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Abstract Modern integrative systems biology defines itself by the complexity of

the problems it takes on through computational modeling and simulation. However

in integrative systems biology computers do not solve problems alone. Problem

solving depends as ever on human cognitive resources. Current philosophical

accounts hint at their importance, but it remains to be understood what roles human

cognition plays in computational modeling. In this paper we focus on practices

through which modelers in systems biology use computational simulation and other

tools to handle the cognitive complexity of their modeling problems so as to be able

to make significant contributions to understanding, intervening in, and controlling

complex biological systems. We thus show how cognition, especially processes of

simulative mental modeling, is implicated centrally in processes of model-building.

At the same time we suggest how the representational choices of what to model in

systems biology are limited or constrained as a result. Such constraints help us both

understand and rationalize the restricted form that problem solving takes in the field

and why its results do not always measure up to expectations.
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1 Introduction

Modern computational science is complex: cognitively, technologically, and

collaboratively. A prime example is the field of integrative systems biology

(ISB). This field aims to understand, intervene on, and control biological systems

comprising integrated, interacting, complex networks of genes, proteins, and

biochemical reactions. In the field of ISB those who do computational modeling (as

opposed to data mining) tend to use ‘‘computational model(ing)’’ and ‘‘simulation’’

interchangeably because the purpose of building a computational model in ISB is to

run simulations of actual and counterfactual system dynamics. Model simulation is

the process through which models both are built and are tested. Solutions to the

problems the field poses create an essential interdependence among the participating

fields: computational sciences, engineering sciences, and biological sciences. The

nature of the problems posed in integrative systems biology requires both

specialization and collaboration. Although there are some on-going attempts to

develop hybrid modeler-experimentalists, in principle, modelers (mainly engineers,

physicists, and applied mathematicians) and experimentalists (mainly molecular

biologists and biochemists) have a symbiotic relationship. One bioscientist we

interviewed characterized the situation succinctly:

Number one, team science is the only way it’s gonna work these days. It’s

really gonna get hard to write a single investigator RO1 these days and expect

to get funded because everyone is now realizing the interconnectedness of

everything. And for me to be able to sit here and think that I can have all the

expertise in my tiny little brain to do everything with all these approaches that

I don’t understand at all is ridiculous…that’s not how it’s (bimodal) ever

really gonna work… at the PI level because you’re gonna be much more on

one side than the other. So you need the other half of your [bioscientist] brain

to be in another person, G4 [a modeler]. For me, to be [in] G4.1

However, with little knowledge of one another’s methods, concepts, technolo-

gies, and epistemic values, at the present time symbiosis is more a desideratum than

a reality. Although the field is young, developing, and diverse, the challenges of

collaboration that were detailed in our interviews of both modelers and

experimentalists are widespread, which we see when presenting our claims to

wider audiences of systems biologists. In the absence of effective collaborations, the

lack of biological knowledge and access to sufficient data for building models

increases the inherent cognitive complexity of the task for modelers. Further, unlike

the situations of physics-based and climate science modeling that predominates in

the philosophical literature on computational modeling and simulation (see for

instance Winsberg 2010; Parker 2010; Lenhard 2006, 2007; Humphreys 2004)

systems biology lacks well established domain theories which can provide a

platform of representational resources and methods for developing reliable

simulation models (see MacLeod and Nersessian 2013a). The modelers we have

1 Italicized quotations are drawn from our interviews of researchers who participated in our study.
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studied bring with them tools and tricks from engineering, but all aspects of the

process of modeling complex biological systems are open to decision, including:

• Representations of biochemical interactions to use (Michaelis–Menten, power

laws, etc.)

• Data sets and databases to use.

• Pathway elements to include or exclude.

• Parameter estimation techniques, parameter-fixing algorithms, algorithm

development.

We have conducted a 5-year ethnographic investigation of modeling practices in

two pioneering integrative systems biology laboratories in which the biosystems

modelers mostly had engineering backgrounds.2 Lab G conducts only computa-

tional modeling. Lab C conducts computational modeling and modelers also

conduct their own bench-top experiments in service of model-building. Lab C

researchers have the ability to incorporate experiment into their practices which

leads to hybrid experiment-modeling strategies (see MacLeod and Nersessian

2013b). We label these researchers ‘‘bi-modal’’. In this paper however we restrict

ourselves to the practices mostly used in Lab G. Although there is a range of ways in

which systems biology is practiced, dedicated computational labs which collaborate

with external experimentalists predominate. Our primary goals in this paper are (1)

to help understand how these ‘‘uni-modal’’ computational modelers are able to

handle the complexity of their modeling problems cognitively so as to build at least

partially accurate models, and in turn make sometimes profound contributions to the

understanding of the systems they are modeling; and (2) to understand, to the extent

possible given our data, the ways in which cognitive capacities and constraints play

a role in the representations they build and methodological choices they make.

These choices might initially appear ineffective given the epistemological goals of

the field, but can be rationalized nonetheless on cognitive grounds.

In this respect our paper both builds upon and diverges from the traditional

manner through which cognitive practices in science have been studied in

philosophy of science and elsewhere.3 Various philosophers for instance have

studied the cognitive affordances of particular model-building and other strategies

for building representations of phenomena. Wimsatt for instance has leveraged

Levin’s original discussion of modeling strategies for simplifying and idealizing

2 The ethnographic and interviewing parts of our investigation took place between 2010 and 2014. We

then followed up with the graduate student researchers through the awarding of their Ph.D.’s. The last

student in lab G finished in 2016. ODE and calculus-based biosystems modeling approaches continue to

be a fruitful, especially in the contemporary context of the greater availability of time series data and

enhanced computing resources. For a review of recent research using the BST approach of our modelers

see (Voit 2013a, b). A range of contemporary practitioners of mesoscopic modeling were contributors to a

recent international conference on the state of the field https://www.cecam.org/workshop-1-1269.html.
3 A field of ‘‘cognitive science (studies) of science’’ has been developing since the early 1980 s with

philosophers of science, psychologists, and AI researchers participating. Pioneering work in philosophy

of science include Darden (1991), Giere (1988), Nersessian (1984, 1992), and Thagard (1988). However

since only the more recent work of Nersessian and colleagues that we cite here addresses the practices of

computational modeling and simulation, we draw mainly from that.
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complex biological systems (in population biology), and Simon’s work on problem-

solving, into a cognitive theory of the affordances and biases of common

reductionistic heuristics in scientific practice (see Wimsatt 2007; see also Bechtel

and Richardson’s discussion of the role of decomposition and localization heuristics

in handling complex systems). Wimsatt’s work has precipitated a line of discussion

on the role that false models, idealized models and robustness analysis play in

scientific discovery processes (e.g. Weisberg 2006). This research helps both

understand and rationalize the steps modelers typically employ to break down

complex systems and recover information about these systems from their models

given cognitive and other constraints.

