
MODELING CONCURRENCY WITH

INTERVAL TRACES

MODELING CONCURRENCY WITH INTERVAL TRACES

By

XIANG YIN

A Thesis

Submitted to the Department of Computing and Software

and the School of Graduate Studies

of McMaster University

in Partial Fulfilment of the Requirements

for the Degree of

Doctor of Philosophy

McMaster University c© Copyright by Xiang Yin, April 2015

Doctor of Philosophy (2015) McMaster University

(Computing and Software) Hamilton, Ontario, Canada

TITLE: Modeling Concurrency With Interval Traces

AUTHOR: Xiang Yin

M.Sc., (Computer Science)

Brock University, St.catharines, Canada

SUPERVISOR: Prof. Ryszard Janicki

NUMBER OF PAGES: 1, 95

ii

I dedicate this thesis to my mother Yirong Guo, my father Xuelong Yin and my wife Jing

Sun.

Abstract

When system runs are modeled with interval orders, interval order structures are useful

tools to model abstract concurrent histories, i.e. sets of equivalent system runs. For the

general cases, Mazurkiewicz traces allow a representation of the entire partial order by

a single sequence with independency relations, and Comtraces allow a representation of

stratified order structures by single step sequences with appropriate simultaneity and seri-

alizability relations. Unfortunately, both of them are unable to clearly describe the abstract

interval order semantics of inhibitor nets.

The goal of the thesis is to provide a monoid based model called Interval Traces that

would allow a single sequence of beginnings and endings to represent the entire stratified

order structures as well as all equivalent interval order observations. And the thesis will

also show how interval order structures can be modelled by interval traces and how interval

traces can be used to describe interval order semantics.

Key words: Mazurkiewicz traces, Comtraces, interval traces, stratified order structures,

interval order structures, inhibitor nets.

iii

Acknowledgements

I am deeply indebted to my supervisor, Prof. Ryszard Janicki, for his support, patience and

encouragement throughout my graduate studies. With his enthusiasm, guidance and great

effort to explain things clearly, I devoted to the research field that I am interested in and

overcame lots of difficulties.

My thanks also go to the members of my committee,Prof. Michael Soltys and Prof.

Ridha Khedri for their valuable comments and reasonable suggestions.

Most importantly, I wish to thank my parents, Xuelong Yin and Rongyi Guo for their

encouragement, love and support. And Id also like to thank my wife, Jing Sun, for her

understanding and support during the past few years.

Finally, I thank the Department of Computer Science for financial support and providing

me with a great working environment.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction and Motivation 1

1.1 Problem Statement . 1

1.2 Contributions . 2

1.3 Organization of the Thesis . 3

2 Mathmatical Foundations 4

2.1 Partial Orders . 4

2.2 Sequences and Their Relationship to Partial Orders 7

2.2.1 Enumerated Sequences . 7

2.2.2 Interval Sequences . 9

3 Order Structures 11

3.1 Stratified Order Structures . 11

3.2 Interval Order Structures . 13

4 Mazurkiewicz Traces and Comtraces 18

4.1 Trace Theory . 18

v

4.2 Mazurkiewicz Traces . 19

4.2.1 Traces Semantics . 19

4.2.2 Mazurkiewicz Traces as Monoids 23

4.3 Comtraces . 26

5 Petri Nets and Inhibitor Petri Nets 29

5.1 Petri Nets . 30

5.1.1 Definition of Petri Nets . 30

5.1.2 Transition Firing . 32

5.1.3 Modeling Power . 34

5.2 Properties of Petri Nets . 35

5.2.1 Reachability . 36

5.2.2 Safeness . 37

5.2.3 Liveness . 37

5.3 Traces and Nets . 38

5.3.1 Action System . 38

5.3.2 Parallel Factorial Scheme . 38

5.4 Inhibitor Petri Nets . 41

5.4.1 Inhibitor Arcs . 41

5.4.2 Inhibitor Nets . 41

6 Interval Traces 43

6.1 Concurrent Histories . 44

6.2 Intuition and Motivation of the Model . 45

6.3 Interval Traces . 48

6.3.1 Sequence Representations of Interval Orders 49

6.3.2 Constructing Interval Traces . 54

vi

7 Properties of Interval Traces 58

7.1 Interval Traces and Interval Orders . 58

7.2 Interval Order Structures and Interval Traces 59

7.3 Comtraces vs Interval Traces . 68

8 The Applications of Interval Traces 72

8.1 Operational Semantics of Inhibitor Petri Nets 72

8.1.1 Firing Sequence Semantics . 73

8.1.2 Firing Step Sequence Semantics 74

8.2 Firing Interval Sequences Semantics . 75

8.3 Trace and Comtrace Semantics . 84

8.3.1 Trace Semantics . 85

8.3.2 Comtrace Semantics . 87

8.4 Interval Trace Semantics and Interval Order Structure Semantics 89

9 Conclusion 94

Bibliography 96

vii

Chapter 1

Introduction and Motivation

1.1 Problem Statement

In concurrent systems, most observational semantics are defined either in terms of se-

quences (i.e. total orders) or step-sequences (i.e. stratified orders). When considering

concurrent histories by causality relations, i.e. partial orders, Mazurkiewicz traces [Diek-

ert and Rozenberg [1995]; Mazurkiewicz [1977, 1995]] allow a representation of the entire

partial order by a single sequence (plus independency relation), which provides a simple

and elegant connection between observational and process semantics of concurrent sys-

tems. And Comtraces [Janicki and Koutny [1995]] allow a representation of stratified order

structures by single step-sequences (with appropriate simultaneity and serializability rela-

tions). Other relevant observations can be derived as just stratified or interval extensions of

appropriate partial orders.

However when modelling both causality and “not later than” relationship, we have to

use stratified order structures [Diekert and Rozenberg [1995]; Mazurkiewicz [1977]], when

all observations are step-sequences, or interval order structures [Lamport [1986]; Janicki

and Koutny [1997]], when all observations are interval orders.

1

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

It was argued by [Wiener [1914]] (and later more formally in [Janicki and Koutny

[1993]]) that any execution that can be observed by a single observer must be an inter-

val order, which implies that the most precise observational semantics is defined in terms of

interval orders. However, generating interval orders directly is problematic for most models

of concurrency. Unfortunately, the only feasible sequence representation of interval order is

by using sequences of beginnings and endings of events involved [Fishburn [1970]; Janicki

and Koutny [1993]].

The goal of this thesis is to provide a monoid based model that would allow a single

sequence of beginnings and endings (enriched with appropriate simultaneity and serializ-

ability relations) to represent the entire stratified order structures as well as all equivalent

interval order observations. This will be done by introducing the concept of interval traces,

a mixture of ideas from both Mazurkiewicz traces [Diekert and Rozenberg [1995]] and

comtraces [Janicki and Koutny [1995]], and proving that each interval trace uniquely deter-

mines an interval order structure. We also will show how interval traces can define interval

order semantics of inhibitor nets. For details regarding order structures models of concur-

rency and more adequate references the reader is referenced to [Janicki [2008]; Janicki et al.

[2010]; Kleijn and Koutny [2008]].

1.2 Contributions

The main contributions of our research are in the following aspects:

1. We introduce the concept of interval traces, an extension of both Mazurkiewicz

Traces and Comtraces.

2. We discuss properties of interval traces and analyze its benefits compared with Mazurkiewicz

Traces and Comtraces.

2

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

3. We use interval traces as a tool for expressing a process semantics when observations

are specified using interval orders.

4. We show each interval trace uniquely determins an interval order structure.

5. We also show how interval traces can define interval order semantics of inhibitor

nets.

You could also refer to our published paper [Janicki and Yin [2012]] and submitted

journal paper [Janicki et al. [2014]] for details.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows:

Chapters 2 to 5 deal with the related concepts and previous work. Chapter 2 gives

some mathematical preliminaries on partial orders, sequences. In Chapter 3, we talk about

stratified order structures and interval order structures. Then, in Chapter 4, Mazurkiewicz

traces and comtraces are briefly discussed. Finally, we introduce the background of Petri

nets and inhibitor Petri nets in Chapter 5.

Chapter 6 provides a formal introduction to interval traces.

Chapters 7 and 8 constitute the heart of the thesis. In Chapter 7, the properties of

interval traces are introduced by analyzing their relationships with interval orders, interval

order structures, as well as Comtraces; in Chapter 8, the applications of interval traces

are discussed. And we will give a reasonable solution about how to use interval traces to

effectively represent the abstract interval order semantics of inhibitor nets.

Chapter 9 makes a summary of our research and concludes our thesis with some final

comments.

3

Chapter 2

Mathmatical Foundations

In this chapter, we would like to introduce some well-known mathematical concepts, nota-

tions and results that will be used frequently in the rest of thesis [Burris and Sankappanavar

[1981]; Fishburn [1985]].

2.1 Partial Orders

Partial orders are one of the basic tools used in this thesis, which will be used as a full

representation of systems runs (or observations) and as a partial representation of concurrent

histories.

Definition 1 A relation <⊆ X×X is a (strict) partial order if it is irreflexive and transitive,

i.e. for all a,c,b ∈ X, a 6< a and a < b < c =⇒ a < c. We also define:

a _< b
df⇐⇒ ¬(a < b)∧¬(b < a)∧a 6= b,

a <_ b
df⇐⇒ a < b∨a _< b.

Note that a _< b means a and b are incomparable (w.r.t. <) elements of X. 2

Let < be a partial order on a set X . Then:

4

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

1. < is total if _<= /0. In other words, for all a,b ∈ X , a < b ∨ b < a ∨ a = b. For

clarity, we will reserve the symbol � to denote total orders;

2. < is stratified if a _< b _< c =⇒ a _< c∨a = c, i.e., the relation _< ∪ idX is an

equivalence relation on X ;

3. < is interval if for all a,b,c,d ∈ X , a < c ∧ b < d =⇒ a < d∨b < c.

It is clear from these definitions that every total order is stratified and every stratified

order is interval. The following simple concept will often be used in this thesis.

Definition 2 For a relation R ⊆ X ×X, any relation Q ⊆ X ×X is an extension of R if

R⊆ Q. 2

For convenience, we define Total(<)
df
= {� ⊆ X ×X | � is a total order and < ⊆ �}. In

other words, the set Total(<) consists of all the total order extensions of <.

By Szpilrajn’s Theorem [Szpilrajn [1930]], we know that every partial order < is uniquely

represented by the the set Total(<). Szpilrajn’s Theorem can be stated as follows:

Theorem 1 (Szpilrajn [1930]) For every partial order <,

< =
⋂

�∈Total(<)

�,

i.e. each partial order is the intersection of its all total extensions. 2

Stratified orders are often defined in an alternative way, namely, a partial order < on X

is stratified if and only if there exists a total order � on some Y and a mapping φ : X → Y

such that ∀x,y ∈ X . x < y ⇐⇒ φ(x)� φ(y). This definition is illustrated in Figure 2.1,

where φ(a) = {a}, φ(b) = φ(c) = {b,c}, φ(d) = {d}. Note that for all x,y ∈ {a,b,c,d}

we have x <2 y ⇐⇒ φ(x)�2 φ(y), where the total order �2 can be concisely represented

5

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

t
t
t
t
?

?

?

a

b

c

d
<1
total

t
t t

t

�

J
J
JĴ

J
J
JĴ

�

a

b c

d
<2

stratified

q
q
q
?

?

..

{a}

{b,c}

{d}
�2
total

t
t t
t

�

J
J
JĴ

?

a

b c

d
<3

interval

qqqqqqqq

q
...

?
?
?
?
?
?
?

B(a)
E(a)
B(b)
B(c)
E(b)
B(d)
E(c)
E(d)
�3

total

t t
t t? ?

ba

dc

<4
not interval

Figure 2.1: Various types of partial orders (represented as Hasse diagrams). The par-
tial order <1 is an extension of <2, <2 is an extension of <3, and <3 is an extension
of <4. Note that order <1, being total, is uniquely represented by a sequence abcd,
the stratified order <2 is uniquely represented by a step sequence {a}{b,c}{d}, and the
interval order <3 is (not uniquely) represented by a sequence that represents �3, i.e.
B(a)E(a)B(b)B(c)E(b)B(d)E(c)E(d).

by a step sequence {a}{b,c}{d}. As a consequence, stratified orders and step sequences

can uniquely represent each other (cf. [Janicki and Koutny [1995]; Janicki and Lê [2011];

Lê [2011]]).

For the interval orders, the name and intuition follow from Fishburn’s Theorem:

Theorem 2 (Fishburn [1970]) A partial order < on X is interval iff there exists a total

order � on some T and two mappings B,E : X → T such that for all x,y ∈ X,

1. B(x)�E(x),

2. x < y ⇐⇒ E(x)�B(y). 2

Usually B(x) is interpreted as the beginning and E(x) as the end of an interval x.The

intuition of Fishburn’s theorem is illustrated in Figure 2.1 with <3 and �3. For all x,y ∈

{a,b,c,d}, we have B(x)�3 E(x) and x <3 y ⇐⇒ E(x)�3 B(y). For better readability in

the future we will skip parentheses in B(x) and E(x).

