threshold of FDR ≤ 0.05 for

over-representation of any differentially expressed gene

set. (Note that ConceptGen presents FDR as a decimal

value while GAD presents FDR as a percentage.)

Inference from common elements versus network model

building (Figure 1f)

The common elements analysis is based on only the

overlapping candidate genes, while the network model

building analysis includes additional candidate genes.

Since these results are related, we compared the infer-

ence that could be drawn from the two approaches.

Prioritizing candidate SNPs for follow-on testing via GIN

(Figure 1g)

We first prioritized SNPs in and near the genes in our

selected network via the Genomic Information Network

(GIN) method developed by Saccone et al. [38]. GIN

prioritizes SNPs based on biological relevance, as deter-

mined by SNP/gene functional properties including

synonymy, annotation for promoter regions, and

human/mouse evolutionary conservation. Second, while

there are not yet any published GWAS results for co-

morbid BD with TUD, we further prioritized SNPs by

weighting them based on evidence from the NicSNP

GWA [39,40] study of nicotine dependence and the

GAIN GWA study of BD[41].

Results

Meta-analysis

Based on our fixed effects model, we estimated Rela-

tive Risk for TUD among BD patients at 2.77, with a

p-value < 0.01, and a 95% confidence interval of 2.62

to 2.92. Based on the random effects model, we esti-

mated Relative Risk for TUD among BD patients at

2.39, with a p-value < 0.0001, and 95% confidence

interval of 1.88 to 3.03 (Figure 2). In the random

effects model, Tau2, an estimate of between-study var-

iance, is small and the Q-index, a measure of lack of

credibility among the studies, is zero (Additional file 3,

Table S1). Since the Relative Risk estimates are consis-

tent across the two models, we proceed with the more

conservative estimate of 2.39.

Overlapping candidate genes

Gene2MeSH-nominated candidates for comorbid BD with

TUD include: catechol-O-methyltransferase (COMT,

Entrez GeneID 1312); solute carrier family 6 (neurotrans-

mitter transporter, dopamine), member 3 (SLC6A3, Gen-

eID 6531); solute carrier family 6 (neurotransmitter

transporter, serotonin), member 4 (SLC6A4, GeneID

6532); tryptophan hydroxylase 1 (TPH1, GeneID 7166);

and dopamine receptor D4 (DRD4, GeneID 1815). Vali-

dating these preliminary candidate genes by searching for

at least two studies showing statistically significant positive

association (Bonferroni corrected p-value ≤ 0.05) with

both BD and TUD, we found that only COMT [42-47],

SLC6A3 [48-57], and SLC6A4 [58-63] meet the require-

ment. TPH1 had one documented significant association

with BD and one significant association with TUD, while

DRD4 had four significant associations with TUD but only

one significant association with BD.

Common elements

For all three locus pairs formed by our overlapping can-

didate genes, PDG-ACE reports “monoamine,

Figure 2 Annotated forrest plot of relative risk for TUD among BD patients. Study authors, dates, counts of smokers with BD, and counts

of smokers among controls are shown on the left. On the right, the MIX software weights each study then calculates Relative Risk and 95%

confidence intervals for TUD among BD patients. A graphical representation of this data is seen in the middle. The META-ANALYSIS study

summarizes the weighted contributions of each individual study and shows a Relative Risk of 2.39 for TUD among BD patients, with a 95%

confidence interval of 1.88 to 3.02.
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psychiatric, and attention” as significantly over-repre-

sented keywords (Figure 3). For the COMT/SLC6A4

pair, “lithium, suicide, prefrontal cortex, illness, trait,

and behavioral” were significantly over-represented. For

the COMT/SLC6A3 pair, “norepinephrine and focused”

were significantly over-represented. For SLC6A3/

SLC6A4, “methamphetamine and cocaine” were signifi-

cantly over-represented. In assessing the context of

these keywords in the Entrez Gene records of each

locus, we noted that the keywords are consistent with

psychiatric disorders, substance use disorders, and atten-

tion deficit hyperactivity disorder. In addition, the publi-

cations describing these effects indicate that these genes

show gender specific effects with respect to both psy-

chiatric disorders and substance use disorders [57,64-78]

GRAIL reported: “transporter, dopamine, serotonin,

polymorphism, methyltransferase, genotype, allele, asso-

ciation, schizophrenia, disorder, dopaminergic, psychia-

tric, subjects, polymorphisms, uptake, attention, patients,

anxiety, risk, and depression” as the keywords describing

commonality among the overlapping candidate genes.