When trying to account for the methodological choices and abilities of systems

biologists to derive information from complex biochemical systems we want to

illustrate in this paper an important role for a cognitive analysis that goes deeper

than the analysis of heuristics, to consider actual cognitive mechanisms and

processes modelers rely upon to process information through the use of their

models. Part of the need for this as we will see is that many of the inferences and

decisions modelers make about how to structure and improve their models are

dependent on the ways in which computational simulations are used to help

augment and direct their own cognitive capacities. As the title of Humphreys (2004)

book advertises, computational simulation provides a novel way of ‘‘extending

ourselves;’’ that is, it provides fundamentally new ways of doing science through

extending human cognitive capacities. But, this and other analyses mostly hint at the

nature of these capacities without providing a precise account of the cognitive

functions and factors which underlie them.

To develop this account, we need to draw from research in the cognitive sciences,

particularly in the area of mental modeling, mental simulation, model-based

reasoning and distributed cognition. On our account, just as the microscope and

telescope extended the human capacity for ‘‘seeing,’’ computational simulation has

extended the human cognitive capacity for reasoning via mentally simulating

dynamical phenomena (‘‘simulative model-based reasoning’’4). The account we

have been developing moves away from cognitive models that focus exclusively on

individual cognitive processes and draws from the cognitive frameworks of

distributed cognition and of simulative mental modeling to cast the modeler and

model as constituting a ‘‘coupled cognitive system’’ through which model-based

inferences are made (Nersessian 2002, 2008; Chandrasekharan et al. 2012;

Chandrasekharan and Nersessian 2015; Chandrasekharan and Nersessian, forth-

coming). Accounts of distributed cognition in science have been proposed by others

in the philosophical literature (see, e.g., Giere 2002), but these accounts focus on the

collective or socially distributed nature of cognition, rather than the distribution

among instruments, artifacts and technologies, and a human agent. Despite the

interdisciplinary nature of systems biology, the process of model-building is mostly

the responsibility of the individual modeler rather than well-coordinated collective

4 See Nersessian (2008) for a detailed critical analysis of the ‘‘mental modeling framework,’’ and the role

of ‘‘simulative model-based reasoning’’ in science and engineering (Nersessian 2009).
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processes between modelers and experimentalists. This is largely because the

computational model is a ‘‘black box’’ to most experimentalists.

As such in this paper we aim to illustrate the value of richer cognitive accounts

for explaining problem-solving processes and methodological choices in a

computational field such as ISB. To this end in Sect. 2 we begin by considering

the complex nature of the problem solving tasks which confront modelers in

systems biology, and the kinds of inferences they are able to make in order to

improve their models despite this complexity. In Sect. 3 we discuss the potential

importance of distributed cognition and of mental modeling as the cognitive

mechanisms through which modelers produce these inferences. In Sect. 4 we show

the potential for such a cognitive account to help explain and rationalize various

aspects of methodological choice in the field. The size and scale of networks being

modeled by systems biologists seem too small for obtaining central goals in the

field, particularly with respect to prediction (Voit et al. 2012a, b). We will suggest

that the size and scale of network which can be represented is constrained by limits

on the operational effectiveness of those cognitive practices modelers rely on, but

the modeling practices can be rationalized nonetheless on cognitive grounds, as

meaningful steps in the direction of predictive models. Such insights help

demonstrate the useful role that cognitive approaches can play for philosophy of

science in our attempt to unpack, and discover the rational basis, for scientific

practice.

2 Cognitive dimensions of model-building in integrative systems biology

We begin this section with a brief description of the field and the nature of the

problem-solving tasks that confront our modelers, before detailing some of the

specific kinds of inferences modelers need to make during the model-building

process and the cognitive processes they use to make those inferences.

Two overarching aims of modern systems biology are (1) to build detailed large

scale representations of biological systems (Kitano 2002) and (2) to discover any

design or organization principles that characterize the components of systems (Alon

2006, 2007). In our labs the first goal is the predominant goal of individual

researchers. Our labs specialize in building ordinary differential equation models

(ODE models) of gene regulatory, cellular metabolic and cell signaling networks.

Variables in the model describe concentrations of each metabolite in the network in

an individual cell (‘‘pathway’’). These models are run to simulate the changes to the

concentrations of metabolites in a cellular network over time, where each metabolite

pool interacts with certain other metabolites, represented as its neighbors in a

network. In general our modelers aim to produce models that make good predictions

of the dynamic relationships between certain variables in the model, and are thus

robust in performance with respect to parameter and initial condition variations. We

label such models ‘‘predictively valid’’.

One of the central assertions of modern systems biology is that in vitro

approaches of traditional experimental molecular biology are insufficient for

understanding and controlling the causal properties and behavior of biochemical
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networks. While experiment may reveal local causal interactions between molecular

elements, biochemical functions tend to be controlled and orchestrated through

large scale networks (networks with wide boundaries) of large size (involving many

interacting elements). These networks tend to function through nonlinear interac-

tions, such as feedback loops. As a result the causal properties an element of a

network has are dependent on interactions happening upstream and downstream in

the network. These features explain in part why particular systemic diseases like

cancer or cystic fibrosis have proven so difficult to treat (Hood et al. 2004).

Complex networks such as these generate robustness and redundancy, and nonlinear

sensitivity to certain parameter changes, which make them difficult to control, and

also give rise to variability across individual cells and organisms. As such only

simulated quantitative models of these networks can capture networks at the scale

and size required to identify variabilities and predict network behavior in response

to perturbations accurately enough to know how to intervene on them effectively.

These high fidelity models are needed, for instance, to help us estimate the right

drug combinations and dosage for any individual to control a disease effectively. It

is important to point out, however, that such simulative modeling is only possible

because of the massive amounts of experimental data made available on-line in

curated databases, the development of new experimental methods for large-scale

data collection, and, of course, experimental validation of model predictions.

The field of systems biology is nonetheless heterogeneous in its approach to

using computation, ranging from highly computational approaches using big data

technology (high-throughput systems) and data mining algorithms in order to

reverse-engineer system structure (often called top-down) to the more bottom-up

techniques that work with data accumulated by experimental molecular biologists to

develop mathematical models that can drive computational simulations of networks

(Westerhoff and Kell 2007). The systems biology labs we have focused on are of the

latter kind.

2.1 Complex problem solving tasks

Levins criticizes systems ecology as a brute force approach to modeling running

counter to his view of what the aim of modeling should be, namely to generate

understandable simplified abstract or idealized representations of phenomena

(Levins 1966). Systems biologists do rely on key abstractions, particularly the

mathematical representations they use of biochemical interactions. One goal is to

generate models that are easy to explore mathematically (see Voit 2000). However,

given the sensitivity and complexity of biological systems, modelers in the field

(particularly those who favor a bottom-up approach) are committed to the view that

details matter and abstraction should be minimized or carefully controlled.5

Detailed ‘‘mechanistic’’ representations of networks and accurate parameters are

required for producing predictively valid models. In this way modelers walk a

tightrope between exhaustive and more tractable idealized representations. In the

best case scenario, a modeler would start with a well-described or developed

5 see however Hetherington et al. (2006) for a conflicting view.
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pathway of the particular system he or she is interested in (the pathway diagram or

pathway representation), which documents the sequences of all important

interactions within a network.6 They would decide how to represent mathematically

(the mathematical model or representation) the various interactions among

metabolites and use the data available from experimentalists or high-throughput

technology to derive the parameters for those interactions. With suitably rich data

the number of undetermined parameters should be low, allowing a straight-forward

algorithmic calculation of a best fit.