6

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

2.2 Sequences and Their Relationship to Partial Orders

Sequences are the most obvious and popular tool to define an observational semantics of

both sequential and concurrent systems, and they can also conveniently represent finite

total, stratified and interval orders.

Let Σ be a finite set (of events) and P(Σ) its power set. The elements of Σ∗ are called

sequences while the elements of (P(Σ)\ /0)∗ are called step sequences.

2.2.1 Enumerated Sequences

When interpreting sequences as partial orders and vice versa is a well-known and estab-

lished idea, a standard notation has not been set up yet. Below we will define the notation

that will be used in this thesis.

For each sequence x ∈ Σ∗ or each step sequence x ∈ (P(Σ) \ /0)∗, and each a ∈ Σ,

let #a(x) denotes the number of a in x. For example #a(abbaa) = 3, #b(abbaa) = 2 and

#c(abbaa) = 0; #a({a,b}{b,c}{a,b,c}) = 2, #b({a,b}{b,c}{a,b,c}) = 3,

#c({a,b}{b,c}{a,b,c}) = 2 and #d({a,b}{b,c}{a,b,c}) = 0.

The formal relationship between sequences and total orders and between step sequences

and stratified orders can be defined as follows.

Definition 3

1. For each set of events Σ, let Σ̂ = {a(i) | a ∈ Σ, i = 1,2, ...,∞}. The elements of Σ̂ are

called enumerated events.

2. For each sequence x∈ Σ∗, its enumerated representation x̂∈ Σ̂∗, is defined as follows:

• x = ε =⇒ x̂ = ε , and x = a =⇒ x̂ = a(1),

• x = ya =⇒ x̂ = ŷa(i), where i = #a(y)+1.

7

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

3. For each step sequence x ∈ (P(Σ) \ /0)∗, its enumerated representation x̂ ∈ Σ̂∗, is

defined as follows:

• x = ε =⇒ x̂ = ε , and x = {a1, ...,ak} =⇒ x̂ = {a(1)1 , ...,a(1)k },

• x = yA =⇒ x̂ = ŷÂ, where Â = {a(i) | a ∈ A∧ i = #a(y)+1}.

4. For each sequence x ∈ Σ∗, or step sequence x ∈ (P(Σ)\ /0)∗, Σx denotes the set of all

elements of Σ that occur in x, and Σ̂x denotes the set of all enumerated events of x̂.

5. For each sequence x ∈ Σ∗, we define the following total order �x on Σ̂x:

a(i)�x b(j) ⇐⇒ x̂ = ua(i)vb(j)w,

where u,v,w ∈ (Σ̂x)
∗.

6. For each step sequence x ∈ Σ∗, we define the following stratified order �x on Σ̂x:

a(i)�x b(j) ⇐⇒ x̂ = uAvBw,

where a(i) ∈ A⊆ Σ̂x, b(j) ∈ B⊆ Σ̂x and u,v,w ∈ (Σ̂x)
∗. 2

For example, if x = abbaa then x̂ = a(1)b(1)b(2)a(2)a(3), Σx = {a,b} and

Σ̂x = {a(1),a(2),a(3),b(1),b(2)}. If x = {a,b}{b,c}{a,b,c}, then

x̂ = {a(1),b(1)}{b(2),c(1)}{a(3),b(2),c(2)}, Σx = {a,b,c} and

Σ̂x = {a(1),a(2),a(3),b(1),b(2),c(1),c(2)}.

The sequence x = abbaa represents a total order:

�x = a(1)→ b(1)→ b(2)→ a(2)→ a(3),

while the step sequence x = {a,b}{b,c}{a,b,c} represents the stratified order (represented

8

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

as total order of equivalence classes):

�x = {a(1),b(1)}→ {b(2),c(1)}→ {a(3),b(2),c(2)}.

If Σ̂x ⊆ {a(1) | a ∈ Σ}, then we will identify x with x̂. More details can be found in for

example in [Janicki and Koutny [1995]; Janicki et al. [2010]; Janicki and Lê [2011]].

2.2.2 Interval Sequences

We will now formally show how sequences can represent interval orders. Fishburn total

order representation (Theorem 2) will be used.

For a given Σ, let EΣ = {Ba | a∈ Σ}∪{Ea | a∈ Σ}, or just E , be the set of all beginnings

and ends of events in Σ.

Let D ⊆ E and let s ∈ E ∗. We define the projection of s onto D standardly as:

πD(ε)
df
= ε, πD(sα)

df
=

πD(s)α if α ∈D ,

πD(s) if α /∈D .

For example π{Ba,Ea}(BbBaEbBaEaEc)=BaBaEa, π{Ba,Ea,Bc,Ec}(BbBaEbBaEaEc)=BaBaEaEc.

Definition 4

1. A string x ∈ E ∗ is an interval sequence iff ∀a ∈ Σ. π{Ba,Ea}(x) ∈ (BaEa)∗.

We use InSeq(E ∗) to denote the set of all interval sequences of E ∗.

2. For every x ∈ E ∗
Σ

, we define Ê Σ
x ⊆ Σ̂∗ as follows

Ê Σ
x = {a(i) | Ba(i) ∈ Êx}∪{a(i) | Ea(i) ∈ Êx},

3. Let x ∈ InSeq(E ∗
Σ
), and let Jx be a relation on Ê Σ

x , defined by

a(i) Jx b(j) ⇐⇒ Ea(i)�x Bb(j).

By Theorem 2, the relation Jx is an interval order, and it will be called the interval

order defined by the sequence x of beginnings and ends. 2

9

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Note that if x ∈ InSeq(E ∗), then Ê Σ
x = {a(i) | Ba(i) ∈ Êx} = {a(i) | Ea(i) ∈ Êx}. For ex-

ample BaBbEbEaBcBaBbEcEbEaBaEa is in InSeq(E ∗
Σ
) for Σ = {a,b,c}, but EaBbEbBa

or BbEbBaEc are not. For x = BaBbEbEaBcBaBbEcEbEaBaEa, we have Ê
{a,b,c}
x =

{a(1),a(2),a(3),b(1),b(2),c(1)}. For x = BaEaBbBcEbBdEcEd, the interval order Jx is the

same as <3 of Figure 2.1 with a(1),b(1),c(1) and d(1) represented by a,b,c and d, and for

y = BaEaBbBaEbBbEaEb, the interval order Jy is also the same as <3 of Figure 2.1 with

a(1) represented by a, b(1) represented by b, a(2) by c, and b(2) by d.

10

Chapter 3

Order Structures

In this chapter, we will give an overview of stratified order structures and interval order

structures.

3.1 Stratified Order Structures

From section 2.1, we have known that partial orders can adequately model ‘earlier-later’

relationship. However, to model ‘not later than’ relationship we need more sophisticated

tools. The stratified order structures and interval order structures are presented in the fol-

lowing two sections.

Definition 5 (Gaifman and Pratt [1987]; Janicki and Koutny [1991]) A stratified order

structure is a relational structure S = (X ,≺,@), such that for all a,b,c ∈ X:

S1: a 6@ a S3: a @ b @ c ∧ a 6= c =⇒ a @ c

S2: a≺ b =⇒ a @ b S4: a @ b≺ c ∨ a≺ b @ c =⇒ a≺ c.

The relation ≺ is called causality while @ is called weak causality. 2

11

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Stratified order structures were independently introduced in [Gaifman and Pratt [1987]]

and [Janicki and Koutny [1991]]. Their comprehensive theory has been presented in [Jan-

icki [2008]; Janicki and Koutny [1997]; Janicki and Lê [2011]; Kleijn and Koutny [2008]].

In this model the causality relation ≺ represents the “earlier than” relationship, and the

weak causality relation @ represents the “not later than”. The relation ≺ is always a partial

order, while the relation @ may be not. Moreover, if < is a stratified order on X , then

(X ,<,<_) is a stratified order structure, i.e. stratified orders can be interpreted as simple

instances of stratified order structures.

Definition 6 (Janicki and Koutny [1997])

1. A stratified order < on X is an stratified extension of a stratified order structure

S = (X ,≺,@) if ≺ ⊆ < and @ ⊆ <_, i.e. if < is an extension of ≺ and <_ is an

extension of @.

2. The set of all interval extensions of S will be denoted by Strat(S). 2

Theorem 1 states that each partial order is uniquely represented by its set of total ex-

tensions, and there is a similar relationship between stratified order structures and stratified

orders.

Theorem 3 (Janicki and Koutny [1997]) For each stratified order structure S = (X ,≺,@

), we have

S =
(

X ,
⋂

<∈Strat(S)
<,

⋂
<∈Strat(S)

<_
)
,

i.e. S is entirely defined by the set of its all extensions. 2

The above theorem is a generalization of Szpilrajn’s Theorem to stratified order struc-

tures. It is interpreted as the proof of the claim that stratified order structures uniquely

12

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

represent sets of equivalent system runs, provided that the system’s operational semantics

can be fully described in terms of stratified orders (see [Janicki [2008]; Janicki and Koutny

[1997]; Janicki et al. [2010]; Janicki and Lê [2011]; Kleijn and Koutny [2008]] for details).

The relational structure S from Figure 3.2 is a simple example of a stratified order

structure (it is also an interval order structure discussed later) with Strat(S) = {<1,<2

,<3,<4}.

3.2 Interval Order Structures

Interval order structures provide a more general formalism for analysis of concurrent sys-

tems than partial orders and stratified order structures, as discussed in [Janicki [2008]; Jan-

icki and Koutny [1997]]. They can model concurrent behaviours which cannot be modelled

by stratified order structures.

Definition 7 (Janicki and Koutny [1991]; Lamport [1986]) An interval order structure is

a relational structure S = (X ,≺,@), such that for all a,b,c,d ∈ X:

I1: a 6@ a I4: a≺ b @ c ∨ a @ b≺ c =⇒ a @ c

I2: a≺ b =⇒ a @ b I5: a≺ b @ c≺ d =⇒ a≺ d

I3: a≺ b≺ c =⇒ a≺ c I6: a @ b≺ c @ d =⇒ a @ d ∨ a = d.

The relation ≺ is called causality and the relation @ is called weak causality. 2

Interval order structures were introduced in [Lamport [1986]]1 and rediscovered indepen-

dently in [Janicki and Koutny [1991]]. Some of their properties have been presented in

1In a slightly different but equivalent form, with a different interpretation of the relation @, and initially
without Axiom I6, which was added later. Evolution of the definition from [Lamport [1986]] is discussed in
[Abraham et al. [1990]]. Definition 7 is a little bit modified version of that from [Janicki and Koutny [1991]].
See also [Janicki and Koutny [1997]].

13

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

[Janicki and Koutny [1997]], yet their theory is not as well-developed and much less often

applied than for instance simpler stratified order structures (c.f. [Janicki [2008]; Janicki

and Koutny [1995]; Kleijn and Koutny [2004]; Lê [2011]]), not to mention just plain partial

orders.

In this model the causality relation ≺ represents the “earlier than” relationship, and

the weak causality relation @ represents the “not later than” relationship but under the

assumption that the system runs are interval orders. The relation ≺ is always a partial

order, while the relation @ may not. The main interpretational difference between interval

order structures and stratified order structures is that for the latter it is assumed that the

systems runs are modeled with stratified orders.

From Definition 7 we can get immediately that ≺ is a partial order, and if < is an

interval order on X , then (X ,<,<_) is an interval order structure, i.e. interval orders can

be interpreted as simple instances of interval order structures.

Definition 8 (Janicki and Koutny [1997])

1. An interval order < on X is an interval extension of an interval order structure S =

(X ,≺,@) if ≺ ⊆ < and @ ⊆ <_, i.e. if < is an extension of ≺ and <_ is an

extension of @.

2. The set of all interval extensions of S will be denoted by Interv(S). 2

Similarly as for partial orders, every stratified order structure is also an interval order

structure.

Proposition 1 (Janicki and Koutny [1997])

1. Every stratified order structure S is also an interval order structure.

2. For every stratified order structure S, Strat(S)⊆ Interv(S). 2

14

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Theorem 1 states that each partial order is uniquely represented by its set of total exten-

sions, Theorem 3 states that each stratified order structure is uniquely represented by its set

of stratified extensions, we have the similar relationship between interval order structures

and interval orders.

Theorem 4 (Janicki and Koutny [1997]) For each interval order structure S = (X ,≺,@),

we have

S =
(

X ,
⋂

<∈Interv(S)
<,

⋂
<∈Interv(S)

<_
)
,

i.e. S is entirely defined by the set of its all extensions. 2

The above theorem is a generalization of Szpilrajn’s Theorem to interval order struc-

tures. It is interpreted as the proof of the claim that interval order structures uniquely

represent sets of equivalent system runs, provided that the system’s operational semantics

can be fully described in terms of interval orders (see [Janicki [2008]; Janicki and Koutny

[1997]] for details).

An example of a simple interval order structure which illustrates the main ideas behind

this concept is shown in Figure 3.2. The orders <1 and <2 are total, <3 and <4 are stratified

and <5 is interval but not stratified.

In the present case ≺ equals <5, as there are not so many partial orders over the four

elements set, but the interpretations of <5 and ≺ are different. The incomparability in <5

is interpreted as simultaneity while in ≺ as having no causal relationship.