As in the PDG-ACE analysis, we made note of the con-

text of these keywords including: psychiatric disorders,

neurotransmitter signaling, genetic variation, and atten-

tion. GRAIL quantifies similarity among loci (Table 1)

and provides a single p-value to characterize the associa-

tion. Note that ARVCF (Armadillo Repeat gene deletes

in Velocardiofacial syndrome, GeneID 421) is adjacent

to COMT on chromosome 22, so it is included in the

GRAIL gene set.

MiMI network

The smallest network hypothesized by MiMI that con-

tains all of the overlapping candidate genes has 41 genes

total (Figure 4). We organized the graphic in three

blocks, each anchored by one of the overlapping candi-

date genes. Table 2 displays the genes in the MiMI net-

work. The MiMI database focuses primarily on protein-

protein binding interactions, so edges in this network

represent binding reactions between proteins coded by

genes in the network. The genes in this network became

input to the GAD analysis.

STRING network

The smallest network hypothesized by STRING, con-

taining all of the overlapping candidate genes at the

highest level of confidence is shown in Figure 5. To

connect our overlapping candidates to each other,

STRING added four nodes to the network. Genes in the

resulting network include the overlapping candidates

(COMT, SLC6A3, and SLC6A4) as well as SNCA

[(synuclein, alpha (non A4 component of amyloid pre-

cursor), GeneID 6622), labeled as NACP in Figure 5];

DRD2 (dopamine receptor D2, GeneID 1813); MAOA

(monoamine oxidase A, GeneID 4128); and MAOB

(monoamine oxidase B, GeneID 4129). STRING reports

multiple types of interactions and Table 3 reports the

various association scores among the gene pairs. Note

that we have omitted columns of zero scores from

Table 3, though STRING also reports neighborhood

score, fusion score, co-occurrence score, homology

score, and co-expression score. STRING adds nodes

based on decreasing “combined score”, so DRD2 was

the last node added, interacting with COMT, SLC6A3,

and SLC6A4. The genes in this network became input

to the GAD analysis.

GeneGo networks

The smallest network hypothesized by GeneGo containing

all three of the overlapping candidate genes required add-

ing up to 4 nodes between each of the overlapping candi-

dates, yielding a maximum path length of 5 edges, in a

network containing 52 genes (Additional file 4: Figure S1).

As with the MiMI and STRING networks, the genes in

this network became input to the GAD analysis. This net-

work, modified to include the 17 nodes that connect nico-

tine to the network (via p53, lower right, and BDNF, top

right) is shown in Figure 6. The resulting network contains

69 genes, listed in Table 4, and the graphic is organized to

illustrate the feedback loop formed by this network.

Figure 3 PDG-ACE results . Keywords are significantly over-

represented in the Entrez Gene text at gene pairs (on the edges) or

at all three genes (in the middle). These keywords pose hypotheses

on the underlying biological associations between candidate genes

and all are significantly over-represented (Bonferroni corrected p-

value ≤ 0.05). In some cases, these keywords are expected, given

the phenotype, while other keywords may reveal novel hypotheses

on the underlying etiology associated with the phenotype.

Table 1 GRAIL output

GENE GRAIL p-
value

SELECTED SIMILAR GENES (Rank in
parantheses)

COMT 0.001209104 ARVCF(5), SLC6A4(12), SLC6A3(25)

SLC6A3 0.001209104 SLC6A4(8), COMT(92)

SLC6A4 0.001209104 SLC6A3(16), COMT(97)

For each overlapping candidate gene, GRAIL quantifies the similarity to the

other genes in the set (GRAIL p-value) and ranks genes by similarity. GRAIL

also specifies keywords that characterize the similarity (see text).
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GeneGo’s built in pathways analysis did not reveal any sig-

nificantly over-represented pathways. The 69 genes in this

network were used in hypothesis testing via GAD, and

subsequently were used in the ConceptGen analysis for

differential gene expression.

Hypothesis testing: GAD

The MiMI network that includes the overlapping candi-

dates (Additional file 3, Table S2) shows significant

over-representation of genes associated with both BD

and TUD but the network excluding the overlapping

candidates (Additional file 3, Table S3) is not over-

represented for either phenotype.

The STRING network including the overlapping can-

didates (Additional file 3, Table S4) is significantly asso-

ciated with multiple measures of both BD and TUD.

However, the STRING network that excludes the over-

lapping candidates (Additional file 3, Table S5) is over-

represented only for “smoking behavior” (FDR 0.87%)

and the more general term “mood disorder” (FDR

0.15%), rather than BD.