Unfortunately most modeling situations are quite far from this ideal and the

central challenge for modelers is how to put together reasonably robust models

under much messier conditions. In the first place, there is almost always a serious

deficiency in the data available for model-building. Pathway structures and

parameter sets are often incomplete. Modelers have to derive what data they can

from the literature in order to both fill in the pathway and estimate parameters.

Second, since the data often have to come from different sources derived under

different experimental conditions, errors are almost always introduced which have

to be corrected for. Even then most modelers are left with large numbers of

undetermined parameters. Third, as we have documented elsewhere, collaborative

relationships are fraught with difficulties (MacLeod and Nersessian 2013c, 2014).

For instance, modelers who collaborate are rarely able to get the experimentation

they need performed at critical points in the model-building process. Fourth, ISB

lacks domain theory that can be relied upon to instruct modelers on how to go from

a given data set to a good representation. The quality, quantity, and type of data can

all vary substantially, resulting in a variety of situations that are too broad and too

various to be fit to one canonical approach. Most often researchers have to choose

how to represent interactions and what aspects of pathways to model given the

nature of the data (Chandrasekharan and Nersessian 2015; MacLeod and Nersessian

2013a, c). This is often an intensive process of figuring out precisely what they can

represent reliably with the data available and adapting the problem they are trying to

solve to fit these data constraints.

Finally the complexity of biological networks amplifies the difficulties of finding

good representations. Complexities include the facts that networks contain frequent

feed-forward and feedback effects and that many elements play multiple roles in a

network. Fitting a mathematical form to such highly nonlinear systems is a complex

problem. Adding new structure for instance may be necessary, but this requires

predicting what effects a modification to the pathway representation will have and

where the modification needs to happen to resolve the problem, neither of which

may be obvious. Further given the unpredictability of changes in parameter values

in the model it might be hard to isolate regions of the parameter spaces to search for

finding good fits. This leaves much work to algorithmic processes of parameter

fitting, but these run up against computational constraints, and such processes are

unlikely to find the best fit in such circumstances. The result is that representing

6 See Figs. 1 and 2 in Sect. 2.2.2 later in this paper as examples of such diagrams for a metabolic

network.
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accurately even only specific dynamic relationships in the networks can be a highly

time-consuming and highly iterative process.

2.2 Model-based inferences in model-building

To be able to build models, modelers typically have to rely on the dynamical

behavior of their models to make inferences about how to proceed in building the

model, such as what elements to include in the pathway representation of the

biological system. Modelers need to infer for instance,

Fig. 1 G10’s modified pathway diagram for the alfalfa lignin system. These molecular pathway

diagrams display sequences of chemical transformations within a cell (or across cell-boundaries) which

give rise to a particular biological function (in this case lignin production, represented as H, G and S). The

biochemical elements and their interactions can be translated directly into a mathematical model by

which nodes represent the concentrations of the chemical representations and arrows the rates of reaction.

G10 assembled an original ‘‘wild-type’’ diagram based on known results provided to him by his

collaborators. Various elements were added to the original by him, such as the arrows connecting

p-coumaryl CoA to phenylalanine, and cinnamic acid to the environment, the latter signifying a loss from

the system. Models built based on the original diagram were mathematically incapable of producing

accurate behavior when inputs were perturbed out of equilibrium suggesting to him that some regulatory

mechanisms controlling extra flux had not been factored into the current biological picture. He identified

additional interactions which would resolve the extra-flux, in particular those arrows connecting

p-coumaryl CoA to phenylalanine, and cinnamic acid to the environment

17 Page 8 of 28 M. MacLeod, N. J. Nersessian

123



1. Structural and parametric errors in models;

2. The nature and form of missing network structure (network elements, relations);

3. Dominant dynamical variables in the network.

2.2.1 Inferring errors

In the course of modeling it is typical for modelers to discover, or at least come to

suspect, that the mathematical and pathway representations they have developed

from background models and from information in the literature are not adequate to

get an ODE model which fits the system they are studying under plausible parameter

ranges. One of the central tasks of the modeler in order to move forward is to infer

precisely the points in the mathematical representation where these errors occur and

what type of errors they are. Errors can be related for instance to critical missing

Fig. 2 G10’s drawing of the pathway diagram for the lignin system with unknown molecule X added

with feedback and feed-forward relations regulating the S and G channels respectively. The S-channel

serves to down-regulate S-lignin production and the G-channel up-regulate G lignin. G10’s model thus

acquired a mechanism for producing the lower S/G ratio predicted in the data. X also accounted for the

excess cinnamic acid G10 had originally hypothesized as leaving the system
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elements and interactions in the pathway, the adequacy of mathematical represen-

tations of interactions between elements, or parameter values. This kind of inference

often depends heavily on model-based reasoning: in particular using the model

simulation to infer the location of an error.

For instance G16 was given a task by the lab director G4 to improve upon a

certain mathematical model (a set of coupled ODEs) of glycolysis in the bacterium

lactococcus lactis. Once a better working model was in place she hoped to be able to

‘‘incorporate pH effects in the model, and ultimately genetically modify L. lactis to

synthesize a required drug and withstand stomach acid in order to deliver the drug to

the intestine, thereby circumventing the discomfort and side effects of currently

available intravenous therapies’’ (poster presentation). However even trying to

produce a better model over the one available proved a highly complex task. One of

the central problems with the original model was that it failed to predict correctly,

when fit, the existence of a known peak in the catalyst FBP for different

environmental glucose concentrations. The model for instance gave a peak at initial

values but not at 20 mmol of glucose, or 40 or 80.

The long term goal is making this bacterium survive the acidity of stomach

and somehow preserve the pathway for the lower PHs. But right now we are

trying to model it to improve the model as much as we can. So right now the

question I am answering is like how to change the model in a way that it

captures some specific effect. That effect being when you input more glucose

into the system the peak doesn’t go off it… the peak is always same thing.

(2011-08-09-i-G-G16/168)

She had a certain amount of good but patchy data to work with from a collaborator

G7 (a postdoc in lab G who was an experimentalist transitioning to becoming a

modeler). These data only gave information on some parameters, meaning that

many would have to be fit or estimated in other ways. By observing the effects of

different parameter changes through the model using certain representations (see for

example Fig. 3) and via simulation she was able to draw the conclusion that under

no reasonable modifications of the existing model could it be made to reproduce the

right peak behavior. Further she was able to diagnose precisely where the likely

errors were to be found in the model.