The interval order structure from Figure 3.2 is also a stratified order structure. The rela-

tional structure S0 = ({a,b,c},≺0,@0), where the relations≺0 and @0 are described below

rr r
?

a

b
c

≺0

rr r
?

a

b
c

@0

��*
HHj

Y

�

15

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

rr
rr?
?

?

a
b
c
d
<1

rr
rr?
?

?

a
b
d
c
<2

r
r r
r
�
��

B
BBN

B
BBN

�
��

a

b

d

c

<3

r r
r
r
?
B
BBN

�
��

a

b

d c
<4

r
rr

r
�
��

B
BBN

?

a

b

d

c

<5

?

a

b c
d time

example of intervals
that define <5

r
r rr

�

�
�
�
�
�

A
A
AAU

?

a

b
c

d ≺

r
r rr

�

�
�
�
�
�

A
A
AAU

?

XXXXz

a

b
c

d @

r r r
rr r

r
r r-

@
@R

�
��
-

- - -�
�
���Ba

Bc Ec

Eb Bd EdEa
Bb <1 =<S

r r r r
r
r

r r- -�
��

@
@R

-

- -

Ba
Bc Ec

Eb Bd Ed
Ea

Bb

<2

Figure 3.2: An example of a simple interval order structure S = (X ,≺,@), with X =
{a,b,c,d}. Its set of all interval extensions Interv(S) equals to {<1,<2,<3,<4,<5}. Par-
tial orders <1 and <2 (in the form of Hasse Diagrams) represent the interval order structure
S via Theorem 5. The partial order <1 is <S, the minimal partial order for S that satisfies
Theorem 5. The relational structure S is also a stratified order structure with the set of all
stratified extensions Strat(S) = {<1,<2,<3,<4}.

is an interval order structure, but not a stratified order structure. We have here a≺0 b @0 c

but ¬(a≺0 c), so the axiom S4 of Definition 5 is not satisfied. Note that Interv(S0) contains

only one element, an interval order which is equal to ≺0, but again the interpretations are

different.

It turns out that every interval order structure can be represented by an appropriate

partial order of beginnings and ends. We will later use this relationship to construct a

monoid model of interval order structures.

Theorem 5 (Abraham, Ben-David, Magidor Abraham et al. [1990]) A triple S = (X ,≺

, @) is an interval order structure if and only if there exists a partial order < on some Y

and two mappings B,E : X → Y such that B(X)∩E(X) = /0 and for each x,y ∈ X:

16

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

1. B(x)< E(x),

2. x≺ y ⇐⇒ E(x)< B(y),

3. x @ y ⇐⇒ B(x)< E(y). 2

Theorem 5 can be seen as a generalization of Theorem 2 (Fisburn’s Theorem) from

interval orders to interval order structures.

The partial order in Theorem 5 is not unique (see Figure 3.2), but the least partial order

that satisfies Theorem 5 clearly does exist. We will denote it by <S. Moreover one can

show that the original construction from [Abraham et al. [1990]] is such least partial order.

17

Chapter 4

Mazurkiewicz Traces and Comtraces

In Chapter 1, we have mentioned that, interval traces, one of the main contributions of our

research, stemmed from Mazurkiewicz traces and Comtraces. Now, it is a good time to give

a general introduction to them.

4.1 Trace Theory

Generally, trace theory was first formulated by Antoni Mazurkiewicz in the 1970s, in an

attempt to evade some of the problems in the theory of concurrent computation, including

the problems of interleaving and non-deterministic choice with regards to refinement in

process calculi. Currently, the concept of traces is usually used to describe non-sequential

behaviour of concurrent systems via its sequential observations. Traces always represent

concurrent processes in the same way as strings represent sequential ones.

Originally, traces theory was motivated by theories of Petri Nets [Petri [1962a]] and for-

mal lanuages with automata. At the beginning, the most popular approach to deal with con-

currency was interleaving. In this approach, concurrency is replaced by non-determinism

where concurrent execution of actions is regarded as non-deterministic choice of the order

18

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

of executions of those actions.

However, later, more and more researchers found that the interleaving approach had

some drawbacks concerning: 1) well-visible in the treatment of refinement, see e.g. [Bakker

et al. [1989]]; 2) inevitability, see [Mazurkiewicz [1989]]; and 3) serializability of transac-

tions [Fle and Roucairol [1982]]. Therefore, the traditional trace theory had been developed

both in breath and in depth. Some of developments have still followed the initial motivation

coming from concurrent systems, while other fall within the feilds such as formal language

theory, theory of partially commutative monoids, ect.

The rest of this chapter, we would like to introduce two popular traces: Mazurkiewicz

Traces and Comtraces.

4.2 Mazurkiewicz Traces

In this section, we define and study the semantic domain of traces which may be employed

for describing concurrent systems. Mazurkiewicz traces, usually just called traces, corre-

spond to sequences of atomic actions of concurrent systems and are employed to model

executions. Concurrent systems then may be described by sets of executions, called lan-

guages in this framework.

4.2.1 Traces Semantics

The behavior of systems may be described by the actions which are executed. The nature of

a sequential system is that it can only execute one action after the other. Hence, an execution

of a sequential system may be described by a sequence of actions which constitutes a linear

order. Given a concurrent system with a fixed notion of dependence, we will no longer

expect the different actions of the execution to form a linear order but a partial order, as we

pointed out in Chapter 2.

19

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Therefore, we define an execution of a concurrent system to be a partial order.

Definition 9 Let Σ be an alphabet. A Σ-labeled partially ordered set is a triple (E,≤,λ)

such that

• (E,≤) is a partially ordered set (poset), i.e., ≤⊆ E×E and ≤ is reflexive, transitive,

and antisymmetric.

• λ is a labeling function from E to Σ which assigns to every element of E a label which

is an element of Σ.

If the alphabet Σ is clear from the context, we may omit it. The labeling function λ can

be extended to subsets of E in a straightforward manner viz for C ⊆ E, we define λ (C) to

denote {λ (e) | e ∈C}. 2

Example 1 Let us fix the alphabet Σ = {a,b,c,d} in this example.

1. Let E = {e1, . . . ,e7}, and let ≤ be the reflexive and transitive closure of {(ei,e j) |

i ∈ {1, . . . ,5}, where k = (i+ 1) mod 2, and j = i+ 1+ k or j = i+ 2+ k}, and

let λ be defined by e1,e5 7→ a,e2,e6 7→ b,e3,e7 7→ c and e4 7→ d. Then (E,≤,λ) is

a poset. And its Hasse diagram is shown in 4.3(a). The elements of E are written

within circles and their labels are written next to them. To denote that ei is smaller

than e j with respect to ≤, we write ei 7→ e j.

2. Let us consider a similar example where again E = {e1, . . . ,e7}. Now, let ≤ be the

reflexive and transitive closure of

(e1,e2),(e2,e3),(e3,e4),(e3,e5),(e4,e6),(e4,e7),(e5,e7).

Let λ be defined as before by e1,e5 7→ a,e2,e6 7→ b,e3,e7 7→ c and e4 7→ d. Then

(E,≤,λ) is the poset depicted in Figure 4.3(b).

3. Let E = {ei | i ∈ N} and let ≤⊆ E×E be defined by ei ≤ e j iff

20

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

• i, j ∈ N\{0} and j is less or equal to i with respect to the usual order over the

naturals or

• i = 0.

Let λ send each element simply to a, i.e., for all i ∈ N, let λ (ei) = a. Then (E,≤,λ)

is a labeled partially ordered set and its Hasse diagram is indicated in Figure 4.3(c).

Figure 4.3: Labeled partial orders

For describing executions, arbitrary partial orders are too general. Let us come back to

Example 1 . We would like to interpret the elements of the poset as events of the system

under consideration. A label of an event is interpreted as the action corresponding to the

event. In other words, the actions executed by an underlying system are represented by

unique events with corresponding action labels. We call an event e with label a also an

a-event.

It is reasonable to assume that our concurrent system has an initial state and, as time

proceeds, executes actions. Therefore, we require a poset representing a run to have mini-

mal elements, which denote starting points. Let us look at Figure 4.3(c), the depicted poset

has a unique starting point, the event e0. However, before event e4 can occur, an infinite

21

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

number of events e5,e6, . . . has to occur, i.e., infinitely many actions have to be executed

before. Assuming that every action takes a fixed amount of time, the event e4 describes a

part of the behavior of a system after an infinite amount of time. Since we do not want to

deal with these situations, it is natural to require that every event of a run is preceded only

by a finite number of events. So Figure 4.3(c) does not represent an execution.

Furthermore, a poset representing an execution of a system should respect its given fixed

dependence relation over the actions. Let us assume that we have the independence relation

I = {(a,d),(d,a),(b,c),(c,b)}. We will not consider the poset shown in Figure 4.3(b) to

be a run of our system for two reasons: First, the events e2 and e3 are ordered although their

corresponding actions (their labels) are independent with respect to I. Second, the events

e5 and e6 are not ordered although their actions are dependent with respect to I. So Figure

4.3(b) does not represent an execution.

We will limit the kind of partial orders we are considering by the items mentioned before

and will gain the notion of Mazurkiewicz traces. But let us introduce some definitions

before:

Definition 10 Let (E,≤,λ) be a poset where E is countable.

• For e ∈ E, we define ↓ e = {x ∈ E | x≤ e} and ↑ e = {x ∈ E | e≤ x}. We call ↓ e the

history of the event e and ↑ e the future of the event e.

• Letl be the covering relation given by xly iff x≤ y,x 6= y, and for all z∈E,x≤ z≤ y

implies x = z or z = y.

• Moreover, let the concurrency relation be defined as x co y iff x� y and y� x.

2

Now we are ready to give the fundamental definition of Mazurkiewicz trace.

22

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Definition 11 A Mazurkiewicz trace over the independence alphabet (Σ, I) is a Σ-labeled

poset T = (E,≤,λ) satisfying:

• ↓ e is a finite set for each e ∈ E.

• For every e,e′ ∈ E,ele′ implies λ (e)Dλ (e′), where D is called dependence relation.

• For every e,e′ ∈ E, λ (e)Dλ (e′) implies e≤ e′ or e′ ≤ e.

2

Example 2 Let us consider the independence alphabet (Σ, I) with a set of actions Σ =

{a,b,c,d} and the independence relation I = {(a,d),(d,a),(b,c),(c,b)}. Then, the poset

shown in Figure 4.3(a) is a trace while the one shown in Figure 4.3(b) violates (T2) and

(T3). The poset shown in Figure 4.3(c) does not satisfy (T1).

4.2.2 Mazurkiewicz Traces as Monoids

Mazurkiewicz traces rely on the concept of monoids which is a convenient tool for dealing

with classes of equivalent sequences.

A triple (X ,∗,1), where X is a set, ∗ is a total binary operation on X , and 1∈X , is called

a monoid [Burris and Sankappanavar [1981]], if for all a,b,c ∈ X , (a ∗ b) ∗ c = a ∗ (b ∗ c),

a∗1= 1∗a = a, and a∗b ∈ X .

A nonempty equivalence relation ∼⊆ X ×X is a congruence in the monoid (X ,∗,1) if

for all a1,a2,b1,b2 ∈ X , a1 ∼ b1∧ a2 ∼ b2⇒ (a1 ∗ a2) ∼ (b1 ∗ b2). Traditionally, [a]∼ (or

just [a]) will denote an equivalence class containing a.

The triple (X/∼,~, [1]), where [a]~ [b] = [a ∗ b], is called the quotient monoid of

(X ,∗,1) under the congruence ∼. The symbols ∗ and ~ are often omitted if this does not

lead to any discrepancy.

23

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Let M = (X ,∗,1) be a monoid and let EQ = { xi = yi | xi,yi ∈ X , i = 1, . . . ,n } be a finite

set of equations. Define ≡EQ (or just ≡) to be the least congruence on M satisfying, xi =

yi =⇒ xi ≡EQ yi, for each equation xi = yi ∈ EQ. We call the relation ≡EQ the congruence

defined by EQ, or EQ-congruence.

The quotient monoid M≡EQ = (X/≡EQ,~, [1]), where [x]~ [y] = [x ∗ y], is called an

equational monoid (see [Janicki and Lê [2011]; Lê [2011]; Ochmański [1995]] for more

details).

Monoids of Mazurkiewicz traces (cf. [Diekert and Rozenberg [1995]; Mazurkiewicz

[1977]]) are equational monoids over sequences. The theory of traces has been utilized to

tackle problems from quite diverse areas including combinatorics, graph theory, algebra,

logic and, especially concurrency theory [Diekert and Rozenberg [1995]; Mazurkiewicz

[1977]]. Applications of traces in concurrency theory are originated from the fact that

traces are sequence representation of partial orders, which gives traces the ability to model

“true concurrency” semantics. We will now recall the definition of a trace monoid.

Definition 12 (Diekert and Rozenberg [1995]; Mazurkiewicz [1977]) Let M =(Σ∗,∗,λ)

be the free monoid generated by Σ, and let the relation ind ⊆ Σ×Σ be an irreflexive and

symmetric relation (called independency), and EQ = {ab = ba | (a,b) ∈ ind}. Let ≡ind ,

called trace congruence, be the congruence defined by EQ. Then the equational monoid

M≡ind =
(
Σ∗/≡ind,~, [λ]

)
is a monoid of traces. The pair (Σ, ind) is called a trace alpha-

bet. 2

The following folklore result (see for example [Janicki and Lê [2011]] for a proof)

allows us to define the congruence ≡ind explicitly.