The original GeneGo network, including the overlap-

ping candidates but excluding nicotine, is over-repre-

sented for genes associated with both BD and TUD

(Additional file 3, Table S6). Excluding the overlapping

candidates, this network is over represented only for the

general term “depressive disorder, major” (Additional

file 3, Table S7). After adding nicotine to this network,

the GeneGo network containing 69 genes is over-repre-

sented for both BD and TUD associated genes, whether

the overlapping candidates are included (Table 5) or

excluded (Table 6). Excluding the overlapping candi-

dates, this network is over-represented for genes asso-

ciated with both “bipolar disorder” (FDR < 0.0001%) and

“smoking behavior” (FDR = 0.0041%).

Hypothesis testing: ConceptGen

ConceptGen finds that genes in the GeneGo network

that includes nicotine are significantly over-represented

(FDR 0.029) in one relevant GEO dataset, GSE10718 [79]

(Table 7). GSE10718 is titled “Time course of NHBE cells

exposed to whole cigarette smoke (full flavor)”. Briefly, in

Figure 4 MiMI network. Overlapping candidates (COMT, SLC6A4, and SLC6A3) are triangular, while their interaction partners are circular.

Table 2 Genes included in the MiMI network

Gene ID Gene Name Gene ID Gene Name Gene ID Gene Name Gene ID Gene Name

26 ABP1 220 ALDH1A3 1644 DDC 6531 SLC6A3

1636 ACE 218 ALDH3A1 9416 DDX23 6532 SLC6A4

124 ADH1A 221 ALDH3B1 10399 GNB2L1 6622 SNCA

125 ADH1B 222 ALDH3B2 9516 LITAF 6804 STX1A

126 ADH1C 314 AOC2 4128 MAOA 7041 TGFB1I1

127 ADH4 8639 AOC3 4129 MAOB 9319 TRIP13

128 ADH5 604 BCL6 4143 MAT1A 22803 XRN2

130 ADH6 811 CALR 4144 MAT2A 4904 YBX1

131 ADH7 1208 CLPS 9463 PICK1

137872 ADHFE1 1312 COMT 5409 PNMT

191 AHCY 1621 DBH 5720 PSME1

For each gene in the MiMI network, Entrez Gene ID and HGNC identifier are listed
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this experiment, normal human bronchial epithelial cells

were exposed to tobacco smoke for 15 minutes, and then

incubated for 2 hours in fresh media. Gene expression

was assayed on the Affymetrix HG-U133 plus 2 microar-

ray, and differential expression was assessed by the Con-

ceptGen expression analysis pipeline.

SNP prioritization via GIN

Based on genes in the GeneGo network that includes

nicotine, for each SNP assayed in both NicSNP and

GAIN, which also shows up in one of our candidate

genes, we summed the GIN prioritization score and the

transformed p-value [-log10(p-value)] from each of the

NicSNP and GAIN studies. Additional file 5, Network_-

cand_SNPs_GIN_NicSNP_GAIN, provides SNPS priori-

tized for validation.

Discussion

We found significant epidemiological evidence for

increased risk of TUD among BD patients (Figure 2), as

well as evidence of increased risk for BD among TUD

patients, consistent with a common underlying etiology

for these two disorders. There is clear evidence in the

Table 3 STRING genes and association scores

Node 1 Node 2 Experimental Score Knowledge Score Textmining Score Combined Score

NACP SLC6A3 0.873 0.9 0.481 0.993

MAOA COMT 0 0.9 0.91 0.991

MAOB COMT 0 0.9 0.848 0.984

DRD2 SLC6A3 0.644 0 0.955 0.983

DRD2 COMT 0 0 0.983 0.983

DRD2 SLC6A4 0 0 0.956 0.956

SLC6A4 COMT 0 0 0.933 0.933

Association between each gene pair is characterized by Experimental, Knowledge, and Textmining scores, as well as the Combined score. Columns of zero scores

have been omitted.

Figure 5 STRING network. The STRING network incorporates the overlapping candidates plus the genes that show the highest combined score

characterizing the association among them.
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literature that both disorders are influenced by both

genetic variation and the environment. Given evidence

of common underlying etiology, as well as evidence of

genetic and environmental influences on both BD and

TUD, we hypothesized a common underlying genetic

etiology, interacting with environmental nicotine expo-

sure, influencing susceptibility to comorbid BD and

TUD. We used multiple bioinformatics resources to test

this hypothesis, including several novel resources.

