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Abstract. An often used approach for detecting and adapting to con-
cept drift when doing classification is to treat the data as i.i.d. and use
changes in classification accuracy as an indication of concept drift. In this
paper, we take a different perspective and propose a framework, based
on probabilistic graphical models, that explicitly represents concept drift
using latent variables. To ensure efficient inference and learning, we re-
sort to a variational Bayes inference scheme. As a proof of concept, we
demonstrate and analyze the proposed framework using synthetic data
sets as well as a real financial data set from a Spanish bank.

1 Introduction

Classification, which is the task of predicting the class, Y , of an object based on
a set of attributes, X, describing that object, has been studied extensively in the
machine learning community (see, e.g., [1]). A special instance of this general
task is the classification of objects in a streaming context, which amounts to
observing objects at different points in time t = t1, t2, . . ., and at each time-point
t classifying the object based on the information collected up to and including
time t,

⋃
j:tj≤t xtj .

As pointed out in, e.g., [2], doing classification in the context of data streams
raises several issues. Among the challenges is that data in a streaming context
should not be assumed to be i.i.d. First of all, the objects in the stream may
not be independent, and, secondly, concept drift [3–5], where the underlying
distribution generating the data changes over time, should be anticipated. The
main contribution of this paper is a principled approach based on probabilistic
graphical models [6] for modeling concept drift using latent (i.e., unobserved)
variables. This should be contrasted to what is currently the most commonly
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used technique to accommodate concept drift, namely to learn a classifier as if
the data was i.i.d., monitor classification accuracy, and then restart the learning
process as soon as accuracy drops significantly (see, e.g., [4]).

We will exemplify the use of our modeling framework by analyzing the eco-
nomic status of the customers of a Spanish bank over the period from 2007 to
2014. To keep the analysis as simple as possible, we use the Näıve Bayes classi-
fier [7] as our base model, even if other classifiers with better dynamic properties
(e.g., [8]) could also have been employed. The analysis is thus a proof of con-
cept for the proposed modelling strategy, where we focus on the model’s ability
to detect and represent concept drift instead of its predictive performance. A
related Bayesian approach to concept drift is studied in [9], where focus is on
abrupt concept drift with independent drift regimes. This type of concept drift
does, however, not fit with the financial domain considered in this paper, where
we have a fixed customer base that exhibits a more gradual drift.

Classification in data streams also raises some computational problems [2], as
data may arrive with high velocity and is unbounded in size (therefore requiring
that old observations are “forgotten” to avoid running out of computer memory).
To deal with this issue, our model analysis builds on the AMIDST toolbox1. This
toolbox provides an efficient implementation of approximate inference and learn-
ing methods for streaming data by utilizing the Bayesian networks modelling
framework [6] complemented with variational Bayes inference and learning pro-
cedures [10]. Furthermore, the toolbox interfaces to MOA [11], thereby enabling
us to directly draw on existing preprocessing and visualization functionality.

The remainder of this paper is organized as follows: In Section 2 we describe
the real-life data set from the Spanish bank in detail, and discuss its most impor-
tant dynamic features. Section 3 introduces our approach for explicitly modeling
concept drift using latent variables, and in Section 4 we briefly sketch the in-
ference machinery employed. In Section 5 we discuss the results obtained from
synthetic data as well as the financial data set, and we conclude in Section 6.

2 The financial data set

2.1 Description of the data set

The data set, which was provided by Banco de Crédito Cooperativo (BCC), con-
tains monthly aggregated information for a set of clients of BCC for the period
from April 2007 to March 2014. Only “active” clients are considered, meaning
that we restrict our attention to individuals between 18 and 65 years of age, who
have at least one automatic bill payment or direct debit in the bank. To make
the data set as homogeneous as possible, we only retained clients residing in the
Almeŕıa region (a largely agricultural area in the south-east of Spain), and ex-
cluded BCC employees, since they have special conditions. The resulting number
of clients is close to 50 000. We note that the number of clients who are active

1 AMIDST is an open source toolbox available at http://amidst.github.io/

toolbox/ under the Apache Software License.
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varies from month to month: clients with missing values for any of the variables
for a given month are removed from the data set for that particular month (this
amounts to roughly 25% of the clients). These missing values mainly occur in
relation to the income and expense variables, and represent an absence of move-
ments for the account in that period. Consequently, the customer population
may vary across months. These clients are removed to support the subsequent
analysis, and not because of limitations of the inference/learning engine.