Proposition 2 For every monoid of traces the congruence ≡ind can be defined explicitly

as the reflexive and transitive closure of the relation ≈, i.e. ≡ = (≈
⋃
≈−1)∗, where

24

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

≈⊆ Σ∗×Σ∗, and

x≈ y ⇐⇒ ∃ x1,x2 ∈ Σ∗. ∃ (u = v) ∈ EQ. x = x1 ∗u∗ x2 ∧ y = x1 ∗ v∗ x2.

Proof Define .
==≈

⋃
≈−1. Clearly, (.=)∗ is an equivalence relation. Let x1 ≡ y1 and

x2 ≡ y2. This means x1(
.
=)ky1 and x2(

.
=)ly2 for some k, l ≥ 0. Hence, x1 ∗x2(

.
=)ky1 ∗x2(

.
=

)ly1 ∗ y2. Thus, ≡ is a congruence. Let ∼ be a congruence that satisfies (u = w) ∈ EQ⇒

u∼ w for each u = w from EQ. Then, clearly, x .
= y⇒ x∼ y. Hence, x≡ y⇔ x(.=)my⇒

x∼m y⇒ x∼ y. Thus, ≡ is the least. 2

We will omit the subscripts ind and ≡ind from trace congruence if it causes no ambigu-

ity, and often write [x]ind , or just [x], instead of [x]≡ind .

Example 3 Let Σ = {a,b,c}, ind = {(b,c),(c,b)}, i.e., EQ = { bc = cb }. Given three

sequences s = abcbca, s1 = abc and s2 = bca, we can generate the traces [s] = {abcbca,

abccba,acbbca,acbcba,abbcca,accbba}, [s1] = {abc,acb} and [s2] = {bca,cba}. Note

that [s] = [s1] ~ [s2] since [abcbca] = [abc]~ [bca] = [abc∗bca]. 2

Note for each trace [x] its set of all enumerated events can be defined as Σ̂[s] = Σ̂s. For

the trace [s] from Example 3, we have Σ̂[s] =
{

a(1),b(1),c(1),b(2),c(2),a(2)
}

.

Definition 13 For every trace [x], let l[x] ⊆ Σ̂[s]× Σ̂[s] be a partial order defined as:

l[x] =
⋂

t∈[x]
�t .

The partial order l[x] is called generated by the trace [x]. 2

Theorem 6 (Follows form [Mazurkiewicz [1977, 1995]) , also Theorem 6.31 in [Janicki

et al. [2010]]] For every trace [x], Total(l[x]) = {�t | t ∈ [x]}. 2

The partial order defined by the trace [s] from Example 3 is presented in Figure 4.4. By

Theorems 1 and 6 each trace [x] uniquely determines the partial orderl[s] (that corresponds

to occurrence graph from [Mazurkiewicz [1995]]), and vice versa.

25

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

b(1) // b(2)

$$

a(1)

::

$$

a(2)

c(1) // c(2)

::

Figure 4.4: The partial order l[s]defined by the trace [s] where s = abcbca and ind =
{(b,c),(c,b)}, i.e., EQ = { bc = cb }.

4.3 Comtraces

Comtraces are equational monoids that can model ‘not later than’ relationship in the same

way as traces can model causal relationship.

Definition 14 (Janicki and Koutny [1995])

1. Let Σ be a finite set, ser ⊆ sim ⊂ Σ×Σ be two relations called serialisability and

simultaneity respectively. The triple (Σ,sim,ser) is called comtrace alphabet. We

assume that sim is irreflexive and symmetric.

2. We define S, the set of all (potential) steps, as the set of all cliques of the graph

(Σ,sim), i.e. S= {A | A 6= /0∧ (∀a,b ∈ A. a = b∨ (a,b) ∈ sim)}.

3. Let EQ be the set of equations defined as (‘∗’ denotes concatenation of step sequences

and is traditionally represented by juxtaposition):

EQ = {C = A∗B |C = A∪B ∈ S∧A∩B = /0∧A×B⊆ ser}.

Let ≡(sim,ser) be the EQ-congruence defined by the above set of equations.

4. The equational monoid (S/≡(sim,ser),~, [λ]) is called a monoid of comtraces. 2

We will often write [x](sim,ser), instead of [x]≡(sim,ser) .

26

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

The comtraces were invented to handle explicitly ‘simultaneity’ and ‘not later than’

relationships. The major innovation was to use two relations sim and ser on a given set of

events Σ instead of just one.

If (a,b) ∈ sim then a and b can be executed simultaneously, while (a,b) ∈ ser means a

and b can either be executed simultaneously, or a precedes b. When operational semantics

is expressed in terms of stratified orders or step sequences, (a,b) ∈ sim means the step

{a,b} is allowed, and (a,b) ∈ ser means the both the step {a,b} and the sequence {a}{b}

are allowed.

If sim = ser then a comtrace can fully be represented by an appropriate trace with ind =

sim. It can be shown that each comtrace uniquely defines a stratified order structure (in

the same sense as each trace uniquely defines a partial order) that represents the same

behaviour(see [Janicki et al. [2010]; Janicki and Koutny [1995]; Janicki and Lê [2011];

Kleijn and Koutny [2008]] for details and applications).

For every comtrace x = [x](sim,ser) over (Σ,sim,ser), the set Strat(x) = {�t | t ∈ x}, is

the set of all stratified orders defined by the elements of x, and let Sx = (Σ̂x,≺x,@x), be the

relational structure given by

≺x=
⋂

<∈Strat(x)
<, @x=

⋂
<∈Strat(x)

<_ .

Proposition 3 (Janicki and Koutny [1995]) For every comtrace x= [x](sim,ser) over (Σ,sim,ser),

the relational structure Sx is a stratified order structure. 2

The relational structure Sx is called stratified order structure generated by the comtrace

x. For example if Σ = {a,b,c,d}, sim and ser are relations as the ones below:

27

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

qq qq qq qq��	��
�

�

a a

c c

b b

d d
sim ser

and x = {a}{b,c}{d} is a step sequence over a comtrace alphabet (Σ,sim,ser), then the set

of step sequences

[x](sim,ser) = { {a}{b}{c}{d},{a}{b}{d}{c},{a}{b,c}{d},{a}{b}{c,d} }

is the comtrace generated by the step sequence x. Note that step sequences [x](sim,ser), when

interpreted as stratified orders, i.e. Strat([x](sim,ser), satisfy

Strat([x](sim,ser) = {<1,<2,<3,<4}= Strat(S),

where S is exactly the stratified order structure from Figure 3.2.

Moreover, S = S[x](sim,ser) (c.f. [Janicki and Koutny [1995]]).

28

Chapter 5

Petri Nets and Inhibitor Petri Nets

Petri nets are a widely-used model for concurrency. By modelling the effect of events on

local components of state, they reveal how the events of a process interact with each other,

and whether they can occur independently of each other by operating on disjoint regions of

state.

A Petri net is an abstract, formal model of information flow. The properties, concepts,

and techniques of Petri nets are being developed for describing and analyzing the flow of

information and control in systems, particularly systems related to concurrent activities.

The major use of Petri nets has been the modeling of systems of events in which it is

possible for events to occur concurrently with some constraints.

Inhibitor Petri nets, a special type of Petri nets, include one or more inhibitor arcs, and

will be widely used in this thesis. Therefore, in this chapter, we want to give a detailed

introduction to their fundamentals and properties.

29

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

5.1 Petri Nets

5.1.1 Definition of Petri Nets

Petri nets, first formally introduced in 1962 by [Petri [1962b]] is a particular kind of directed

graphs comprised of three types of objects: places, transitions, and directed arcs. Directed

arcs connect places to transitions or transitions to places.

In its simplest form, a Petri net can be represented by a transition together with an input

place and an output place. This elementary net may be used to represent various aspects of

the modeled systems. For example, a transition and its input place and output place can be

used to represent a data processing event, its input data and output data, respectively, in a

data processing system.

In order to study the dynamic behavior of a Petri net modeled system in terms of its

states and state changes, each place may potentially hold either none or a positive number

of tokens. Tokens are a primitive concept for Petri nets in addition to places and transitions.

The presence or absence of a token in a place can indicate whether a condition associated

with this place is true or false.

Generally, a Petri net is formally defined as a 5-tuple N = (P,T, I,O,M0), where

1. P = {p1, p2, . . . , pm} is a finite set of places;

2. T = {t1, t2, . . . , tn} is a finite set of transitions, P∪T 6= /0, and P∩T = /0;

3. I : P×T →N is an input function that defines directed arcs from places to transitions,

where N is a set of nonnegative integers;

4. O : T ×P→ N is an output function that defines directed arcs from transitions to

places; and

5. M0 : P→ N is the initial marking.

30

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

A marking in a Petri net is an assignment of tokens to the places. Tokens reside in the

places . The number and position of tokens may change during the execution. The tokens

are used to define the execution.

Most theoretical work on Petri nets is based on the formal definition of Petri net struc-

tures. However, graphical representation of a Petri net structure is much more useful for

illustrating the concepts of Petri net theory. Corresponding to the definition of Petri nets, a

Petri net graph has two types of nodes: A circle represents a place and a bar or a box rep-

resents a transition. Directed arcs (arrows) connect places and transitions, with some arcs

directed from places to transitions and other arcs directed from transitions to places. An

arc directed from a place p j to a transition ti defines p j to be an input place of ti, denoted

by I(ti, p j) = 1. An arc directed from a transition ti to a place p j defines p j to be an output

place of ti, denoted by O(ti, p j) = 1. If I(ti, p j) = k or O(ti, p j) = k, then there exist k di-

rected (parallel) arcs connecting place p j to transition ti (or connecting transition ti to place

p j). Usually, in the graphical representation, parallel arcs connecting a place (transition) to

a transition (place) are represented by a single directed arc labeled with its multiplicity, or

weight k. A circle containing a dot represents a place containing a token [Peterson [1981]].

Example 4 The following is a simple example of Petri net, where

Figure 5.5: A simple Petri net

P = {p1, p2, p3, p4};

31

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

T = {t1, t2, t3};

I(t1, p1) = 2, I(t1, pi) = 0 for i = 2,3,4;

I(t2, p2) = 1, I(t2, pi) = 0 for i = 1,3,4;

I(t3, p3) = 1, I(t3, pi) = 0 for i = 1,2,4;

O(t1, p2) = 2,O(t1, p3) = 1,O(t1, pi) = 0 for i = 1,4;

O(t2, p4) = 1,O(t2, pi) = 0 for i = 1,2,3;

O(t3, p4) = 1,O(t3, pi) = 0 for i = 1,2,3;

M0 = (2,0,0,0). 2

5.1.2 Transition Firing

The execution of a Petri net is controlled by the number and distribution of tokens within the

Petri net. A Petri net executes by firing transitions. By changing the distribution of tokens

in places, Petri net is able to reflect the occurrence of events or execution of operations. We

now introduce the enabling rule and firing rule of a transition, which govern the flow of

tokens:

1. Enabling Rule: A transition t is said to be enabled if each input place p of t contains

at least the number of tokens equal to the weight of the directed arc connecting p to

t, i.e., M(p)≥ I(t, p) for any p ∈ P.

2. Firing Rule: Only enabled transition can fire. The firing of an enabled transition

t removes from each input place p the number of tokens equal to the weight of the

directed arc connecting p to t. It also deposits in each output place p the number of

tokens equal to the weight of the directed arc connecting t to p.

Mathematically, firing t at M yields a new marking: M′(p) = M(p)− I(t, p)+O(t, p)

for any p in P.

32

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Notice that since only enabled transitions can fire, the number of tokens in each place

always remains non-negative when a transition is fired. Firing transition can never try to

remove a token that is not there.

A transition without any input place is called a source transition, and one without any

output place is called a sink transition. Note that a source transition is unconditionally

enabled, and that the firing of a sink transition consumes tokens, but doesn’t produce tokens.

A pair of a place p and a transition t is called a self-loop, if p is both an input place and

an output place of t. A Petri net is said to be pure if it has no self-loops.

Example 5 The figure below shows a transition firing based on Figure 5.5.

Figure 5.6: Firing of transition t1

We can find that under the initial marking, M0 = (2,0,0,0), only t1 is enabled. Firing

of t1 results in a new marking, say M1. It follows from the firing rule that

M1 = (0,2,1,0).

The new token distribution of this Petri net is shown in Figure 5.6. Again, in marking M1,

both transitions of t2 and t3 are enabled. If t2 fires, the new marking, say M2, is:

M2 = (0,1,1,1).

If t3 fires, the new marking, say M3, is:

M3 = (0,2,0,1). 2

33

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

5.1.3 Modeling Power

The typical characteristics exhibited by the activities in a dynamic event-driven system,

such as concurrency, decision making, synchronization and priorities, can be modeled ef-

fectively by Petri nets.

1. Sequential Execution. In Figure 5.7(a), transition t2 can fire only after the firing

of t1. This imposes the precedence constraint “t2 later than t1”. Such precedence

constraints are typical of the execution of the parts in a dynamic system.