Meta-analysis

In the meta-analysis, we estimated relative risk for TUD

among BD patients at approximately 2.39 times the risk

for the general population. While we cannot discount

the possibility of heterogeneity, testing suggests that

these seven studies likely are representative of the same

population. Equally, all seven studies show an increased

Relative Risk for TUD among BD patients and, with the

exception of Uock et al., the increased risk is statistically

Figure 6 GeneGo network, including nicotine. The GeneGo network connects the overlapping candidates using the smallest number of

nodes at the highest level of confidence for the edges. Nicotine and the nodes required to connect nicotine to the network have been added.

Overlapping candidate genes (COMT, Dopamine transporter, and SERT) are shown as red, green, and blue circles. Other nodes are coded by the

type of protein coded by the gene (e.g. kinases, transporters, etc.). Edges are labeled for direction of effect, where appropriate, and are green for

activation or red for repression.

Table 4 Genes included in the GeneGo network

Gene ID Gene Name Gene ID Gene Name Gene ID Gene Name Gene ID Gene Name

1636 ACE 1145 CHRNE 5743 PTGS2 112714 TUBA3E

316 AOX1 1146 CHRNG 6233 RPS27A 7277 TUBA4A

624 BDKRB2 1312 COMT 9632 SEC24C 51807 TUBA8

627 BDNF 10987 COPS5 6464 SHC1 203068 TUBB

1134 CHRNA1 1813 DRD2 6571 SLC18A2 81027 TUBB1

57053 CHRNA10 113878 DTX2 6531 SLC6A3 7280 TUBB2A

1135 CHRNA2 1956 EGFR 6532 SLC6A4 347733 TUBB2B

1136 CHRNA3 1958 EGR1 6667 SP1 10383 TUBB2C

1137 CHRNA4 29924 EPN1 6811 STX5 10381 TUBB3

1138 CHRNA5 2060 EPS15 6853 SYN1 10382 TUBB4

8973 CHRNA6 2099 ESR1 7157 TP53 84617 TUBB6

1139 CHRNA7 3320 HSP90AA1 9319 TRIP13 7311 UBA52

55584 CHRNA9 10207 INADL 7846 TUBA1A 7314 UBB

1140 CHRNB1 3725 JUN 10376 TUBA1B 10971 YWHAQ

1141 CHRNB2 84708 LNX1 84790 TUBA1C 7534 YWHAZ

1142 CHRNB3 4842 NOS1 7278 TUBA3C 7704 ZBTB16

1143 CHRNB4 5359 PLSCR1 113457 TUBA3D 51545 ZNF581

1144 CHRND

For each gene in the GeneGo network, including nicotine, Entrez Gene ID and HGNC identifier are listed
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Table 5 GAD testing of the GeneGo network, including nicotine and the overlapping candidates

Term Count % PValue Genes Fold
Enrichment

FDR
%

cognitive function 14 20.6 2.8E-18 1137, 6531, 6532, 1138, 1312, 1813, 57053, 1135, 2099, 627, 55584,
1139, 1141, 1142,

36.0 0.000

bipolar disorder 19 27.9 7.2E-15 1137, 6531, 1140, 1143, 8973, 6532, 1138, 1312, 1813, 1136, 57053,
1135, 1636, 627, 55584, 1134, 1139, 1141, 1142,

10.2 0.000

smoking behavior 10 14.7 1.9E-10 6531, 627, 55584, 6532, 4842, 1139, 1312, 1141, 1813, 1142, 21.9 0.000

Parkinson’s disease 12 17.7 2.0E-07 1636, 1137, 6853, 2099, 6531, 627, 6532, 5743, 4842, 1312, 1813,
6571,

7.3 0.000

smoking 6 8.8 1.3E-05 1636, 6531, 7157, 6532, 1141, 1813, 18.1 0.025

methamphetamine abuse 5 7.4 2.1E-05 6531, 627, 6532, 1312, 1813, 27.3 0.042

alcoholism 7 10.3 2.2E-05 1636, 1137, 6531, 627, 6532, 1312, 1813, 11.3 0.042

Alzheimer’s disease 13 19.1 5.3E-05 1137, 7157, 4842, 6532, 1312, 1136, 9632, 1636, 2099, 627, 5743,
1139, 1141,