I find glitches in the model, and why is it that, for example, sometimes I was

trying to model something and then it wasn’t getting better. And when you

look at more closely and there’s no way it can get better because it depends on

two things, and those two other things, for example, are increasing. So you can

cFig. 3 G16 working towards ‘‘getting a feel’’ for the model or envisioning relationships using pen and

paper representations of numerical information to interpret the effects of the equations. a The pathway

diagram she worked with in this instance. Around the diagram are various notes to help her interpret

network dynamics using the diagram, including a numerical table tracking the evolving concentrations of

elements at sequential time-steps. b A larger version of such a table including more elements of the

pathway. G16 manually calculated the concentrations of biochemicals in the network in order to visually

represent how fluxes move through the network, which provides her information on qualitative

relationships in the network. Such diagrams could also be used to observe the effects of parameter

modifications
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never get it decreasing for a period of time from those two. Maybe something

else has a role that I haven’t taken into account. (2012-08-31-i-G-G16/65)

In this case G16 managed to isolate two upstream elements in the model which were

both interacting with FBP so as to prevent FBP decreasing under greater glucose

concentrations. Researchers often refer to this kind of analysis and understanding of

a model as having a ‘‘feel for the model’’ (Voit et al. 2012a, b). It consists in

developing an ability to understand what role model components are playing and

how they serve to constrain the dynamical behavior the model can produce (see

Sect. 3). Our modelers rarely have access to data or new, targeted experimentation

which can help pinpoint precisely where their assumptions might be wrong

(MacLeod and Nersessian 2013b). Instead the mathematical model is their only

platform. Modelers try various simulations based on the experimental data they

have (which usually maps the relations between just particular variables) over

different potential parameter sets to try to infer the mathematical limitations in the

model which might be causing an error.

2.2.2 Inferring new network structure

Once errors have been detected and localized, modelers need to hypothesize what

might be missing. To do so requires an understanding of how their model functions

but also, more particularly, the effects of changes to the model. This in turn requires

a skilled knowledge of mathematical relationships. Being new to modeling in

biology G16 was unsure how to modify her model to produce the right behavior,

given her lack of biological knowledge. There could have been a missing element in

her model, but she struggled to identify what is was herself. G7 gave her some

important advice. ‘‘He suggested I try to work like—think about it mathematically.

And when I make it right mathematically try to see why this happens. What is the

explanation behind it.’’ (2011-02-07-i-G-G16/104). Finding an approximate or

appropriate mathematical relationship would help use the model to narrow the

biological possibilities.

G16 decided to experiment with the interactions governing the upstream

molecules and their network neighbors to see if she could dampen their influence in

the right way. She thus toyed first with a more complex Hill-function to represent

catalytic interactions then switched to a step-function because of its tractability.7

For a specific set of such interactions she hypothesized that a Step-function

interaction (something that approximates a Hill type of catalytic interaction) rather

than a logistic function (for instance Michaelis–Menten or power-law) would have

the desired effect of correcting the dynamics in a straightforward way with minimal

parameter requirements. Checking the potential validity of the hypothesis was

nonetheless a complex process. It was not just a matter of running the model, but of

refitting the parameters to see how well a good fit solution worked and inferring

back to the validity of the hypothesis. In this case it produced a reasonable result

which G16 thought was a good candidate for representing a specific interaction in

7 Hill functions models interactions as switch-like, switching rapidly from high to low states as an

independent variable like substrate concentration of a reaction catalyst is increased.
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the right way given their performance, pointing the way to underlying unaccounted

for biological influence on that interaction. Of course not all inferences made this

way will be correct, as G16 noted, ‘‘…these are vague ideas. Maybe none of these

work. Right now I should run it for the assumptions I have, just collect the curves.’’

(2011-02-07-i-G-G16/132). Given the complexity it is surprising that accurate

inferences are able to be drawn through such processes. Nonetheless in our labs

researchers have a solid history of making good inferences that lead to robust results

and experimental validation. Some of these inferences can be quite novel.

Consider the case of G10, who was modeling lignin synthesis in two plant

species (Chandrasekharan and Nersessian 2015 details this case). Lignin, a

structural material in cells, interferes with attempts to get plant metabolism to

produce biofuel chemicals and G10’s goal was to try to understand how to control

lignin production to make biofuel production more efficient. His experimental

collaborators provided him with limited data and he had to assemble the synthesis

pathways for both species (poplar and alfalfa) himself. His original pathways

represented nearly a 20-year consensus of collected biological opinion on lignin

synthesis. However, particularly in the case of alfalfa, it became clear to G10 that

the set of interactions and elements as described in that pathway representation plus

the available data could not produce the right mathematical relationships between

the particular variables he was interested in. The original model was built for the

wild-type system at steady-state, and such a model was not necessarily capable of

handling successful manipulations of the system. Indeed G10 discovered that the

original pathways were mathematically incapable of producing accurate behavior

when inputs were perturbed out of equilibrium suggesting to him that some

regulatory mechanisms controlling extra flux had not been factored into the current

biological picture. Using the pathway diagram to help identify plausible network

additions, and then perturbing the mathematical model through the aid of simulation

to check these additions, G10 was able to hypothesize sets of additional fluxes to the

model which would eliminate the excess flux in the appropriate amounts and then

choose among them according to biological plausibility (see the highlighted arrows

in Fig. 1 below). For instance a surplus in the model of p-coumaryl CoA could be

handled mathematically in a biologically plausible way if some of that flux was

removed to the production of phenylalanine and eliminated from the system through

cinnamic acid leaving the cell. These he translated to more precise mathematical

modifications that would relieve the system. In his words ‘‘this is an important piece

of knowledge that comes from the model,’’ through understanding its dynamics.

Further, using information he had on down-regulation and up-regulation of

particular variables and their effects on G and S lignin production, G10 reasoned

that G and S lignin production were happening in ways outside of what was

mathematically possible within the model, despite his flux additions, namely the

model was giving too high a value for the ratio of S to G. However from an

understanding of the dynamics in his model G10 inferred that the easiest and most

efficient mathematical way to resolve this problem was to hypothesize another

element in the network (see Fig. 2) being produced from the excess cinnamic acid.

This element would be selectively regulating the pathways or ‘‘channels’’

responsible for generating S and G lignin. He called this element ‘X’ because he
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lacked sufficient biological knowledge to hazard a guess as to what it might be. If

cinnamic acid actually produced a substance X which both up-regulated G-channel

flows and down regulated s-channel ones, then a model could be generated which

produced very accurate dynamical, not just steady-state, behavior.

So this is actually the biggest finding from our model. So by adding this

reaction you can see that we hypothesize that there is another compound that

can give a regulation….give a feed forward regulation to other parts of the

pathway. (2011-04-12-i-G10/20)

His postulation of a here-to-fore unknown metabolite in the lignin pathway is a

novel inference derived from a very good understanding by G10 of quantitative

movements within the network model and how to control the numbers effectively.

The inclusion of X led to a robust model on his part that supported his hypothesis,

and is the sort of outcome considered by systems biologists to be an excellent

example of the investigative power of model-building. In this case his hypothesis

was borne out by his experimental collaborators and hailed as a major discovery.