2. Conflict. Transitions t1 and t2 are in conflict in Figure 5.7(b). Both are enabled but

the firing of any transition leads to the disabling of the other transition. The resulting

conflict may be resolved in a purely non-deterministic way or in a probabilistic way,

by assigning appropriate probabilities to the conflicting transitions.

3. Concurrency. In Figure 5.7(c), the transitions t1 and t2 are concurrent. Concurrency

is an important attribute of system interactions. Note that a necessary condition for

transitions to be concurrent is the existence of a forking transition that deposits a

token in two or more output places.

4. Synchronization. It is quite normal in a dynamic system that an event requires mul-

tiple resources. The resulting synchronization of resources can be captured by tran-

sitions of the type shown in Figure 5.7(d). Here, t1 is enabled only when each of p1

and p2 receives a token. The arrival of a token into each of the two places could be

the result a possibly complex sequence of operations elsewhere in the rest of the Petri

net model. Essentially, transition t1 models the joining operation.

5. Mutually exclusive. Two processes are mutually exclusive if they cannot be per-

formed at the same time due to constraints on the usage of shared resources. Figure

34

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

5.7(e) shows this structure. Two such structures are parallel mutual exclusion and

sequential mutual exclusion.

6. Priorities. The classical Petri nets discussed so far have no mechanism to represent

priorities. Such a modeling power can be achieved by introducing an inhibitor arc.

The inhibitor arc connects an input place to a transition, and is represented by an arc

terminated with a small circle. The presence of an inhibitor arc connecting an input

place to a transition changes the transition enabling conditions. In the presence of

the inhibitor arc, a transition is regarded as enabled if each input place, connected to

the transition by a normal arc (an arc terminated with an arrow), contains at least the

number of tokens equal to the weight of the arc, and no tokens are present on each

input place connected to the transition by the inhibitor arc. The transition firing rule

is the same for normally connected places. The firing, however, does not change the

marking in the inhibitor arc connected places. A Petri net with an inhibitor arc is

shown in Figure 5.7(f). t1 is enabled if p1 contains a token, while t2 is enabled if p2

contains a token and p1 has no token. This gives priority to t1 over t2. More details

about inhibitor arcs and inhibitor Petri nets will be discussed in the later sections of

this Chapter.

5.2 Properties of Petri Nets

As a mathematical tool, essentially, Petri nets have two types of properties: behavioral

properties and structural properties. The behavioral properties depend on the initial state

or marking of a Petri net. The structural properties, on the other hand, depend only on the

net structure of a Petri net. In this section, we provide an overview of some of the most

important behavioral properties. They are reachability, safeness, and liveness.

35

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Figure 5.7: Petri net primitives to represent system features

5.2.1 Reachability

An important issue in designing event-driven systems is whether a system can reach a spe-

cific state, or exhibit a particular functional behavior. In order to see whether the modeled

system can reach a specific state as a result of a required functional behavior, it is necessary

to find such a transition firing sequence which would transform a marking M0 to Mi, where

Mi represents the specific state, and the firing sequence represents the required functional

behavior.

In general, a marking Mi is said to be reachable from a marking M0 if there exists a

sequence of transitions firings which transforms a marking M0 to Mi. And a marking Mi is

36

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

said to be immediately reachable from M0 if firing an enabled transition in M0 results in Mi.

5.2.2 Safeness

In a Petri net, places are often used to represent information storage areas in communication

and computer systems, product and tool storage areas in manufacturing systems, etc. It

is important to be able to determine whether proposed control strategies prevent from the

overflows of these storage areas. The Petri net property which helps to identify the existence

of overflows in the modeled system is the concept of boundedness.

A place p is said to be k-bounded if the number of tokens in p is always less than or equal

to k (k ≥ 0) for every marking M reachable from the initial marking M0, i.e., M ∈ R(M0).

A Petri net N = (P,T, I,O,M0) is k-bounded (safe) if each place in P is k-bounded

(safe).

5.2.3 Liveness

The concept of liveness is closely related to the deadlock situation, which has been situated

extensively in the context of computer operating systems.

A Petri net modeling a deadlock-free system must be live. This implies that for any

reachable marking M, it is ultimately possible to fire any transition in the net by progressing

through some firing sequence. This requirement, however, might be too strict to represent

some real systems or scenarios that exhibit deadlock-free behavior. For instance, the ini-

tialization of a system can be modeled by a transition (or a set of transitions) which fire a

finite number of times. After initialization, the system may exhibit a deadlock-free behav-

ior, although the Petri net representing this system is no longer live as specified above. For

this reason, different levels of liveness for transition t and marking M0 were defined. Please

refer to [Murata [1989]] for details.

37

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

5.3 Traces and Nets

In this section, we will discuss the relation between Traces and Nets through parallel fac-

torial scheme [Mazurkiewicz [1977]]. And we will extend its idea to inhibitor nets and

interval traces in later chapters.

5.3.1 Action System

Before showing the parallel factorial scheme, we need give some explanation for the action

system [Mazurkiewicz [1977]].

Definition 15 By an action system, fixed for the rest of the section 5.3 , we shall mean a

pair (R,U) where R is a set (of resource), and U is a set (of resource state values). By a

state of R, we shall mean any mapping s : R→U.

2

Then we define the scope and transformation of a action as follows:

Definition 16 Let the set of all states of R denoted by Σ, and let A denote the action system.

Then by an action in A we mean any pair 〈X ,r〉 where X ⊆ R is a set of resources called

the scope of 〈X ,r〉, and r is a binary relation over Σ, r ⊆ Σ×Σ, which is called the trans-

formation of 〈X ,r〉, such that (s′,s′′) ∈ r⇒∀x ∈ R−X : s′(x) = s′′(x).

2

The intended meaning of the above condition is that an action does not change any state

of resource outside its scope; and hence its transformation can be defined only for its scope.

5.3.2 Parallel Factorial Scheme

The following example will discuss the relation between nets and traces, and we shall ex-

tend this idea to inhibitor nets later in Chapter 8.

38

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Example 6 Let A = (R,U) be an action system with

R = {x,y,z,u},U = {. . . ,−1,0,1,2, . . .}.

Define the following actions:

x≤ 0⇒ 〈{x},r1〉,r1 : s′(x)≤ 0,s′′(x) = s′(x);

x > 0⇒ 〈{x},r2〉,r2 : s′(x)> 0,s′′(x) = s′(x);

y := x⇒ 〈{x,y},r3〉,r3 : s′(x) = s′′(x) = s′′(y);

x := x−1⇒ 〈{x},r4〉,r4 : s′′(x) = s′(x)−1;

z := z∗ y⇒ 〈{z,y},r5〉,r5 : s′′(z) = s′(y)∗ s′(z),s′′(y) = s′(y);

z := 1⇒ 〈{z},r6〉,r6 : s′′(z) = 1.

And the mapping

ψa = x≤ 0

ψb = x > 0

ψc = y := x

ψd = x := x−1

ψe = z := z∗ y

ψ f = z := 1

is then an interpretation, since it preserves independency relation. System (z,ψ) can be

represented graphically as Figure 5.8 below:

Since Res({1,5,7},{2,5,8}) = [f (bcde)∗a], by Definition 16, we get

Resψ({1,5,7},{2,5,8}) = z := 1◦ (x > 0◦ y := x◦ x := x−1◦ z := z∗ y)∗ ◦ x≤ 0

= 〈{x,y,z},r6 ◦ (r2 ◦ r3 ◦ r4 ◦ r5)
∗ ◦ r1〉

= 〈{x,y,z},r7〉

where

39

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Figure 5.8: The Action System (z,ψ)

r7 : s′(x)> 0,s′′(x) = s′′(y)−1 = 0,s′′(z) = f actorial(s′(x)) or

s′(x)≤ 0,s′′(x) = s′(x),s′′(y) = s′(y),s′′(z) = 1;

In more familiar form, we can write it as:

Resψ({1,5,7},{2,5,8}) =

(x,y,z) := if x > 0 then (0,1, f actorial(x))

else (x,y,1).

For more details, you could refer to [Mazurkiewicz [1977]].

40

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

5.4 Inhibitor Petri Nets

5.4.1 Inhibitor Arcs

The standard execution rule for inhibitor arcs expresses that an inhibitor arc between a place

s and an event e, satifies that e can only be fired if s is unmarked. Such a rule is sufficient if

one is to define purely sequential (Interleaving) semantics, since a non-interleaving seman-

tics of any kind of nets requires (explictly or implicitly) the definition of a simultaneous

step of transitions.

Example 7 The net from Figure 5.9.

There is no problem with its interleavings, the net can only generate three valid sequences:

e, f, and fe. Moreover, one can observe that the firing of e is completely independent of

firing of f, while firing of f depends on the behavior of e since e may disable f by firing first.

Figure 5.9: Net with Inhibitor Arcs

5.4.2 Inhibitor Nets

Inhibitor Petri nets, introduced in [Agerwala [1974]], are on one hand rather simple, and

on the other hand can easily express complex and sophisticated behaviours [Janicki and

Koutny [1995]; Kleijn and Koutny [2004, 2008]].

41

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

An inhibitor net is a tuple N = (P,T,F, I,m0), where P is a set of places, T is a set of

transitions, P and T are disjoint, F ⊆ (P×T)∪ (T ×P) is a flow relation, I ⊆ P×T is a set

of inhibitor arcs and m0 ⊂ P is the initial marking. An inhibitor arc (p,e) ∈ I means that

e can be enabled only if p is not marked. In diagrams (p,e) is indicated by an edge with a

small circle at the end. Any set of places m⊆ P is called marking.

For every x ∈ P∪T , the set •x = {y | (y,x) ∈ F} denotes input nodes of x and the set

x• = {y | (x,y) ∈ F} denotes output nodes of x. The set x◦ = {y | (x,y) ∈ I∪ I−1} is the set

of nodes connected by an inhibitor arc to x. The dot-notation extends to sets in the natural

way, e.g. the set X• comprises all outputs of the nodes in X . We assume that for every

t ∈ T , both •t and t• are non-empty and disjoint. Moreover, both of them must have empty

intersection with t◦.

Example 8 The tuple NP = (P,T,F, I,m0), with P = {s1,s2,s3,s4,s5}, T = {a,b,c}, F =

{(s1,a),(a,s3),(s2,c),(c,s4),(s3,b),(b,s5)}, I = {(s3,c)} and m0 = {s1} is an inhibitor

net. This is the net NQ from Figure 6.10. We have here •a = {s1}, a• = {s3}, •b = {s3},

b• = {s5}, •c = {s2}, c• = {s4}, •s1 = /0, s•1 = {a}, •s2 = /0, s•2 = {c}, •s3 = {a}, s•3 = {c},
•s4 = {c}, s•4 = /0, •s5 = {b}, s•5 = /0, and s◦3 = {c}, c◦ = {s3}. 2

More information related to inhibitor Petri nets will be shown in section 8.1.

42

Chapter 6

Interval Traces

So far, we have introduced backgrounds and previous research relative to model obser-

vations in the concurrent systems. However, the concept “Interval Traces” was still not

opened its mysterious veil, and one may have the following questions:

1. Mazurkiewicz Traces and Comtraces are good enough to represent observations in

the concurrent systems, why do we still need introduce Interval Traces?

2. What is the formal definition of Interval Traces?

3. What are the properties of Interval Traces?

4. What makes Interval Traces “better” than other traces? (i.e., what kinds of problems

Interval Traces can deal with which cannot be solved by other traces?)

All these questions would be answered in the following three chapters.

43

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

6.1 Concurrent Histories

In general, concurrent behaviours can be investigated at the level of individual observations

as well as at the level of some structures, such as causal partial orders, stratified order struc-

tures, or interval order structures that capture the essential invariant dependencies between

events and represent complete sets of equivalent observations.

A key link between these two levels comes from the notion of a concurrent history [Jan-

icki and Koutny [1993]] which is an invariant closed set ∆ of observations (system runs).

The latter means that ∆ can be derived in full from a structure built from simple invariant

relationships on events Σ occurring in ∆, such as causality (a ≺∆ b if a precedes b in all

observations in ∆) and weak causality (a @∆ b if a precedes or is simultaneous with b in all

observations in ∆).

Formally, for every set of observations (of the same set of event occurrences X) ∆,

define: ≺∆=
⋂
<∈∆ < and @∆=

⋂
<_∈∆ <_, and S∆ = (X ,≺∆,@∆).

It was shown in [Janicki and Koutny [1993, 1997]] that

• if ∆ comprises only total orders then ∆ is a concurrent history if and only if ∆ =

Total(≺∆),

• if ∆ consists of only stratified orders then ∆ is a concurrent history if and only if

∆ = Strat(S∆), and

• if ∆ contains interval orders then ∆ is a concurrent history if and only if ∆= Interv(S∆).

For example ∆1 = {<1,<2,<3,<4} and ∆2 = {<1,<2,<3,<4,<5}, where <1, <2, <3,

<4 and <5 are from Figure 3.2 are concurrent histories and S∆1 = S∆2 = S as Strat(S∆1)=∆1

and Interv(S∆2) = ∆2. Moreover ∆3 = {<1,<2} is also a concurrent history as Total(<1

∩ <2) = ∆3. However ∆4 = {<2,<3,<4} is not a concurrent history as S∆4 = S and

Strat(S∆4) = ∆1 6= ∆4.