3.8 0.104

attention deficit hyperactivity
disorder

6 8.8 6.4E-05 1137, 6531, 627, 6532, 1312, 1813, 13.1 0.125

depression 6 8.8 7.2E-05 1636, 6531, 627, 6532, 1312, 1813, 12.8 0.141

depressive disorder, major 6 8.8 1.4E-04 2099, 627, 6532, 4842, 1139, 1813, 11.2 0.275

tardive dyskinesia 5 7.4 1.6E-04 6531, 6532, 4842, 1312, 1813, 16.8 0.318

personality traits 5 7.4 1.6E-04 6531, 627, 6532, 1312, 1813, 16.8 0.318

schizophrenia 13 19.1 3.3E-04 1137, 6531, 7157, 4842, 6532, 1312, 1813, 1636, 627, 5743, 1139,
1141, 6571,

3.1 0.645

mood pain 3 4.4 3.6E-04 627, 6532, 1312, 87.4 0.702

suicide 5 7.4 3.7E-04 1636, 6531, 6532, 4842, 1312, 13.7 0.729

obsessive compulsive disorder 4 5.9 5.3E-04 6531, 627, 6532, 1312, 23.3 1.027

Tourette syndrome 4 5.9 6.4E-04 6531, 6532, 1312, 1813, 21.9 1.253

eating disorders 3 4.4 7.1E-04 627, 6532, 1312, 65.6 1.390

alcoholism attention deficit
hyperactivity disorder

3 4.4 7.1E-04 6532, 1312, 1813, 65.6 1.390

alcohol abuse smoking
behavior

3 4.4 7.1E-04 6531, 6532, 1813, 65.6 1.390

mood disorder 4 5.9 7.7E-04 1636, 627, 6532, 1813, 20.6 1.508

heroin abuse 4 5.9 7.7E-04 6531, 6532, 1312, 1813, 20.6 1.508

anorexia nervosa 4 5.9 9.2E-04 2099, 627, 6532, 1312, 19.4 1.793

schizophrenia; tardive
dyskinesia

3 4.4 1.2E-03 627, 6532, 1312, 52.5 2.290

dystonia, acute parkinsonism
tardive dyskinesia

3 4.4 1.2E-03 6531, 6532, 1813, 52.5 2.290

neuroticism 3 4.4 1.2E-03 627, 6532, 1312, 52.5 2.290

obsessive-compulsive disorder 3 4.4 1.2E-03 627, 6532, 1312, 52.5 2.290

bipolar disorder schizophrenia 4 5.9 1.5E-03 627, 1139, 1312, 6571, 16.7 2.842

premenstrual dysphoric
disorder

3 4.4 1.8E-03 2099, 6532, 1312, 43.7 3.393

kidney failure, chronic
polycystic kidney disease

3 4.4 2.4E-03 624, 1636, 1956, 37.5 4.687

GAD testing, including nicotine and the overlapping candidates, shows significant over-representation for “bipolar disorder” (BD), “smoking behavior” (TUD),

“smoking” (TUD), “alcohol abuse smoking behavior” (TUD) and “bipolar disorder, schizophrenia” (BD).
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significant. We also cannot discount the possibility of

publication bias in this analysis. However, the largest

and most influential studies, Carney and Grant, were

observed in large representative populations and are

unlikely to have been influenced by this bias. MIX per-

formed well on our data and we recommend its use for

similar meta-analyses. These data are consistent with

BD influencing TUD susceptibility, TUD influencing BD

susceptibility, or both BD and TUD being influenced by

some common element(s).

Gene2MeSH

To identify candidate genes for the co-morbidity, we

searched the extensive literature on both BD and TUD

using Gene2MeSH [23]. Gene2MeSH nominates candi-

date genes that are significantly over-represented in lit-

erature annotated for the queried MeSH term.

Gene2MeSH casts a very wide net (all of PubMed) in

searching for gene/MeSH term pairs, performs the

search in seconds, provides a Fisher Exact p-value to

quantify the over-representation of each gene for a

given MeSH term, and sets a threshold of Fisher Exact

p-value ≤ 10-4 to minimize spurious associations. While

this p-value threshold is effective minimizing spurious

associations, in the case of genes that have strong

evidence of association in a relatively small body of lit-

erature, this threshold may exclude valid gene/MeSH

term pairs. We used three queries for TUD ("tobacco

use disorder”, “smoking”, and “nicotine”), though the

query for “smoking” returned all three of the overlap-

ping candidate genes. This suggests that, due to redun-

dancy and ambiguity in MeSH annotation, the user

must be wary in choosing the most appropriate MeSH

terms for Gene2MeSH queries.