We extracted 11 quantitative attributes, each of which encodes monthly ag-
gregated information for each of the clients. These attributes include, among oth-
ers, the income, expenses and account balance, the client’s total credit amount
in all Spanish financial institutions, outstanding payments in mortgages, credit
cards, and other personal loans. Each client has an associated class variable,
which indicates if that particular client will default during the following 12
months. Fig. 1 (a) shows how the fraction of clients who default increases at the
beginning of the period, then decreases for a period of almost two years. Next, the
fraction increases again, before it eventually stabilizes; the semester/trimester
fluctuations are (partly) a consequence of the changes in the customer base over
the period, and will be further discussed in Section 5. We note here that the
values in this and in the following figures have been linearly scaled (e.g., we
do not report zt for a particular variable z but rather αz + βzzt where αz and
βz are not disclosed in the paper). The transformation is performed to with-
hold business-critical information, while at the same time convey meaningful
information about the data.

2.2 Financial pre-analysis/context

Fig. 1 (b-f) shows the evolution of 5 of the 11 variables in the domain, namely
the total credit amount, income, expenses, account balance, and credit cards. As
mentioned above, the values on the y-axis have also been linearly transformed
here. The plots reveal that both seasonal and global trends appear to be present
in the data set.

The seasonal trend is particularly prominent for the credit reports (Fig. 1
(b)), where the values systematically drop after a period, then go up again. The
period between drops is six months for the first half of the data set and three
months in the second half. Experts at BCC identified this as the effect of fees
being charged to accounts of clients that are normally inactive.

It is also possible to observe a global ascending or descending trend, which for
this set of variables seems to be on-going until the third or fourth trimester of
2012. Other variables, like defaulted payments on credit cards (Fig. 1 (f)), also
display a global trend, but do not follow the same pattern. This variable seems
to drop around the third semester of 2013, something experts at BCC attribute
to a sale of debt portfolios.
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(a) Evolution of defaulting clients (b) Total credit amount
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(c) Income (d) Expenses
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(e) Account balance (f) Credit cards

Fig. 1. Evolution of (a) defaulting clients and (b-f) 5 of the 11 variables in the financial
data set.

2.3 Main challenges

There are two main factors that should be highlighted and which make concept
drift detection in the financial data set more challenging than usual. Firstly, the
class variable is highly imbalanced and, as shown in Figure 1 (a), the number of
defaulting clients varies across time. Hence, monitoring classification accuracy as
a way of detecting concept drift can be misleading. Secondly, the data samples
arrive in batches of different sizes, i.e., aggregated information for the active
customers in a given month. Monitoring concept drift within the samples of one
of these batches will not be meaningful as concept drift can only happen from
one month to another.

In order to successfully monitor concept drift in the financial data, both of
these factors should be addressed.
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3 Modeling concept drift using latent variables

In non-stationary domains, the distribution governing the data may change over
time. This effect is known as concept drift [3–5]. In a classification model, where
one wants to classify an instance described by its features x = (x1, . . . , xn)
wrt. a class variable y, Gama et al. [5, Eq. (2)] formally define concept drift as
the existence of an instance x s.t. Pt0(x, y) 6= Pt1(x, y), where Pt(x, y) denotes
the joint distribution over x and y at time t. Concept drift situations can be
further classified as either real concept drift, when Pt(y|x) changes with time,
or virtual concept drift, when Pt(x) drifts while Pt(y|x) is constant in t. In this
paper the discussions relate to the general notion of concept drift as captured
in the expression above, and we do therefore not distinguish between real and
virtual concept drift. Concept drift may also appear in many forms, with changes
happening abruptly, gradually, incrementally, or with reoccurring behaviour [5].

In what follows we shall consider a new modeling technique for capturing
concept drift. The modeling technique will address the general situation, where
we at each time point t have a collection (xt

i, y
t
i), for i = 1 : Nt, of instances

(a.k.a. a window)2. We shall assume that concept drift only happens across time
steps and not within a collection of instances captured at the same time-point,
i.e., the model can only drift every Nt samples.

In a Bayesian paradigm, where the probability distributions are parameter-
ized using latent variables, a simple Bayesian network-based generative model
for classification is shown in Fig. 2 (a) using plate notation. In this model the
parameters are shared for all points in time t and across all instances, and the
model does therefore not provide an explicit representation of concept drift. In
Fig. 2 (b) the model is extended to support a simple form of concept drift by
duplicating the parameters over time, and thereby allowing them to change.