44

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

For more details please refer to [Janicki [2008]; Janicki and Koutny [1993, 1997]; Jan-

icki et al. [2010]].

6.2 Intuition and Motivation of the Model

When a concurrent history (i.e. a set of equivalent systems runs) can fully be represented

by a partial order, trace approach allows to represent it by just one sequence. For instance

a sequence abcbca from Example 3 from Section 4.2 (together with the relation ind =

{(b,c),(c,b)}) defines uniquely the partial order from Figure 4.4. Any particular and legal

system run can then be obtained as an extension of the partial order that represent the

concurrent history.

If proper modeling of ‘not later than’ relationship is an issue, but possible systems runs

are restricted to stratified orders, then concurrent histories can be adequately modeled by

stratified order structures that can be uniquely represented by equational monoids called

comtraces [Janicki and Koutny [1995]]. In this case a single step-sequence (together with

appropriate simultaneity and serializability relations) uniquely defines the entire concurrent

history [Janicki [2008]; Janicki et al. [2010]].

Consider the following simple program written using Dijkstra’s cobegin’s and coend’s,

which is also illustrated in Figure 6.10:

Q: cobegin

a : begin worka; lock(r) end;

b : begin unlock(r); workb end;

[]

c : workc

coend

45

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

y

i

i

y

i
q

q
b

b

a

c

?

?

?

?

?

?

s1

s3

s5

s2

s4

NQ

ss
s
?

?

a

b

c
<Q

1

histQ1

.
..
..
..
..
..
..
.........................

ss
s
?

?

c

a

b
<Q

2

s ssAAU ���
<Q

3

a c

b

ss s
?

<Q
4

a

b

c

. ...
..
..
..
..
..
..
..

histQ2

?

a
c

b
time

example of intervals
that define <4

ss s
?

≺Q
2

a

b

c ss
s
?

?

c

a

bR

@Q
2

s
ss s

s s�
�

.............................

...

...

...

.....................
.....

......
.....

.....

Ec Bb

Ba Ea

Bc Eb

indQ
2

ssss
s
s

?

?

?

?

���

Ba
Bc

Ea

Bb

Eb

Ec

lQ
2

r r rAA

a b

c
simQr r rAAKa b

c
serQ

Figure 6.10: Inhibitor net representation of the program Q, two concurrent histories, histQ1
and histQ2 , that both the program Q and the inhibitor net NQ generate, and the interval order
structure SQ

2 = ({a,b,c},≺Q
2 ,@

Q
2) that represents the history histQ2 . The partial orders in

histQ1 and histQ2 are represented as Hasse diagrams. Also the independency relation indQ

derived from the program Q and the net NQ, the partial order lQ
2 generated by the interval

trace [BaBcEaEbEcEb]indQ , and the relations simQ and serQ defined by the program Q and
the net NQ.

Assume that the subroutines a, b and c are atomic, worka, workb and workc require the

resource r, which can be used simultaneously by any finite number of subroutines. The

resource r is initially unlocked and available to use.

The program Q illustrates the difficulties of modeling ‘simultaneity’ and ‘not later than’

relationships when no restrictions on the shape of system runs is assumed.

Its inhibitor Petri net representation NQ is given in Figure 6.10. For both the program Q

and the net NQ, all possible observations (system runs) that involve all three events a, b, c

are represented by the set of partial orders Obs(Q) = {<Q
1 ,<

Q
2 ,<

Q
3 ,<

Q
4 }. The set Obs(Q) is

split into two concurrent histories histQ1 and histQ2 , both shown in Figure 6.10. The history

histQ1 represents system runs (observations) where a occurs before c (or c is later than a),

46

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

while the history histQ2 represents observations where c is not later than a. The history histQ1

comprises only one observation, a total order <Q
1 , while histQ2 contains three observations,

a total order <Q
2 , a stratified order <Q

3 and an interval (but not stratified) order <Q
4 .

However, to derive the observation <Q
4 is in general a non-trivial task, since the event c

is executed simultaneously with the whole sequence ab. Various types of sequences are a

principal tool in defining operational semantics, but <Q
4 is not a stratified order, so it does

not have a natural sequences representation. Classical semantics for inhibitor nets generate

histories {<Q
1 } and {<Q

2 ,<
Q
3 } (c.f. [Janicki and Koutny [1995]]) at most, they are unable

to generate <Q
4 . The same incompleteness of observations is typical for practically any

popular model of concurrency.

The concurrent history histQ2 is uniquely represented by the interval order structure

SQ
2 = ({a,b,c},≺Q

2 ,@
Q
2) from Figure 6.10. One can verify by inspection that the set of all

interval order extensions of SQ
2 satisfies Interv(SQ

2)= histQ2 = {<Q
2 ,<

Q
3 ,<

Q
4 }. However, how

to derive SQ
2 from either Q or NQ is not clear (as opposed to both stratified order structures

[Janicki et al. [2010]; Kleijn and Koutny [2004]] and partial orders [Mazurkiewicz [1995];

Nielsen et al. [1990]]).

A possible solution is to use Fishburn’s Theorem (Theorem 2) to represent interval

orders by total orders of beginnings and ends since total orders, i.e. sequences, are easily

generated in virtually all formal models of concurrency.

Our goal is to provide a monoid based model that would allow any sequence of be-

ginnings and ends1 that represent any order from Interv(S2
Q) to represent the entire SQ

2 =

({a,b,c},≺Q
2 ,@

Q
2). For example BcEcBaEaBbEb, that represents <2 of Figure 6.10 via

Theorem 2, or BaBcEaEcBbEb, that represents <3, or BaBcEaBbEcEb, that represents

<4, should also be able to represent the entire interval order structure SQ
2 (from Figure

1A method for generating such sequences of beginning and ends needs to be defined for any specific model
of concurrency, we will provide such a method for inhibitor nets in Section 8.1.

47

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

6.10).

Since the beginnings and ends of events are instantaneous entities, they cannot be exe-

cuted simultaneously, so we need only express their independence, by defining appropriate

independency relation ind. Of course, for every event a, Ba and Ea cannot be independent,

so always (Ba,Ea) /∈ ind. It can be verified by inspection that indQ
2 from Figure 6.10 is an

appropriate independency relation for the beginnings and ends of the events of the program

Q and the net NQ. We will show later how such independency relations can formally be

defined for inhibitor nets.

Having defined independency relation ind we can apply Mazurkiewicz trace approach.

One can verify by inspection that [BcEcBaEaBbEb]indQ
2

defines the partial order l2 from

Figure 6.10 and [BaEaBbEbBcEcBdEd]indP defines the partial order <S from Figure 3.2.

By Theorem 5, the partial order l2 defined uniquely the stratified order structure SQ
2 from

Figure 6.10, and the partial order < defined uniquely the stratified order structure SP from

Figure 3.2. Hence the trace [BcEcBaEaBbEb]indQ
2

describes uniquely the concurrent be-

haviour represented by histQ2 , and the trace [BaEaBbEbBcEcBdEd]indP describes uniquely

the concurrent behaviour represented by histP.

6.3 Interval Traces

By introducing Mazurkiewicz traces, Comtraces, Fishburn’s Theorem and Theorem 5 (Abra-

ham, Ben-David and Magidor), we already know that traces utilize Szpirlajn’s Theorem

(Theorem 1), Fishburn’s Theorem allows us to represent interval orders by sequences of

beginnings and ends, and Theorem 5 allows us to represent interval order structures by

appropriate partial ordering of beginnings and ends.

All of them would be used to generate the formal definition of Interval Traces in this

section.

48

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

6.3.1 Sequence Representations of Interval Orders

Suppose < is a finite interval order. By Theorem 2 we know that that there is its appropriate

total order representation ≺, which can further be represented as an appropriate sequence.

However, neither Theorem 2, nor any of its known proofs (cf. [Fishburn [1970, 1985];

Janicki and Koutny [1993]]), provides an effective method of constructing all such total

order representations.

In this section we will provide such construction based on the concept of principal

order [Fishburn [1985]; Janicki and Koutny [1993]]. The construction will be needed to

show soundness of our definition of interval traces.

Definition 17 (Fishburn [1985]; Janicki and Koutny [1993]) Let < be a partial order on

X (of any kind, no restrictions).

1. A set A⊆ X is a maximal antichain of < if and only if

(∀a,b ∈ A. a _< b∨a = b)∧ (∀a /∈ A.∃b ∈ A. a < b∨b < a).

The set of all maximal antichains of < will be denoted by A<.

2. A relation�< ⊆A<×A<, defined as

A�< B ⇐⇒ A 6= B∧ (∀a ∈ A\B.∀b ∈ B\A. a < b)

is called a principal order of < (see [Janicki and Koutny [1993]] for more details).

2

It turn out principal orders are always partial orders of maximal antichains and we can

always recover the partial order < from its principal order�<.

49

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Proposition 4 (Janicki and Koutny [1993]) Let < be any partial order on X.

1. The relation�< is a partial order.

2. For all a,b ∈ X:

a < b ⇐⇒ A 6= B∧ (∀A,B ∈A<. a ∈ A∧b ∈ B =⇒ A�< B). 2

Maximal antichains and principal orders are also convenient tools for classifying partial

orders.

Corollary 1 A partial order < is stratified if and only if all maximal antichains are equiv-

alence classes of _<. 2

Theorem 7 (Fishburn [1985]; Janicki and Koutny [1993]) A partial order < is an inter-

val order if and only if its corresponding principal order�< is a total order (of maximal

antichains). 2

When�< is a total order, it can be represented as an appropriate sequence of antichains

of <. We will identify this sequence representation with the total order �< and write

�< = A1 . . .An.

For example, for <3 of Figure 2.1 and <Q
4 of Figure 6.10, we have�<3 = {a}{b,c}{c,d}

and�
<Q

4
= {a,c}{b,c}. Both�<3 and�

<Q
4

are total orders of appropriate maximal an-

tichains.

Let < be an interval order over the set X and let�< = A1 . . .An be its principal order

represented as a sequence of antichains, and let X = {Ba | a ∈ X}∪{Ea | a ∈ X}.

For each a ∈ X , we define:

f irst<(a) = Ai if a ∈ Ai and either i = 1 or a /∈ Ai−1, and

last<(a) = Ai if a ∈ Ai and either i = n or a /∈ Ai+1.

50

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

For example for <3 of Figure 2.1 and <Q
4 of Figure 6.10, f irst<3(a) = last<3(a) = {a},

f irst<3(c) = {b,c}, last<3(c) = {c,d}, f irst
<Q

4
(a) = last

<Q
4
(a) = {a},

f irst
<Q

4
(c) = {a,c}, last

<Q
4
(c) = {b,c}.

For each Ai, we define:

B<(Ai) = {Ba | f irst<(a) = Ai},

E<(Ai) = {Ea | last<(a) = Ai}.

For example, B<3({b,c})= {Bb,Bc}, E<3({b,c})= {Eb}, B<3({c,d})= {Bd}, E<3({c,d})=

{Ec,Ed}.

Also, for every set X , let perm(X) denotes the set of all permutations of the elements of

X . For example perm({a,b,c}) = {abc,acb,bac,bca,cab,cba}.

We are now able to provide a constructive definition of all total representations of a

given interval order.

Definition 18

1. A set of sequences ISR(<)⊆X defined as:

ISR(<) = perm(B<(A1))perm(E<(A1)) . . . perm(B<(An))perm(E<(An))

is called the set of all interval sequence representations of the interval order <.

2. A set of total orders TO(<)⊆X ×X defined as

TO(<) = {�x | x ∈ ISR(<)}

is called the set of all total order representations of the interval order <. 2

51

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

For example for <3 of Figure 2.1 and <Q
4 of Figure 6.10 we have

IRS(<3) =

 BaEaBbBcEbBdEcEd,BaEaBbBcEbBdEdEc,

BaEaBcBbEbBdEdEc,BaEaBcBbEbBdEcEd

 , and

IRS(<Q
4) = {BaBcEaBbEbEc,BaBcEaBbEcEb,BcBaEaBbEbEc,BcBaEaBbEcEb}.

The following result justifies Definition 18.

Theorem 8 Let X be a finite set, < be an interval order over X and≺ be a total order over

X . The following two properties are equivalent:

1. for each a ∈ X, Ba≺ Ea and for all a,b ∈ X, a < b ⇐⇒ Ea≺ Bb,

2. ≺ ∈ TO(<).

Proof (2)⇒(1) Suppose that ≺ ∈ TO(<) and let x ∈ ISR(<) be such that ≺ = �x.

Let a ∈ X . Note that either f irst<(a) = last<(a) or f irst<(a) �< last<(a). Assume

f irst<(a) = last<(a)=Ai. From Definition 18(1), it follows x = x1y1 Ba y2z1 Ea z2x2, where

x1 ∈ perm(B<(A1))perm(E<(A1)) . . . perm(B<(Ai−1))perm(E<(Ai−1)),

y1Bay2 ∈ perm(B<(Ai)), z1Eaz2 ∈ perm(E<(Ai)), and

x2 ∈ perm(B<(Ai+1))perm(E<(Ai+1)) . . . perm(B<(An))perm(E<(An)),

so Ba�x Ea, i.e. Ba≺ Ea.