2.2.3 Inferring dominant dynamical variables

Another kind of model-based inference our modelers are required to make is of the

dominant dynamical relationships operating in the systems they are investigating or

at least with respect to functions of the system they wish to account for. Such

inferences allow modelers to simplify their models by removing or treating as

constant particular variables (i.e. metabolite concentrations), or fixing their

governing parameters arbitrarily with easy to handle values. Ultimately the

parameter-fitting problem is reduced as a result. Finding parameter fits can be

impossible otherwise. Parameter landscapes for nonlinear systems with too many

unfit parameters will generate many local minima. Searching through entire

parameter spaces using available methods is too computationally intensive and too

likely to find inadequate minima. Getting a successful parameter optimization is

thus a driving factor in the decisions modelers make about how to represent their

system.

The main techniques of extracting dominant relationships come under the

heading of sensitivity analysis. The term and the many specific methods are

inherited from engineering. Sensitivity analysis has a number of functions apart

from just identifying dominant relationships, such as discovering errors in models.

In terms of identifying these relationships, sensitivity analysis involves processes

and techniques by which modelers scan the models to find out which parameters

have the most effect on the model and which have the least. It is thus again a type of

model-based inference. The ones which have minimal effect can in theory just be

removed from the network representation or given constant values—often just 0’s or

1’s—to simplify even further the mathematics. As in the case of inferring new

structure, inferring dominant relationships in a network requires insight into how the

available mathematical representations work (assuming they are for the most part

accurate). Variables are less dominant the less effect that changes in their governing

parameters have on network dynamics.

17 Page 14 of 28 M. MacLeod, N. J. Nersessian

123



Sensitivity analysis is often performed locally by studying the mathematical

structure of the model(s) and studying effects of changes in individual parameters

and following the effects of those changes through a network using pen and paper.

Researchers often build mathematical arguments based on model structure

(examining for instance partial derivatives) to justify removing a variable from a

network or using trivial values for its parameters or ‘‘off-lining’’ it by treating its

output as constant. For instance according to a lab C modeler, C7,

and then, that’s where the, you know, the trick comes in, the good modeler

would know how much to restrict the system so that he has most of the things

that are known—and very few things that are unknown—and those can be

tested. You find points in the system that are more sensitive to changes… So,

if you change the less-sensitive points, it doesn’t affect the output as much. So,

what you can do is find what’s more sensitive, if that is unknown, try to tweak

things there. (2009-04-i-C7/76)

If the system is too complex for such step-by-step exploration of sensitivities then

modelers will often turn to a more global computational method. G10 for instance

employed a statistical strategy, a type of variance-based analysis, running his

models with a thousand different parameter sets (sampled using Monte Carlo

techniques) and calculating the Pearson correlation coefficient of each parameter

with the S/G variable he was particularly interested in. He used this process to make

a statistical argument about which parameters were most significant with respect to

that variable, trivially setting the rest. Such methods avoid having to make

inferences about sensitivity directly, but they are computationally intensive and

statistical techniques will average out sharp differences in the effects of particular

parameters in different parameter domains. The only way to discover and become

aware of these is with more local investigation of the model.

3 A ‘‘Feeling for the Model’’: simulative mental modeling
and distributed cognition

The exemplars considered provide some insight into the cognitive dimensions of

ISB modeling: how methodological and representational choices in model building

are aimed at reducing a complex problem to one that is cognitively tractable and

how computational model-building and simulation processes support inferences that

lead to novel hypotheses about phenomena under investigation (e.g., biological

pathway elements). In this section we propose a cognitive account of how they are

able to draw these inferences.

All these inferences depend on being able to understand to a degree how the

model operates and estimate what the effect of changes might be. Modelers

necessarily rely on developing the ability to filter good hypotheses out of the large

collection of hypotheses so as to select which time-consuming but risky

modifications to try. Modelers themselves often talk in more general terms about

the ‘‘understanding’’ or ‘‘insight’’ necessary for modeling. Our data support the

Modeling complexity Page 15 of 28 17

123



modelers’ claims that such understanding is critical to their success and to their

ability to get more insightful results.

Speaking of the need for insight as opposed to just raw optimization methods

used by some systems biologists, G16 states,

I don’t like optimizing because—by optimization you would think, well just

use one of the optimization methods—genetic algorithm this and that. It’s not

like that because it’s a very huge system, usually. Like a lot of variables if you

just use this and that optimization method, it’s not going to work….the error

surface is like—has a lot of like—local minima…you will just get stuck in one

of them. So you gotta have insight, then there’s a lot of—as [lab director] puts

it, ‘elbow greasing’. (2012-02-15-I-G-G16/86)

Optimization is, as she calls it, a ‘‘blind process’’.

Cause it’s easy to fit everything in and say, this is how it works. But then if

you really want to get the results afterwards, like have the model—let the

model have the predictive power you want it to have, you gotta be sure about

what you are doing. (2012-02-15-I-G-G16/260)

In general, processes of developing this kind of understanding—of being ‘‘sure’’—

are slow.

So when you get here, you’re like very frustrated. Like, nothing is known to

any extent [with emphasis]. And then you think like—I don’t think you can get

any truth out of the system. That’s what you think in the beginning…after a

while, you know what to expect and you know that kind of thing is not

gonna—you can reason that that kind of thing and that error in there is not

gonna effect the whole system like that. (2012-05-30-i-G-G16/96)

At the heart of these notions of insight and understanding is the notion used by

modelers we identified above of having a ‘‘feel for the model.’’ We analyze it as a

kind of understanding of the dynamical behavior of a model which enables the

modeler to locate errors and also infer what changes will occur when adding specific

new elements or removing variables. Given the nonlinearity and complexity of these

models it is no easy task to acquire this understanding. However, the notions of

having a ‘‘feel for the model’’ or ‘‘insight’’ admittedly sound vague and somewhat

esoteric—the kind of notions philosophers shy away from. However it can be given

a more concrete sense. In cognitive terms our data suggest that the ability for

modelers to generate inferences from these complex networks requires two

cognitive components: simulative mental models and cognitive distribution

(Nersessian 2002, 2008, 2009).

3.1 Simulative mental modeling

Although there are many notions of ‘mental model’ in the literature, Nersessian

(2008) has constructed a ‘‘mental modeling framework’’ that provides a cognitive

basis for such model-based inference science. Notably, there has been an important

line of theoretical and experimental research going back to the reissue of the 1943
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book on explanation by Kenneth Craik (1967) which focuses on specific processes

of dynamical and mechanistic mental modeling. This research provides a cognitive

basis for understanding what modelers do in the cases of inference we have

mentioned above. Nersessian provides ‘‘minimalist’’ description of a simulative

mental model in the form of a hypothesis about reasoning as follows:

…in certain problem-solving tasks, people reason by constructing an internal

iconic model of the situations, events, and processes that in dynamic cases can

be manipulated through simulation. Such a mental model is an organized unit

of knowledge that embodies representations of spatiotemporal relations,

representations of situations, entities and processes, as well as representations

of other pertinent information, such as causal structure (2008, 128).