Xt
i

Y t
i

θx

αx

βy

θy

αy

βy

i, t

Xt
i

Y t
i

θtx

αx

βx

θty

αy

βy

i t

Xt
i

Y t
i

Ht θx

αx

βx

θy

αy

βy

θh

αh

βh
i
t

(a) No concept drift (b) Concept drift (c) Modeling concept drift with a latent variable

Fig. 2. Modeling concept drift through parameter duplication. In all figures, α(·) and
β(·) are hyper-parameters for the distributions over the parameters θx and θy.

Alternatively, concept drift can be modeled explicitly using latent variables.
For simplicity, assume that only the probability distribution P (x|y) drifts. We

2 For now, we shall assume that the total number of instances Nt does not vary with
time t; this assumption is lifted in Section 5 when we consider the financial data set.
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can model this using a latent variable Ht, which contributes to the conditional
distribution for Xi as illustrated in Fig. 2 (c). The semantics of the Ht-variable
is that it determines the “situation” at time t. For example, if the j’th feature
Xt

i,j follows a conditional normal distribution, we may use Ht to define a time-
dependent component of the mean vector:

Xt
i,j |{Ht = ht, Y t

i = y} ∼ N (δj,y + γj,yh
t, σ2

j,y),

where δj,y, γj,y, and σ2
j,y are elements of θx.

The a priori expected level of concept drift can be expressed through the prior
distribution for Ht, i.e., using the hyper-parameters αh and βh. All observations
inside one point in time share the same instance of the Ht-variable, thus concept
drift is modelled as a population-wide effect, as desired. Note also that depending
on the nature of the variable Ht, this model allows us to represent both gradual
(Ht continuous) and abrupt (Ht discrete) concept drift [5]. Furthermore, the
model can easily be extended to model multiple concepts drifts by introducing
multiple latent variables, each representing a different drift regime.

Conditioning on the model parameters the concept drift variables are as-
sumed independent across time with no ‘memory effect’. If we, on the other
hand, expect a gradual form of concept drift, we may wish to capture the drift
across time. The model in Fig. 3 reflects this scenario through the dependence
relations among the latent Ht variables.

The latent variable models considered so far provide seamless representations
of both gradual and abrupt concept drift relating to continuous features. Similar
model types are also applicable when modeling abrupt concept drift for discrete
features, but when dealing with gradual concept drift we need to move outside
the standard class of conjugate Conditional Linear Gaussian (CLG) models. We
shall not consider these types of models further in this paper, and will instead
focus on the case where both the feature variables and the latent variable Ht are
continuous, using CLG distributions, and where Y t

i is discrete with a Dirichlet
distribution over its parameters.

We would like to reemphasize that the main element of the proposed frame-
work is the use of latent variables for modeling concept drift. In the models
presented in this section, these concept drift variables are used to account for
concept drift relative to a simple Näıve Bayes classifier. These types of classifiers
could in principle be replaced by other types of more expressive probabilistic
classifiers, such as dynamic Näıve Bayes models [12] or general Bayesian net-
works. However, since the main goal of the present paper is to provide a proof of
concept for the proposed modeling framework, we will in the remainder of the
paper rely on these simpler models.

4 Bayesian inference with streaming data

In the Bayesian paradigm, model learning can be considered an inference process.
Given the data seen so far, denoted by Dt, the learning task reduces to comput-
ing the posterior distribution over the quantities of interest, i.e., P (θx, θy, H

t|Dt)
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X1
i

Y 1
i

H1

X2
i

Y 2
i

H2

XT
i

Y T
i

HT

θxαx βx θyαy βy

θhαh βh

i i i

Fig. 3. Concept drift is preserved over time.

for the models described in Section 3. This approach can also naturally be ap-
plied when dealing with streaming data. A new data sample (xt+1, yt+1) in the
stream is included by simply updating the above posterior using Bayes’ rule,
P (θx, θy, H

t+1|Dt+1).

Inference in Bayesian networks is, however, NP-hard in general [13], and
given the size of the data sets we are currently considering, exact inference in
the underlying models is not feasible. For the models considered in this paper, we
will therefore rely on the variational Bayes [14] framework for doing approximate
inference and learning; a general introduction to the variational Bayes procedure
can be found in [10].