Assume f irst<(a)�< last<(a), and f irst<(a) = Ai, last<(a) = A j. From Definition 18(1),

it follows x = x1y1 Ba y2x2z1 Ea z2x3, where

x1 ∈ perm(B<(A1))perm(E<(A1)) . . . perm(B<(Ai−1))perm(E<(Ai−1)),

y1Bay2 ∈ perm(B<(Ai)),

x2 ∈ perm(B<(Ai+1))perm(E<(Ai+1)) . . . perm(B<(A j−1))perm(E<(A j−1)),

52

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

z1Eaz2 ∈ perm(E<(A j)), and

x3 ∈ perm(B<(A j+1))perm(E<(A j+1)) . . . perm(B<(An))perm(E<(An)),

so again Ba�x Ea, i.e. Ba≺ Ea.

Now suppose a < b. Since a ∈ last<(a) and b ∈ f irst<(b), from Proposition 4(2), we have

last<(a)�< f irst<(b). But Definition 17(2) implies that last<(a)�< f irst<(b) if and

only if x = . . .Ea . . .Bb . . ., so a < b ⇐⇒ Ea�x Bb ⇐⇒ Ea≺ Bb.

(1)⇒(2) Suppose that each a ∈ X , Ba ≺ Ea and for all a,b ∈ X , a < b ⇐⇒ Ea ≺ Bb.

Let x ∈ ISR(<) be such that ≺ = �x. We just have to show that x ∈ ISR(<). Suppose

x /∈ ISR(<). For every y ∈ ISR(<) we can write x = v x1,y = v y1. Let y0 be such element

of ISR(<) that the length of prefix v is maximal.

We have to consider four cases:

Case 1. x = u Ba ux, y0 = u Bb uy0 . Hence x = u Ba v1 Bb v2 and y0 = u Bb z1 Ba z2.

Suppose z1 = s Ec s1, i.e. y0 = u Bb s Ec s1 Ba z2, which means Ec�y0 Ba i.e. c < a. Since

Ec does not appear in u, we also have x = u Ba t Ec t1, which means Ba�x Ec, or Ba≺ Ec

i.e. ¬(c < a), a contradiction. This means z1 = Ba1 . . .Bam, so

y0 = v BbBa1 . . .BamBa z2. But y0 ∈ IRS(<), so from Definition 18(2) we have that y1 =

vBaBbBa1 . . .Bam z2 ∈ IRS(<), so u is not maximal, as uBa is a prefix of both x and y1.

Therefore the Case 1 cannot happen.

Case 2. x = u Ea ux, y0 = u Eb uy0 . Hence x = u Ea v1 Eb v2 and y0 = u Eb z1 Ea z2.

Suppose z1 = s Bc s1, i.e. y0 = u Eb s Bc s1 Ea z2, which means Bc�y0 Ea i.e. ¬(c < a).

Since Bc does not appear in u, we also have x = u Ea t Bc t1, which means Ea�x Bc, or

Ea≺ Bc i.e. c < a, a contradiction. This means z1 = Ea1 . . .Eam, so

y0 = v EbEa1 . . .EamEa z2. But y0 ∈ IRS(<), so from Definition 18(2) we have that y1 =

vEaEbEa1 . . .Eam z2 ∈ IRS(<), so u is not maximal, as uEa is a prefix of both x and y1.

Therefore the Case 2 also cannot happen.

53

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Case 3. x = u Ba ux, y0 = u Eb uy0 . Hence x = u Ba v1 Eb v2, which means Ba�x Eb,

or Ba ≺ Eb, i.e. ¬(b < a), and y0 = u Eb z1 Ba z2, which means Eb�y0 Ba. i.e. b < a, a

contradiction, so the Case 3 is not valid.

Case 4. x = u Ea ux, y0 = u Bb uy0 . Hence x = u Ea v1 Bb v2, which means Ea�x Bb,

or Ea ≺ Bb, i.e. b < a, and y0 = u Bb z1 Ea z2, which means Bb�y0 Ea. i.e. ¬(b < a), a

contradiction, so the Case 4 is not valid too. 2

The important fact is that the set TO(<) contains all (up to name isomorphism) total

representations of an interval order <, and the set IRS(<) contains all sequence represen-

tations of <.

6.3.2 Constructing Interval Traces

We now have all components needed for a formal definition of Interval Traces.

Let Σ be a set of events, E = {Ba | a ∈ Σ}∪{Ea | a ∈ Σ}, and InSeq(E ∗) be the set of

all sequences over E that define interval orders (see Definition 4(1)).

Definition 19

Let ind ⊆ E ×E be a symmetric and irreflexive relation such that for all a,b∈ Σ, and a 6= b,

1. (Ba,Ea) /∈ ind and (Ea,Ba) /∈ ind,

2. (Ba,Bb) ∈ ind and (Ea,Eb) ∈ ind.

The relation ind will be called interval independency. 2

The condition (1) above follows from the fact that in any representation of any order, the

beginning of an event always precede the end so that cannot commute. The condition

(2) follows from the generalization of observation that the interval sequences BaBbEaEb,

54

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

BbBaEaEb, BaBbEbEa and BbBaEbEa represent the same fact, namely that a and b are

simultaneous.

Note that (E , ind) is also a standard trace alphabet, so we can apply the standard theory

of Mazurkiewicz traces. One of the problems is that not all sequences from E ∗ can be

interpreted as trace elements, they have to represent interval orders, so only sequences from

InSeq(E ∗) can be used.

Lemma 1 Let (E , ind) be an interval trace alphabet.

1. For each x,y ∈ E ∗, if x ∈ InSeq(E ∗) and y ∈ InSeq(E ∗) then xy ∈ InSeq(E ∗).

2. For each s ∈ E ∗, we have: s ∈ InSeq(E ∗) ⇐⇒ ∀x ∈ [s]ind. x ∈ InSeq(E ∗).

3. For each x,y ∈ E ∗,

if [x]ind ⊆ InSeq(E ∗) and [y]ind ⊆ InSeq(E ∗), then [x]ind~[y]ind = [xy]ind ⊆ InSeq(E ∗).

Proof (1) Since for each a ∈ Σ, (BaEa)∗(BaEa)∗ = (BaEa)∗.

(2) (⇐) Obvious as s ∈ [s]ind .

(⇒) By Proposition 2 it suffices to show that if s≈ x then x ∈ InSeq(E ∗). Let s = x1αβx2

and x = x1βαx2. This means (α,β) ∈ ind. Hence if α = Ba then β 6= Ea and β 6= Ba.

Similarly if α = Ea then β 6= Ba and β 6= Ea. Hence, if π{Ba,Ea}(s) ∈ (BaEa)∗ then also

π{Ba,Ea}(x) ∈ (BaEa)∗.

(3) A consequence of (1) and (2). 2

The interval sequence representation of interval orders is not unique, but soundness of

the relation ≡ind requires that all such representations are equivalent, which is given by the

following result.

Proposition 5 Let (E , ind) be an interval trace alphabet. and x ∈ InSeq(E ∗). Then for

each y ∈ InSeq(E ∗),

Jx=Jy =⇒ x≡ind y.

55

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Proof The operator ‘̂’ transforms E ∗ into Ê ∗. For example if x = BaEaBaEa then x̂ =

Ba(1)Ea(1)Ba(2)Ea(2). Let ‘˜’ be an inverse of ‘̂’ that transforms back Ê ∗ into E ∗, i.e. if

y = Ba(1)Ea(1)Ba(2)Ea(2) then ỹ = BaEaBaEa. It could simply be defined as x = ε =⇒

x̃ = ε and x = ya(i) =⇒ x̃ = ỹa. Now go back to the proof.

First note that Jx=Jx̂ and Jy=Jŷ. From Theorem 8 it follows that x̂ ∈ ISR(Jx̂) and ŷ ∈

ISR(Jŷ). Since Jx̂=Jŷ=Jx=Jy, we have x̂, ŷ∈ ISR(Jx). All elements of ISR(Jx) satisfy

a pattern given by Definition 18(2). Assume�Jx= A1 . . .Am. Hence x̂ = u1v1 . . .unvn and

ŷ = s1t1 . . .sntn, where for all i = 1, . . . ,n, ui,si ∈ perm(BJx(Ai)) and vi, ti ∈ perm(EJx(Ai)).

Since (Ba,Bb) ∈ ind for all Ba,Bb ∈ E , we have x = ũ1ṽ1 . . . ũnṽn ≡ind s̃1ṽ1 . . . ũnṽn, and,

since (Ea,Eb) ∈ ind for all Ea,Eb ∈ E , s̃1ṽ1 . . . ũnṽn ≡ind s̃1t̃1ũ2ṽ2 . . . ũnṽn. But this means

x≡ind s̃1t̃1ũ2ṽ2 . . . ũnṽn. Repeating this process n−1 times we obtain x≡ind s̃1t̃1ũ2ṽ2 . . . s̃nt̃n =

y. Hence x≡ind y. 2

We can now define interval trace as follows:

Definition 20

A trace [x]ind over the interval trace alphabet (E , ind) is called an interval trace if [x]ind ⊆

InSeq(E ∗). 2

Example 9 Let Σ = {a,b,c} and ind is equal to indQ
2 of Figure 6.10. Then

x =

BcEcBaEaBbEb,BaBcEcEaBbEb,BaBcEaEcBbEb,BcBaEcEaBbEb,

BcBaEaEcBbEb,BaBcEaBbEbEc,BaBcEaBbEcEb,BcBaEaBbEbEc,

BcBaEaBbEcEb

 .

is an interval trace, x = [x]ind for any x ∈ x, for example [x]ind = [BaBcEaBbEbEc]ind .

Moreover one can show by inspection that {Jx| x∈ x}= histQ
2 , so it models one concurrent

history generated by the program Q and the net NQ. 2

56

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Example 10 We can also easily check that if Σ = {a,b,c,d}, ind is the relation described

below (the default part of the relation ind given by Definition 19(2) is represented by dotted

lines):

qq q
q

qqq
q

@@ ��@
@
@
...
...
...
......................

...
...
...

..

...............
...
...
...
...
.............

.......
............................

.....

Ba Ea
Bb
Eb

BcEc

Ed
Bd

and y is the following set of sequences:

y =

BaEaBbEbBcEcBdEd,BaEaBbEbBdEdBcEc,BaEaBbBcEbEcBdEd,

BaEaBcBbEbEcBdEd,BaEaBcBbEcEbBdEd,BaEaBbBcEcEbBdEd,

BaEaBbEbBcBdEcEd,BaEaBbEbBdBcEcEd,BaEaBbEbBdBcEdEc,

BaEaBbEbBcBdEdEc,BaEaBbBcEbBdEcEd,BaEaBbBcEbBdEdEc,

BaEaBcBbEbBdEdEc,BaEaBcBbEbBdEcEd

,

then y = [x]ind for any x ∈ y, for example [x]ind = [BaEaBbEbBcEcBdEd]ind . 2

57

Chapter 7

Properties of Interval Traces

In this chapter, we will foucs on exploring the properties of Interval Traces. And I will

extend Interval Traces by discussing their relationships with Interval Orders, Interval Order

Structures and Comtraces.

7.1 Interval Traces and Interval Orders

Since each element of every interval trace is an interval sequence, by Theorem 2, every

element of the trace defines a unique interval order. However interval orders that are not

total are represented by more than one sequence from the trace.

Definition 21 For every interval trace x = [x]ind , let Interv(x) = {Jt | t ∈ x} denote the set

of all interval orders defined by the elements of x (see Definition 4(3) for Jt). 2

For the interval trace x from Example 9, Interv(x) = histQ
2 = {<Q

2 ,<
Q
3 ,<

Q
4 } from Figure

6.10, with a(1),b(1), and c(1) represented by a,b and c. In this case we have:

• BcEcBaEaBbEb represents the total order <Q
2 ,

58

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

• each of the sequences BaBcEcEaBbEb,BaBcEaEcBbEb,BcBaEcEaBbEb and

BcBaEaEcBbEb represents the stratified order <Q
3 , and

• each of the sequences BaBcEaBbEbEc,BaBcEaBbEcEb,BcBaEaBbEbEc and

BcBaEaBbEcEb represents the stratified order <Q
4 .

For the interval trace y from Example 10, Interv(y) = {<1,<2,<3,<4,<5}, where

<1,<2,<3,<4 and <5 are partial orders from from Figure 3.2, with a(1),b(1),c(1), d(1)

represented just by a,b,c, d. In this case

• BaEaBbEbBcEcBdEd represents a total order <1,

• BaEaBbEbBdEdBcEc represents a total order <2,

• each of the sequences BaEaBbBcEbEcBdEd,BaEaBcBbEbEcBdEd,

BaEaBcBbEcEbBdEd and BaEaBbBcEcEbBdEd, represents a stratified order <3,

• each of the sequences BaEaBbEbBcBdEcEd,BaEaBbEbBdBcEcEd,

BaEaBbEbBdBcEdEc and BaEaBbEbBcBdEdEc represents a stratified order <4,

• and each of the sequences BaEaBbBcEbBdEcEd,BaEaBbBcEbBdEdEc,

BaEaBcBbEbBdEdEc and BaEaBcBbEbBdEcEd represents the interval order <5.