Gene2MeSH provides links that allow the user to fol-

low the evidence for a gene/MeSH term pair by

PubMed query. We used these links to validate our can-

didate genes by searching the literature for replicated,

statistically significant (Bonferroni corrected), positive

association with both BD and TUD. This combined

threshold for over-representation and replication

reduces the chance of a false positive association,

though both false positives and false negatives remain

possible. For example, both TPH1 and DRD4 show evi-

dence of association with the comorbidity, but do not

meet the criteria for replication. Future work may reveal

these as true candidate genes for the comorbidity.

Notably, in this analysis and others that rely on pub-

lished data, there is potential for bias in selecting well

studied genes or well studied diseases in developing can-

didate genes. At the same time, analyses that do not

depend on published disease association (e.g. interac-

tions network analysis) may lack relevance to the disease

phenotype of interest. We believe that by combining

these approaches we minimize the effects of bias and

maximize relevance to the phenotype of interest. Gene2-

MeSH performed well on our data and provided candi-

date genes for the analysis and we recommend its use

for similar analyses. Alternately, other approaches to

candidate gene selection (e.g. GWAS or microarray

assay) are useful and could be substituted for Gene2-

MeSH in this analysis.

Common elements

In an effort to understand how our overlapping candi-

dates might interact in predisposing BD and TUD, we

tested them for commonality using two relatively new

algorithms: PDG-ACE [24,25] and GRAIL[26]. PDG-

ACE finds significant commonality among these genes.

Keywords such as “monoamine, psychiatric,

Table 6 GAD testing of the GeneGo network, including nicotine but excluding the overlapping candidates

Term Count % PValue Gene IDs Fold
Enrichment

FDR %

bipolar
disorder

16 24.6 8.5E-12 1137, 1140, 1143, 8973, 1138, 1813, 1136, 57053, 1135, 1636, 627, 55584, 1134,
1139, 1141, 1142

9.34 0.0000

smoking
behavior

7 10.8 2.1E-06 627, 55584, 4842, 1139, 1141, 1813, 1142 16.65 0.0041

GAD testing, including nicotine but excluding the overlapping candidates, shows significant over-representation for “bipolar disorder” (BD) and “smoking

behavior” (TUD).

Table 7 ConceptGen results

Gene Symbol Gene ID p-value Fold Chg

PTGS2 5743 5.0E-11 3.76

EGR1 1958 3.7E-07 2.45

JUN 3725 5.3E-06 1.96

UBB 7314 3.2E-09 1.62

HSP90AA1 3320 4.7E-05 1.23

TUBA4A 7277 5.7E-06 0.78

EPS15 2060 3.6E-05 0.74

TUBB 203068 7.1E-06 0.73

TUBB2C 10383 7.5E-07 0.72

ZNF581 51545 9.1E-05 0.71

TUBB6 84617 4.1E-07 0.70

BDKRB2 624 6.8E-05 0.69

TUBB3 10381 1.1E-07 0.59

13 Genes from the selected GeneGo network are differentially expressed with

tobacco smoke exposure in GSE10718 (gene symbol and Entrez Gene ID, plus

p-value and fold change calculated in the ConceptGen expression analysis

pipeline).
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norepinephrine, prefrontal cortex, illness, trait, and

behavioral” are consistent with the expected roles of

these genes in a psychiatric disorder. Keywords such as

“lithium and suicide” are more specific to BD, while

“methamphetamine and cocaine” are consistent with

substance use disorders, common comorbidities for BD

patients [80]. Keywords “focused and attention” are con-

sistent with both Attention Deficit Disorder [81] and

TUD [82]. The first two categories of keywords serve as

positive controls, showing that PDG-ACE finds expected

relationships among genes that were selected for asso-

ciation with BD and TUD. Note that in earlier testing of

PDG-ACE, we used randomly selected locus pairs as

negative controls to show that it does not find spurious

associations [25]. Reviewing the publications associated

with the keywords that PDG-ACE found significant, we

found that these genes show gender specific effects in

psychiatric and/or substance use disorders. This is con-

sistent with gender differences seen in some studies of

TUD susceptibility, though there are also genetic find-

ings for TUD that have consistent effects in both gen-

ders [40,83-85]. BD susceptibility is often thought to be

independent of gender, so the implication is that follow-

on studies of comorbid BD with TUD might benefit

from analyses that are stratified by gender or explicitly

model gender in association testing. This benefit may

extend to independent BD and TUD phenotypes for

some genes.