The descriptions and self-reports we collected from a range of modelers in both lab

G and lab C suggest that our modelers build mental models of their networks which

allow them to mentally simulate limited aspects of network dynamics in order to

identify errors, explore new hypotheses about structure or parameters, and identify

dominant variables. When they communicate with us about what is happening in

their system models and how they perform these various inferences, they do so

using such mental models. Experimental research in cognitive psychology and AI

research on dynamic mental modeling in lay ‘‘scientific’’ thinking is extensive and

we extract only the most relevant findings here. This research has identified specific

features associated with mental simulations of physical and mechanistic models

such as multiple pulley systems. These simulations are,

1. Qualitative (Roschelle and Greeno 1987; de Kleer and Brown 1981).

2. Piecemeal (Roschelle and Greeno 1987; Hegarty 1992, 2004; Schwartz and

Black 1996).

3. Supported by background knowledge in long-term memory (Roschelle and

Greeno 1987).

4. Coupled externally with visual and other representations (Hegarty 1992;

Hegarty and Steinhoff 1997).

As we can infer from their descriptions, the mental models our researchers construct

appear to manifest these properties. The mental models involved in the specific

inferences we have discussed above are typically not quantitative. These models

track and record only the qualitative behavior of variables. Our modelers orally

express their thought processes in the language of ‘‘increasing,’’ ‘‘decreasing,’’

‘‘inhibiting,’’ and so forth. Consider again this statement from G16,

I find glitches in the model… And when you look at it there’s no way it can

get better because it depends on two things, and those two other things, for

example, are increasing. So you can never get it decreasing for a period of

time from those two. Maybe something else has a role that I haven’t taking

into account.

Underlying G16’s inference is a mental representation of interactions in the

network, which she uses to make the counterfactual claim that under no
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circumstance could any manipulation of these variable produce the right behavior in

her target variable. She derives the claim by manipulating various variables

(mentally changing their values). Reasoning with these structures provides modelers

the ability to test mentally what the effect of modifications to the mathematical

model might be by mentally simulating them.

To do this however modelers work with mental models of only limited sets of

variables at any one time. G16 for instance describes only tracking a few elements

in the description she gives of her reasoning. This is consistent with the results of

Hegarty’s (1992) experiments on subjects solving pulley system problems. Hegarty

found that the attention of participants was confined mostly to directly connected

pulleys at any one time. Systems were worked through step by step. The self-reports

our modelers give of how they operate also suggests they do not reason with many

elements at any one point in time, but focus on directly interacting elements in a

network. However these elements do not need to be contiguous. Information derived

from the pathway and the mathematical equations governing the network can be

used to build up information on interactions among more remotely located elements,

which can then be used to simulate the effects of interactions between these

elements. The modeler builds expertise and knowledge of how to group the effects

of interactions (see Hegarty 1992).

The process of building up a feel for the model is iterative and intensive. It

requires, among other things, finding ways to familiarize oneself with how the

model works in order to interpret the qualitative effects of the various quantitative

mathematical relationships (Roschelle and Greeno 1987). This kind of process is

sometimes called envisioning (de Kleer and Brown 1981). G16 describes her

process of building an intuition of how an equation works:

So the thing is—when you want to solve a mathematical problems, you

gotta—sometimes you use numbers and try numbers, something to give you a

feel of—like intuitively how this, for example, equation works and all. So I’m

trying out numbers and then trying to make the steps kind of discrete—like

sort of a state machine, kind of thinking like we’re in this state. And then now

this much is going to this other metabolite pool and then at the same time we

have less of that. So I’m trying to see what the constraints are by actually like

doing a step-by-step sort of thing. (2012-08-31-i-G-G16/63)

In general, envisioning or building mental representations of model relationships

requires a background understanding of how to interpret mathematical equations,

but also, in the case of complex equations, requires processes that can visually

unpack model dynamics and allow them to be more readily interpreted. G16 showed

us an example of her process of visually tracking values in her model with pen and

paper representations as she was working on the problem. Model variables were

being solved numerically by her at different time steps, so she could track behaviors

in the model directly. This process was likely critical to her ability to build mental

models of relationships in the network she was studying, and in turn to draw various

inferences about the location of errors, potential modifications and dominant

relations.
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3.2 Coupled cognition and the role of computational simulation

The account outlined above suggests an important role for simulativementalmodeling

in model-building processes in ISB at the heart of many of the inferences model

builders need to make to improve their models. It also suggests an important role for

external representations, aswe saw throughG16’s use of certain visual representations

to build her own mental models. At the same time modelers like G16 rely on pathway

diagrams (see Fig. 3a, b) during their reasoning processes to provide a visual reference

or scaffold formanipulatingmodel internallywithout having to represent or keep track

of all structure purelymentally.8As suchNersessian (2002, 2008, 2009) has argued, in

accord with the cognitive science research, that mental modeling of dynamical

processes is often coupled with pen and paper drawings (diagrams, sketches, graphs)

andwith physical simulationmodels bymeans ofwhich scientists reason about in vivo

phenomena (Nersessian and Patton 2009; Nersessian 2009). Chandrasekharan and

Nersessian (2015) have argued the case for coupling with computational represen-

tations. Together, drawing inferences by means of these coupled systems of mental

and artefactual models comprise what Nersessian (2002, 2008) calls ‘‘simulative

model-based reasoning.’’ The notion of coupling extends the framework of distributed

cognition (Hutchins 1995) which investigates the ways in which external represen-

tations used in problem-solving processes perform cognitive functions, thus creating a

distributed cognitive system comprising humans and artifacts. The focus of distributed

cognition has been on the use of existing artifacts, and our research group has been

extending the focus to the building of representational artifacts, such as physical and

computational simulations models (see, e.g., Chandrasekharan and Nersessian 2015;

MacLeod and Nersessian 2013a; Nersessian 2009, 2012; Osbeck and Nersessian

2006).

In most cases of modeling there is a limit to what can be done with visual pen and

paper representations. Computational representations are the central resource for

handling complex systems that exceed mental modeling capabilities. Computational

modeling is closely coupled with simulative mental modeling in model-building

practice. Together they form a coupled cognitive system relying on both

components to perform essential calculations and generate inferences neither alone

could. For instance, the computational model provides the modeler:

1. Visual representations of complex model dynamics that can be translated into

qualitative relationships;

2. Piecemeal and selective visual representations that can be represented mentally

within cognitive capacities;

3. The ability to check or calibrate the results of mental simulation and correct

their mental models; and

4. The ability to test their mental inferences about network structure and behavior.

8 See also Jones and Wolkenhauer (2012) for a discussion of how pathway diagrams serve as locality

aids. These diagrams provide an information rich representation in comparison with sentential

representations, which by visual representing relationships, minimizes the amount of search time

required to extract relevant information a modeler might need.
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The value of computational modeling and simulation for this coupled cognitive

systems stems from the ability of computers to perform complex calculations that

are cognitively intractable for the human agent and from the ease with which

computational representations of complex system can be visualized in the way

modelers require (for instance, providing visual graphs to track just specific

relations). Further the simulative capacity of the computational model provides the

ability to implement manipulations quickly and efficiently so that modelers can run

through plausible options or hypotheses in quick succession. In these ways

information is exchanged back and forth between both components of a hybrid

computer–human cognitive system, and the overall cognitive benefit is to extend

human cognitive capacities so that accurate inferences about how to improve

complex models of complex systems become possible. Diverse network behaviors

in response to parameter variations or at different time points, as a result of

nonlinearity, can be identified through computational simulation and partitioned

into families of mental models representing network relations under different

conditions or at different times. This is consistent with the piecemeal notion of

mental simulation discussed above. So for instance situations in which feedback

produces oscillations can be bracketed from those in which it produces more linear

behavior and treated somewhat separately. If two variables of interest are placed far

apart in the network simulation their relations to one another can still be detected

leaving out any complex intermediate interactions. The gradual development of the

coupling enables the modeler to develop detailed understanding of the pathway’s

dynamical behavior contained within families of mental models through running

thousands of computational simulations, using many parameter combinations, and

analyzing system dynamics for each simulation.