In its general form, one considers the random variables (X,Z), where X = x
is observed and we want to approximate f(z|x). We call the approximation
q (z), where we for simplicity of notation suppress that q (z) depends on the
observation x. We measure the quality of the approximation by the KL distance
from q to f . One popular strategy for minimizing this distance is to assume that
q (z) factorizes into smaller factors, like for instance its separate variables, q (z) =∏

i qi (zi). This approach is commonly known as the mean-field approximation.

The calculations can be structured efficiently in conjugate exponential mod-
els using a message passing scheme [15]. In this scheme, messages are sent along
the edges in the graph based on the (expected) natural parameters of the dis-
tributions in the model. The message passing scheme outlined above has been
implemented for the model classes presented in Section 3, and forms the basis
for the experimental results presented in the following section.

5 Results

The experimental study is divided into two parts. First, we analyse two syn-
thetic data sets, widely employed as benchmarks in the concept drift literature.
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Next, we present the results from analysing the financial data set. All the ex-
periments have been performed using MOA [11], where the developed AMIDST
model (in Fig. 3) has been integrated as a new Bayesian streaming classifier,
named bayes.amidstModels. The Java code to reproduce the experiments can be
downloaded from http://amidst.github.io/toolbox/.

5.1 Synthetic data sets

We first analyse the SEA data set [16] containing 60 000 samples, with 3 attributes
(x1, x2, x3) and 2 classes (y = 0 and y = 1). The attributes are numerical and
uniformly distributed between 0 and 10. Only two of the attributes are relevant
for the class label, y, which is defined as yt = 1 if xt1 + xt2 ≤ εt and yt = 0
otherwise. Concept drift has been created by changing the threshold εt as a
function of t. The data set covers four “phases”, each with a duration of 15 000
samples, and with different εt (9, 8, 7, and 9.5 for the four phases, respectively).
Fig. 4 (left) shows the results of this analysis for batches of size Nt equal to 1000.
The plot illustrates the progress of the expected value of the latent variable
(denoted Ht) as well as the prequential accuracies computed using a sliding
windows of size 1000 for a simple Näıve Bayes model (NB) and the adaptive
Hoeffding tree model (AHT). As can be observed, the output of our model
(i.e., the expected value of Ht) detects the drift points and clearly identifies the
occurrences of the four different phases in the data, whereas those phases are
less easily detected based on the accuracy results.
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Fig. 4. Left: Results for the SEA data set. Right: Results for the hyperplane data sets

The second data set considered is the rotating hyperplane [17]. This bench-
mark data set is widely used to simulate “gradual” concept drift problems. We
considered three versions of this data set, denoted Hyp1, Hyp2, and Hyp3, each
including 10 000 instances. For each data set, 8 out of 9 attributes are drifting
but with different magnitudes of change (i.e., 0.1, 0.5, and 1 for the three data
sets, respectively), see [17] for details. Fig. 4 (right) shows the evolution of the
latent variable Ht for each considered data set using a sliding window of size
1000. Here we see that the different drift magnitudes of the three data sets are
directly reflected in the development trends of the latent variables. For instance,
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for the Hyp1 data, the curve of the Ht variable presents a stable behavior which
correctly illustrates the very low change magnitude for this data set, i.e., 0.1.

5.2 Financial data set

In this section we analyze the financial data described in Section 2. Notice that
for this data set the batch sizes, Nt, refer to the number of active customer in a
given month and can vary from one month to another.

Fig. 5 (left) shows the evolution of the classification accuracy for the NB
model using a latent variable. At first sight, the evolution of the accuracy may
reflect some inherent trend in the data; however, a more careful analysis reveals
that it simply reflects the evolution of defaulters as shown in Fig. 1 (a). This is
basically due to the data being imbalanced as pointed out in Section 2, and in
such settings the use of classification accuracy for detecting concept drift can be
misleading. As an alternative performance measure, we may consider the area
under the ROC curve as shown in Fig. 5 (right). The plot provides a more smooth
behaviour with gradual performance improvements over time.
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Fig. 5. Evolution of the accuracy (left) and the area under the ROC (right) for the
financial data set. For confidentiality reason, the y-axis values have been linearly scaled.