GRAIL produced a set of keywords similar to those

produced by PDG-ACE. Keywords “transporter, dopa-

mine, serotonin, uptake, methyltransferase, dopaminer-

gic, and psychiatric”, are consistent with the functions of

these genes in psychiatric disorders, while “subjects,

polymorphisms, patients, risk, genotype, allele, and asso-

ciation” are consistent with the study of the genetic

etiology of complex disease. Keywords “depression, anxi-

ety, schizophrenia, disorder, and attention” are consis-

tent with psychiatric disorders but do not highlight the

comorbidities of BD with substance use. GRAIL could

be improved by providing links to the references used in

the analysis, which would allow the user to follow the

keywords to assess their potential impact in the disease

of interest and, potentially, recognize details such as the

gender-specific effects of these genes in psychiatric and

substance use disorders.

Network hypothesis generation and testing

Hypothesis generation via MiMI, STRING, and GeneGo

proceeded in parallel. MiMI focuses on protein-protein

binding, while STRING and GeneGo also incorporate

functional interactions based on the literature. The

STRING network includes only 7 genes, the MiMI net-

work includes 41 genes, the smaller GeneGo network

includes 52 genes, and the GeneGo network with nico-

tine contains 69 genes. Testing via the Genetic

Association Database reveals the MiMI, STRING, and

smaller GeneGo networks as being generally consistent

with the hypothesis. However, when excluding the over-

lapping candidates none of these networks provides sta-

tistically significant evidence in support of the

hypothesis.

Only the GeneGo network that includes nicotine is

statistically over-represented for genes associated with

both BD and TUD. Interpreting these results, we believe

that the GeneGo network that includes nicotine illus-

trates the importance of environmental nicotine expo-

sure in both BD and TUD susceptibility. Consistent

with this interpretation, the ConceptGen analysis of this

network shows significant over-representation of genes

that are differentially expressed with nicotine exposure.

Notably, this network forms a feedback loop, where

nicotine in the extracellular environment is sensed

inside the cell via binding of nicotine to nicotinic acetyl-

choline receptors, influencing both calcium and neuro-

transmitter signaling. The environmental influence of

nicotine would tend to be amplified over a number of

cycles, potentially leading to a growing imbalance in the

system with continued exposure. As such, we would

expect neurotransmitter and/or calcium signaling to be

increasingly imbalanced, over time, with exposure to

nicotine. This result is also consistent our original

hypothesized interaction between the genetic network

and environmental nicotine exposure in predisposing

both BD and TUD.

In these analyses, we use GAD for hypothesis testing.

While GAD currently has 39,930 records, it remains

under development, and it most certainly includes both

false positive associations and is missing true associa-

tions. Another limitation is that GAD provides only

dichotomous disease association data for each gene,

which does not account for the strength of the evidence

for association, sample size, and methodology. In spite

of these limitations, GAD provides a means for obtain-

ing quantitative measures of disease association for

genetic networks and will become more valuable as

more data are collected and vetted.

We note that the genes identified as being associated

with BD and TUD in our GAD analysis are distinct

from the genes found to be differentially expressed in

the ConceptGen analysis. While this could happen if the

data from GAD or ConceptGen represent false positive

associations, we believe that this is a result of the differ-

ences in hypothesis testing. GAD looks for broad disease

association, which could be caused by a range of dis-

eases-related processes. Since we were focused on envir-

onmental effects on the network, we tested specifically

for differential expression in the ConceptGen analysis.

These are not mutually exclusive tests and may repre-

sent two views of the same or related phenomena.
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While we emphasize that the selected network model

is imperfect, it provides a reasonable model for the com-

plex genetic and environmental influences on BD and

TUD comorbidity. Interestingly, it also models other

phenotypes. For instance, in the GAD analysis (Table 5)

we see “kidney failure, chronic polycystic kidney dis-

ease”, as a phenotype likely influenced by this network.

Kidney failure is clearly a medical phenotype, rather

than a psychiatric phenotype, but this network demon-

strates genetic influences on the comorbidity and on

this medical phenotype [86,87]. Consistent with this

observation, many genes that are expressed in the brain

are expressed in other tissues, so variation that influ-

ences psychiatric disorders may have whole body effects

and influence what are traditionally considered medical

disorders [88-90], thus blurring the boundaries between

psychiatric and medical conditions.