4 Cognitive constraints and methodological choice

Simulative mental modeling and distributed cognition, together, can provide a

cognitive account of how model builders generate the inferences they need to

construct models of complex biochemical systems. They account for how modelers

are often able to produce quite substantial discoveries, with only the barest

biological knowledge, during the process. In general modelers are able through

these techniques of producing models that capture at least some of the dynamics of a

system well. But the models produced are usually far from complete, and often fall

short of the goals individual models have, not to mention the field at large. As

mentioned earlier, part of fundamental rhetoric of systems biology is that control is

distributed over large scales, so large-scale models are required in order to capture

the control structure of actual systems. Molecular biology, with its focus on local

interactions, can never develop that kind of insight. Mathematics and computation

are essential to deriving these relationships from complex systems. However

systems biologists using the kind of bottom-up strategies our labs use do not work

with systems of the desired size (number of elements of a network included) and

scale (the inclusiveness by which boundaries of the network are drawn), but with

smaller sub-systems or simplified systems. In fact the kind of models produced do
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not enable researchers to meet another other goal of systems biology either, which is

to extract the design and organizing principles underlying biological networks. As

Voit et al. put it, ‘‘If one would survey all computational systems models in biology,

published during the past decade, one would find that the vast majority are neither

small enough to permit elegant mathematical analyses of organizing principles nor

large enough to approach the reality of cell or disease processes with high fidelity’’

(2012a, b, 23).

Systems biologist have proved mostly incapable at present of handling systems of

large enough scale to get models that are predictively valid and reliable enough in

particular for medical decision making (see Voit et al. 2012a, b). On epistemo-

logical grounds the models built fall short of what they are built for, and indeed a

philosophical analysis that only analysed the epistemological structure of these

models would find them unjustified. We believe that the kind of cognitive account

we are giving of model-building processes also helps explain partially at least why

modellers choose to construct models of insufficient size and scale given the goals

they often set out with (Sect. 4.1). Further a cognitive approach can also help

explain and rationalize the size and scale at which representations are being

constructed within the field as a case of ‘‘mesoscopic modeling’’ (Sect. 4.2).

4.1 Constraints on simulative mental modeling and their implications

for modeling

Although computational modeling can extend the ability of modelers to deal with

more complex systems, the human agent is notably a component in the model-

building processes. The human component has not received much attention in

discussions of distributed cognition to date. But it is the human component which

often provides the rate-limiting step on the level of complexity that can be addressed

through these practices. It is well known that people in general are not good at

building and using causal mental models—even less so with nonlinear systems

(Doyle et al. 2007). In the case of simulative mental modeling one can identify a

clear constraint in the form of working memory (Hegarty 1992). Humans can only

keep a limited set of interactions in their minds at any one time. Visual

representations and computations help extend this, but ultimately it is the human

agent that has to draw an inference by processing the information before him or her.

If this information involves too large a set of factors or these elements are

interacting in too complex a way to be qualitatively processed into descriptive units

of information such as ‘‘increasing’’, then the task will be too difficult.

This factor puts implicit limits on the complexity of the networks with which

modelers can deal. Particular complex features of networks introduce many factors

that need to be processed simultaneously in order to make inferences. These often

involve quantitative sensitivity that is much harder to decompose into small packets

of qualitative information even with the aid of computation. These factors include

for instance, feedback relations, competitive reactions and multiple network

functions of elements, many interactions at any node, and long chains between

relevant variables which will include more of these types of interactions to process.
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The more of these interactions, the harder mentally simulating a set of network

components in order to improve a computational model is likely to be. Some of

these kinds of issues can be dealt with by simplification processes, but as stressed

many of those kinds of simplification processes (e.g., inferring sensitivity) depend

themselves on judgments and arguments constructed through mental modeling.

Broadly speaking it is plausible to expect then that human cognitive constraints set

limits on the complexity of models that can be reliably constructed and thus on the

complexity of the systems that can be represented. Of course there is no way to

articulate precisely how to pick systems that meet these constraints. One way to

control complexity is to manage network size and scale and keep network

representations relatively small through careful selection of what networks to model

and which of those to include in a model at the outset. Smaller, more limited

pathways reduce the demands on working memory for debugging and model-based

inference.

Modelers themselves correlate scale with complexity and see it as setting limits

on their ability to get the necessary insight into how their models work. For instance

G70, an experimental collaborator with the lab G director (G4), reported this

reaction from G4 after handing him a large network to model.

But I think he’s (G4) been in the real world long enough doing this systems

stuff long enough that he knows to start small… so when I first came to him, I

had the proteomics systems. We’ve seen about 10% changes in about all the

changes in all the systems of the CF cell versus a non-CF cell. Now when you

think about the number of systems that are in cells, 10% changes in all of those

systems… is a considerable amount, I mean that is a lot of information. So

when I first went to… he’s like you are diluting yourself. So then we decided

to start with glycolysis and the pentosphosphate pathway of the Krebs cycle…

to narrow it down to energetic pathways that are very well modeled.

Instead of trying to build a model of such a large, intractable network, G4 directed

G70 towards the most cognitively reasonable strategy: using small models that were

already established and building outwards with those. In general modelers choose

not to work with entire sets of functional interactions that govern a phenomenon but

only with, hopefully, significant subsets. They choose not to incorporate all

interacting elements. In many cases they just do not know what all the relevant

interactions are, as we have seen. Further they choose to model interactions in less

accurate but more mathematically tractable ways. With an approximately accurate

result they have leverage for improving their model in a more piecemeal but

tractable fashion by increasing network complexity. This kind of strategy has been

called a ‘‘middle-out strategy’’ (Noble 2008). It forms an essential component of the

cognitive strategy of ‘‘mesoscopic modeling.’’

4.2 Mesoscopic modeling: a cognitive strategy

Cognitive constraints are not the only constraints modelers face. They also have to

deal with computational and data constraints, which all play a role in the decisions

modelers make. But if our description of the cognitive processes underlying model
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building is on target, it is reasonable to think that cognitive constraints set plausible

limits on the network size and scale modelers can handle. That said, an awareness of

these cognitive constraints and cognitive capacities also provide a basis upon which

to rationalize preferences for building smaller scale more abstract representations.