In contrast, in Fig. 6 we plot the evolution of the latent variable Ht over time.
Before discussing how this plot may provide insight into the financial data, recall
first that in this model (cf. Fig. 3) a single scalar value tries to capture the global
trend of 11 variables conditioned on a binary class variable. Moreover, as the vast
majority of the clients in the data set are non-defaulters, the latent variable will
mostly be influenced by this group of customers. With this basis, at least two
observations can now be made about the evolution of the latent variable:

Observation 1: There are regular peaks in the time series. Before 2011, these
peaks occur every June and December (6 months period); after 2011 the peaks
appear every March, June, September, and December (3 months period). Fig. 6
thus seems to represent two time series, one containing the values at the peaks
and one containing the remaining observations. The two underlying series evolve
in parallel.
Observation 2: Both underlying series increase rapidly until the second or
third trimester of 2012 (the highest points in the two series are reached in
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June/July 2012). Afterwards, the series seem to gradually decrease, and this
is particularly evident from the third trimester of 2013.

Our interpretation of these observations relies on the figures presented in
Section 2, where the temporal evolution of the monthly average of each variable
is depicted. To gain some insight into the first observation, we may recall that
clients with missing values for Expenses or Income are discarded when analysing
a particular month. We also previously commented that these clients are assumed
to be less active than the remainder of the population, and they are consequently
not present in the data in the majority of the months; they only appear when
fees are deducted from their accounts every semester/trimester (this amounts to
approximately 20% of the customers). From the variables in Fig. 1 we can see
that these customers have a quite particular profile, which introduces a seasonal
effect in the data set. We believe that this is what the latent variable is also
capturing. Furthermore, we attribute the fact that the two underlying series are
approximately equidistant over time to indicate that they probably represent
groups of clients that are similarly affected by the national economical climate.
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Fig. 6. Evolution of the Ht variable for the financial data set.

Regarding the interpretation of Observation 2, it appears evident that the
expected value of the latent variable moves from the very beginning of the period
until the second/third trimester of 2012 (the peak is in July 2012), before it
remains stable until the second trimester of 2013. Thereafter it moves slightly in
the reverse direction. The movements in the latent variable are used to facilitate
the evolution of the attributes’ distributions, but looking at each variable in
Fig. 1 separately, we cannot pinpoint a direct and simple explanation of the
above behaviour. For example, both Expenses and Income continuously move
until the first/second trimester of 2012, after which they become more stable. On
the other hand, the Account balance has a different trend. Thus, when looking
at each variable in isolation, it is hard to find a common evolution pattern.

Motivated by the fact that the provided data is expected to reflect the socio-
economical status of a significant part of the population in the province of
Almeŕıa, we now relate the global trend of the latent variable to the history
of the financial crisis in Spain during the studied period. In that light, the evo-
lution of the latent variable in Fig. 6 should tell us that the economic climate
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gets worse from the beginning of the period until the second/third trimester of
2012, then stabilizes until the second trimester of 2013, before it starts recovering
slightly. If this interpretation is correct, we should see a correlation between our
latent variable and relevant economic factors influencing the socio-economical
status of the population during this period of time. Fig. 7 (left) shows the unem-
ployment rate in the province of Almeŕıa, which increases from the beginning of
the period. We notice some peaks associated with the seasonality of the tourism
and agriculture professions, which are two of the main economic drivers of this
region. Taking this seasonality into account, the unemployment rate reaches its
maximum value around the turn of year 2012/2013 before it slowly improves.
Fig. 7 (right) shows the relationship between the unemployment rate and the
expected value of the latent variable. From the figure we see a close correlation
between these two entities.
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Fig. 7. Economic indicators. Left: Unemployment rate in Almeŕıa. Right: Scatter plot
of the unemployment rate and the expected value of the latent variable (Spearman’s
rank correlation coefficient is 0.85).

6 Conclusions

In this paper we have developed a classification model for data streams that is
compatible with concept drift scenarios. Our approach distinguishes itself from
traditional alternatives by explicitly including the effect of the concept drift
in the model using latent variables. We have shown through analysis of both
synthetic and real-life data that the model is able to capture and handle both
abrupt and gradual concept drift scenarios.

The analysis is a proof of concept for the proposed model class, and the
opportunities for future research are manifold: Firstly, we will consider more
sophisticated base-classifiers that are better suited for dynamic domains (e.g.,
the dynamic Näıve Bayes model), which we expect will improve the classification
accuracy of the model. Next, we will look at extensions of the concept drift
modelling itself, e.g., by using more than one latent variable and thereby being
able to represent concept drift that behave differently for different subsets of the
variables. Finally, as our development is motivated by the financial dataset, we
will look deeper into socio-economical indicators from Spain to understand even
better the mechanisms driving the concept drift in this domain.
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