Common elements versus network analysis

In reviewing Table 5, the selected GeneGo network

models multiple elements related to BD and TUD

including: “cognitive function” [91,92], “Parkinson’s dis-

ease” [93,94], multiple forms of substance abuse (alco-

hol, methamphetamine, heroin) [80,95], “attention

deficit hyperactivity disorder” [81,82] (ADHD), and “pre-

menstrual dysphoric disorder” [96,97]. Notably, these

results are consistent with, and expand upon, the results

seen in our PDG-ACE and GRAIL analyses. PDG-ACE

keywords “monoamine, psychiatric, norepinephrine, pre-

frontal cortex, and behavioral”, are consistent with net-

work phenotypes “cognitive function” and “Parkinson’s

disease”. PDG-ACE keywords “methamphetamine, and

cocaine” are consistent with the network’s associations

with substance abuse, while PDG-ACE keywords

“focused, and attention” are consistent with the net-

work’s ADHD association. GRAIL keywords “transpor-

ter, dopamine, serotonin, uptake, methyltransferase, and

dopaminergic” are consistent with the network pheno-

types “cognitive function” and “Parkinson’s disease”,

while GRAIL keyword “attention” is consistent with the

network phenotype ADHD. In addition, the gender spe-

cific effects we saw in following the PDG-ACE results

are consistent with the network phenotype “premenstr-

ual dysphoric disorder”.

Validation testing

Our initial efforts herein have prioritized 14,380 SNPs

for validation based on the integration of evidence from

GIN and GWAS. No specific biological inquiry has been

implemented based on these findings yet, as this work

represents a critical first step in planning further experi-

ments. While this is a relatively large number of target

SNPs, representing a correspondingly large number of

hypothesis tests, the weights provided herein would also

allow researchers to select a subset of these SNPs for

validation. In addition, based on internal GeneGo anno-

tation, this network proposes multiple potential drug

targets for the comorbidity including: EGFR, SLC6A3,

SLC6A4, Tubulin, DRD2, COX2, BDKRB2, ACE1,

COMT, ESR1, and the NACHRs. Any or all of these

genes provide ready targets for drug testing.

Conclusions

The primary limitation of this approach relates to the

validity of the published research in the literature and

databases, which may be plagued by type I and II errors.

In spite of this limitation, this research highlights several

significant points. First, we hypothesized a common

underlying genetic etiology, interacting with environ-

mental nicotine exposure, influencing susceptibility for

both BD and TUD. We find statistically significant evi-

dence in support of this hypothesis in the selected Gen-

eGo network, both via GAD testing for over-

representation of BD and TUD associated genes, and

ConceptGen testing for over-representation of differen-

tially expressed genes. We see gender specific effects of

our overlapping candidate genes, consistent with strati-

fying future BD and TUD analyses by gender or expli-

citly modeling gender in association analysis.

Gene2MeSH provides a useful list of candidate genes

for a particular phenotype (MeSH term), though it is

not an exhaustive list. As seen in the selected GeneGo

network, our overlapping Gene2MeSH candidates

anchor the network and provide a means of identifying

interactions that may be significant in disease, but other

genes in the network are also viable candidates. Our

definitions of psychiatric and medical conditions may be

significantly modified as we progress in identifying

genetic influences on complex diseases. Candidate genes

and drug targets posed by this network may prove valu-

able in improving prognosis for patients with this

comorbidity. In summary, our systems biology approach

provides a model of interacting genetic influences, as

well as gene-by-environment interactions, likely to

impact comorbid DB with TUD.

Additional file 1: Forest Notes. An MS Excel spreadsheet showing the

meta analysis input and output data as well as notes describing

diagnostic criteria for BD and TUD, test and control population, and

derivation of counts for each study.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2350-11-

14-S1.XLS ]

Additional file 2: MOOSE Checklist. An MS Word document that

describes the details of the meta-analysis, consistent with the Reporting

Checklist for Authors, Editors, and Reviewers of Meta-analyses of

Observational Studies - Meta-analysis of Observational Studies in

Epidemiology (MOOSE) criteria.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2350-11-

14-S2.DOCX ]
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Additional file 3: Supplementary Tables. An MS word document that

provides the MIX meta-analysis summary report (Table S1), and 6 tables

of GAD output (Tables S2 through S7).

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2350-11-

14-S3.DOC ]

Additional file 4: Figure S1. A Portable Network Graphics file with the

GeneGo network that connects the overlapping candidates using the

smallest number of nodes at the highest level of confidence for the

edges. Overlapping candidate genes (COMT, Dopamine transporter, and

SERT) are shown as red, green, and blue circles. Other nodes are coded

by the type of protein coded by the gene (e.g. kinases, transporters, etc.).

Edges are labeled for direction of effect, where appropriate, and are

green for activation or red for repression.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2350-11-

14-S4.PNG ]

Additional file 5: Network_cand_SNPs_GIN_NicSNP_GAIN. A comma

separated text file of candidate SNPs prioritized for validation.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2350-11-

14-S5.CSV ]
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