Some systems biologists argue in explicitly cognitive (rather than epistemological)

terms that the strategy of building smaller representations enables modelers to work

within cognitive constraints towards the eventual construction of the larger models

they need.9 They label this practice ‘‘mesoscopic modeling’’ (Voit et al. 2012a, b).

Voit et al. cite in particular developing and maintaining an understanding of the

system as the critical motivation for restricting models to mid-size models. These

models provide a, ‘‘coarse structure that allows us to investigate high-level

functioning of the system at one hand—and to test to what degree we understand, at

least in broad strokes, how key components of a biological system interact to

generate responses’’ (Voit et al. 2012a, b, 23). This basic understanding provides

insight into how to recognize deficiencies in the model and expand upon them to

give more complex and accurate representations. The basic motivation then for

treating mesoscopic modeling as a sensible and reasonable practice for modelers to

pursue at the outset is cognitive tractability, so as to keep the modeling process

within the ability of modelers to comprehend the model and recognize efficient

strategies for its improvement. With this comprehension the model can be scaled up

in a middle-out fashion.

Voit et al. argue that the process of building out models rely on basic human

learning processes.

This strategy of locally increasing granularity has its (ultimately unknown)

roots in semantic networks of learning and the way humans acquire complex

knowledge. As a trivial example, consider how we learn about fancy cars.

Although infants typically start their learning process with examples, rather

than abstract categories, they soon begin to distinguish static items form things

that move, eventually learn to differentiate between living and engineered

things that move, and become able to distinguish cars from trucks. Later, we

begin to distinguish between cheap and expensive cars, and in some cases we

learn to tell the year a car was made even if the differences between models

from one year to the next are subtle. This hierarchical learning is very

effective, because we are able to start simple and add information as we are

capable of grasping it. (p 23)

Although Voit and his collaborators focus principally on the value of mesoscopic

models for scaling up, rather than for their capacity to be built in the first place,

implicit in the kind of understanding or ‘‘grasping’’ they have in mind is the

9 Some systems biologists and philosophers have proposed ontological justifications of mesoscopic

modeling. Bertolaso (2011), Bertolaso et al. (2014), and Giuliani et al. (2014) argue that it is at

mesoscopic levels, or scales of network organization, at which functionality emerges in response to

higher-level system and environmental constraints. This may well be the case in certain cases. Our

researchers do not interpret their results as having this kind of significance in general however. Instead

they interpret what they have produced as partially explanatory and of limited application, but

nonetheless valid starting points for building more complex representations.
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importance of building a ‘‘feel for the model.’’ Models need to be of an

interpretable scale and complexity such that the modeler is capable of making good

decisions about how to modify them. As we have suggested above the capacities

and constraints of simulative mental modeling are the root of this understanding.

The strategy of mesoscopic modeling is thus guided by the intuition that cognitive

tractability is essential to the model-building process, and thus model scale and

complexity matter. Thus, this argument advocating that modelers should build

models of limited scale and complexity picks out a cognitive rationale as the

primary basis for this choice.

That said, cognition is not the only consideration relevant for this modeling

strategy. Mesoscopic modeling has to be sufficiently reliable epistemically.

Arguably however the choice of mesoscopic modeling cannot be rationalized

easily on epistemological grounds alone. Resulting representations are highly

abstract and simplified representations of systems that likely have a loose

relationship with underlying system mechanisms (MacLeod and Nersessian

2014). They might represent well particular relationships but much fitting has

usually been employed to get those results. The robustness of the resulting models

can be difficult to assess. These models do not capture accurately the control

structures of biological networks. The likely epistemological requirement at work

here is that these models get close enough to what is actually happening in a system

such that the smaller scale modifications such as de-black boxing variables into

subsystem components will likely improve model performance and accuracy. For

this what is required is only a ‘‘coarse validation’’ that demonstrates the model

replicates general patterns or trends of functioning in the system. Given the

simplifications and abstractions involved it is hard to interpret these models on their

own as good or reliable representations. Their potential epistemic value only makes

sense given the cognitive value of mesoscopic models and the ability to scale-up

such models. An adequate account of methodological choices made in this field

needs to go beyond epistemological analysis to at the underlying cognitive

motivations.

5 Conclusion

In this paper we have tried to outline a feasible cognitive account for explaining

problem-solving processes and methodological choices in a computational field like

systems biology. We have tried to show some dimensions by which cognition is

implicated centrally in processes of model-building, particular inferential processes

and, in turn, how these processes are likely limited or constrained. These constraints

might well set limits on the degree of complexity models can have in order to be

solved using model-based inferential processes. Although many constraints are part

of the modeling process, at least some systems biologists see cognitive constraints

as the principal reason for limiting model-scales to mid-size mesoscopic models.

Methodological choices in the field are thus to an extent at least driven by cognitive

limitations and cognitive capacities.
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While we do not offer here exhaustive evidence for our account, we do think

what we provide motivates the importance of cognitive science for helping to

answer traditional philosophical questions about methodological choice and rational

principles underlying it, particularly with respect to the current philosophical goal

of constructing an epistemology of simulation. Indeed as science with the aid of

computation moves to tackle in detail complex phenomena, it can be predicted that

cognitive limitations are likely to become increasingly substantial issues for

scientific researchers when making methodological decisions. The role of

computational simulation in modern science arguably makes human cognitive

capacities a much more salient issue, since it allows researchers to go much farther

into realms where complexity and cognitive limitations really bite. This is an

essential part of the novelty of computational simulation which philosophers need

to consider. As Humphreys puts it in the hybrid scenario where science is done at

least partially by machines, ‘‘one cannot completely abstract from human cognitive

abilities when dealing with representational and computational issues’’ (Humphreys

2009, 616; see also Nersessian and MacLeod 2017). Scientists themselves will need

to make explicit decisions about what kind epistemic goals are appropriate with

respect to model building and, in turn, what kind of cognitive access and control

they need to have of the model-building process in order to ensure its success.

There is, of course, always the potential for raw powers of computation to take over

and automate these processes. But for the foreseeable future, as in the instances

explored above, researchers pursuing a bottom-up modeling strategy will need to

rely on relatively cognitively rich model-building strategies, albeit with much of the

process distributed computationally. As such it is reasonable to expect cognitive

factors to play an increasingly prominent role in methodological choice and to

anticipate that methodological choice might often have robust rationally warranted

cognitive explanations rather than just pure epistemological or ontological ones.

Philosophical accounts of simulation methodology need to take cognition into

account.

Lastly maintaining a normative focus for philosophy of science in the context of

simulation requires much more attention to the practicalities of research (Winsberg

2009, 2010). And here cognitive constraints should bite as well. There seems little

point formulating normative proposals if they are not cognitively achievable.

Recognizing what is achievable will be aided, significantly, by a deeper

understanding of the cognitive processes involved in model-building such as the

kind we have considered here.
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