7.2 Interval Order Structures and Interval Traces

We will now show the exact relationship between interval traces and interval order struc-

tures. We expect this relationship to be similar to the relationships between Mazurkiewicz

traces and partial orders and between comtraces and stratified order structures.

First we recall how one can construct a partial order of beginnings and ends from an

interval trace. Assume that a set of events Σ and an interval trace alphabet (E , ind) are

59

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

given. Recall that for each sequence x ∈ E ∗, Êx is the set of all elements of x̂, the enumer-

ated version of x, �x ⊆ Êx× Êx is the total order that is equivalent to the sequence x (see

Definition 3(5)), andl[x] ⊆ Êx× Êx is the partial order that is equivalent to the trace [x] (see

Definition 13).

We are now ready to define an interval order structure induced by a single sequence

x ∈ E ∗.

Definition 22 For each x ∈ E ∗ , let Sx = (Σ̂E
x ,≺x,@x), where

Σ̂E
x = {a(i) | Ba(i) ∈ Êx}∪{a(i) | Ea(i) ∈ Êx}, and ≺x and @x are relations on Σ̂E

x defined as

follows, for all a,b ∈ Σ:

1. a(i) ≺x b(j) df⇐⇒ Ea(i)l[x] Bb(j).

2. a(i) @x b(j) df⇐⇒ Ba(i)l[x] Eb(j). 2

The resemblance of Definition 22 to the points (2) and (3) of Theorem 5 is not a coinci-

dence, the triple Sx = (Σ̂E
x ,≺x,@x), is indeed an interval order structure.

Proposition 6 If x ∈ InSeq(E ∗) then Sx = (Σ̂E
x ,≺x,@x) is an interval order structure.

Proof Since x∈ InSeq(E ∗), the property (1) of Theorem 5 is satisfied. Definition 22 implies

satisfying (2) and (3) of Theorem 5. Hence, by Theorem 5, Sx is an interval order structure.

2

We will call Sx = (Σ̂E
x ,≺x,@x) the interval order structure Sx induced by an interval

sequence x. We will show that Sx plays the same role in our model as a partial order derived

from a single sequence plays in standard trace theory [Mazurkiewicz [1995]], or a stratified

order structure derived from a single step-sequence place the theory of comtraces [Janicki

and Koutny [1995]]. To do this we need to show that x ≡ y ⇐⇒ Sx = Sy, and that the set

of interval orders Interv(Sx) is uniquely defined by the elements of [x].

60

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

We need the following two lemmas to prove one of our main results. First lemma is

quite technical one, it characterizes the relationships Ba(i)l[x] Bb(j) and Ea(i)l[x] Eb(j).

Because (Ba,Bb) and (Ea,Eb) are in ind (Definition 19(2)), these relationships are not

arbitrary.

Lemma 2 For any interval trace alphabet (E , ind), every x∈ InSeq(E ∗), and for all a(i),b(j) ∈

Σ̂E
x , we have:

1. Ba(i)l[x] Bb(j) ⇐⇒ (Ea(i)l[x] Bb(j))∨ (∃c(k) ∈ Σ̂E
x . Ba(i)l[x] Ec(k)l[x] Bb(j)),

2. Ea(i)l[x] Eb(j) ⇐⇒ (Ea(i)l[x] Bb(j))∨ (∃c(k) ∈ Σ̂E
x . Ea(i)l[x] Bc(k)l[x] Eb(j)).

Proof 1. (⇐) Since if ∃c(k) ∈ Σ̂E
x . Ba(i)l[x] Ec(k)l[x] Bb(j), obviously, we have Ba(i)l[x]

Bb(j); and if Ea(i)l[x] Bb(j), by Fishburn Theorem 2.1, we also have Ba(i)l[x] Bb(j).

(⇒) Since x ∈ InSeq(E ∗), we have that if (Ba,Bb) /∈ ind then a and b never overlap, so

Ea(i)l[x] Bb(j). Suppose that (Ba,Bb) ∈ ind. This means that if there is x1 ∈ [x] such that

x1 = uBaBbw and x̂1 = ûBa(i)Bb(j)w̃ (w̃ 6= ŵ as in w̃ enumeration does not start from one

of the symbols that are also in uBaBb), then x2 = uBbBaw is also in [x], so Ba(i)�x1 Bb(j)

and Bb(j)�x2 Ba(i). Hence ¬(Ba(i)l[x]Bb(j)). If Ba(i)l[x]Bb(j) then the situation described

above does not happen. This means there is γ ∈ Êx such that Ba(i)l[x] γl[x] Bb(j). If all γ

between Ba(i) and Bb(j) are of type Bc(k), by the same reasoning as above we conclude that

¬(Ba(i)l[x] Bc(k)) and ¬(Bc(k)l[x] Bb(j)). Hence at least one γ between Ba(i) and Bb(j)

must be equal to Ec(k). If c(k) = a(i), then we have the case Ea(i)l[x] Bb(j) again.

2. Dually, by exchanging B with E. 2

The second lemma shows that the relationship between l[x] and Sx is a one-to-one

correspondence.

Lemma 3 For all x,y ∈ InSeq(E ∗), l[x] =l[y] if and only if Sx = Sy. 2

61

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

The proof is quite technical, and we need use following corollary.

Definition 22 allows us to formulate Lemma 2 in an alternative way.

Corollary 2 For any interval trace alphabet (E , ind), every x ∈ InSeq(E ∗), and for all

a(i),b(j) ∈ Σ̂E
x , we have:

1. Ba(i)l[x] Bb(j) ⇐⇒ (a(i) ≺x b(j))∨ (∃c(k) ∈ Σ̂E
x . a(i) @x c(k)∧ c(k) ≺x b(j)),

2. Ea(i)l[x] Eb(j) ⇐⇒ (a(i) ≺x b(j))∨ (∃c(k) ∈ Σ̂E
x . a(i) ≺x c(k)∧ c(k) @x b(j)). 2

Now we are able to prove Lemma 3.

Proof (⇒) From Definition 22, we clearly have Sx = Sy.

(⇐) To prove that l[x] = l[y] we need to show that α l[x] β ⇐⇒ α l[y] β where α,β ∈

{Ba(i),Ea(i),Bb(j),Eb(j)} and a(i),b(j) ∈ Σ̂E
x . From Theorem 5(1) we have Ba(i)l[x] Ea(i),

Bb(j)l[x] Eb(j) and Ba(i)l[y] Ea(i), Bb(j)l[y] Eb(j).

We have to consider five cases:

(Case 1). We have a(i) ≺u b(j), where u ∈ {x,y}. This means, by Definition 22,

that Ea(i)l[x] Bb(j) and Ea(i)l[y] Bb(j). Hence, Ba(i)l[x] Ea(i)l[x] Bb(j)l[x] Eb(j) and

Ba(i)l[y] Ea(i)l[y] Bb(j)l[y] Eb(j), so we indeed have αl[x] β ⇐⇒ αl[y] β where α,β ∈

{Ba(i),Ea(i),

Bb(j),Eb(j)}.

(Case 2). We have a(i) @u b(j) and b(j) @u a(i) where u∈ {x,y}. From Definition 22 and

Theorem 5(1) we conclude the following: Ba(i)l[u] Ea(i), Bb(j)l[u] Eb(j), Ba(i)l[u] Eb(j),

and Bb(j)l[u] Ea(i). Hence only the relationships between Ba(i) and Bb(j), and between

Ea(i) and Eb(j), are not described yet. Suppose Ba(i)l[x] Bb(j) and ¬(Ba(i)l[y] Bb(j)), i.e.

(Ba(i)l[x] Bb(j)∧Bb(j)l[y] Ba(i)) or (Ba(i)l[x] Bb(j)∧Bb(j) _l[y] Ba(i)). By Corollary 2,

Ba(i)l[x]Bb(j) implies (a(i)≺x b(j)) or (∃c(k) ∈ Σ̂E
x . a(i)@x c(k)∧c(k)≺x b(j)). Since≺x=≺y

and @x=@y, it also implies (a(i) ≺y b(j)) or (∃c(k) ∈ Σ̂E
x . a(i) @y c(k)∧ c(k) ≺y b(j)). Since

62

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

a(i)≺y b(j) implies Ea(i)l[y]Bb(j), it clearly contradicts both Bb(j)l[y]Ba(i) and Bb(j)_l[y]

Ba(i). Consider now the case ∃c(k) ∈ Σ̂E
x . a(i) @y c(k) ∧ c(k) ≺y b(j). From Proposition 6

and axioms I1, I4 of Definition 7 it follows that a(i) @y c(k) implies ¬(c(k) ≺y a(i)). But

c(k) ≺y b(j) and Bb(j)l[y] Ba(i) implies c(k) ≺y a(i), a contradiction; while c(k) ≺y b(j) and

Bb(j) _l[y] Ba(i)) implies ¬(Ba(i)l[y] Ec(k)), i.e. ¬(a(i) @x c(k)), a contradiction again.

Hence Ba(i)l[x]Bb(j) ⇐⇒ Ba(i)l[y]Bb(j). Almost identically we can show that Ba(i)_l[x]

Bb(j) ⇐⇒ Ba(i) _l[y] Bb(j). The proof that Ea(i)l[x] Eb(j) ⇐⇒ Ea(i)l[y] Eb(j) and

Ea(i) _l[x] Eb(j) ⇐⇒ Ea(i) _l[y] Eb(j) is very similar. Hence α l[x] β ⇐⇒ α l[y] β

where α,β ∈ {Ba(i),Ea(i),Bb(j),Eb(j)}.

(Case 3). We have a(i) @u b(j) and ¬(a(i) ≺u b(j)), where u ∈ {x,y}. From Defini-

tion 22 and Theorem 5(1) we conclude the following: Ba(i)l[u] Ea(i), Bb(j)l[u] Eb(j),

Ba(i)l[u]Eb(j), and either Bb(j)l[u]Ea(i) or Bb(j) _l[u] Ea(i). Suppose Bb(j)l[x]Ea(i) and

Bb(j) _l[y] Ea(i). But the former means b(j) @x a(i), while the latter implies ¬(b(j) @y a(i)),

a contradiction as @x=@y. If b(j) @x a(i) then this case is reduced to Case 2. Suppose

Bb(j) _l[u] Ea(i). But now only the relationships between Ba(i) and Bb(j), and between

Ea(i) and Eb(j), are not described yet. We can repeat the last part of Case 2 to show that

Ba(i)l[x] Bb(j) ⇐⇒ Ba(i)l[y] Bb(j) and Ea(i)l[x] Eb(j) ⇐⇒ Ea(i)l[y] Eb(j).

(Case 4). We have a(i) @u b(j) and ¬(b(j) @u a(i)), where u∈ {x,y}. Note that ¬(b(j) @u

a(i)) implies ¬(Bb(j)l[u] Ea(i)), i.e. either Ea(i)l[u] Bb(j) or Ea(i) _l[u] Bb(j). The former

implies a(i) ≺u b(j), so the case is reduced to Case 1. The latter, by Definition 22 and

Theorem 5(1) implies Ba(i) l[u] Ea(i), Bb(j) l[u] Eb(j), Ba(i) l[u] Eb(j), and Bb(j) _l[u]

Ea(i), so the case is reduced to Case 2.

(Case 5) We have ¬(a(i) @u b(j)) and ¬(b(j) @u a(i)), where u ∈ {x,y}. Hence we have

four cases: (Eb(j)l[u] Ba(i)∧Ea(i)l[u] Bb(j)), or (Eb(j)l[u] Ba(i)∧Ea(i) _l[u] Bb(j)), or

(Eb(j)_l[u] Ba(i)∧Ea(i)l[u]Bb(j)), or (Eb(j)_l[u] Ba(i)∧Ea(i)_l[u] Bb(j)). By Theorem

5(1), only the last case is not a contradiction. By Theorem 5(1) again, we have Ba(i)l[u]

63

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Ea(i), Bb(j)l[u]Eb(j), Eb(j)_l[u] Ba(i), and Ea(i)_l[u] Bb(j). Hence only the relationships

between Ba(i) and Bb(j), and between Ea(i) and Eb(j), are not described yet. Again, we

can repeat the last part of Case 2 to show that Ba(i)l[x] Bb(j) ⇐⇒ Ba(i)l[y] Bb(j) and

Ea(i)l[x] Eb(j) ⇐⇒ Ea(i)l[y] Eb(j). 2

We are now able to prove one of our main results, namely that every interval trace

uniquely determines an interval order structure.

Theorem 9 For all x,y ∈ InSeq(E ∗), x≡ y if and only if Sx = Sy.

Proof (⇒) If x≡ y then [x] = [y], so l[x] =l[y]. Then by Lemma 3, Sx = Sy.

(⇐) If Sx = Sy then, by Lemma 3, we have l[x] =l[y], and now by Theorem 6,

{�t | t ∈ [x]}= {�t | t ∈ [y]}. From Definition 3(5) it follows that t = u ⇐⇒ �t =�u, so

[x] = [y], i.e. x≡ y. 2

The above theorem makes possible the following definition.

Definition 23 For each interval trace [x], the interval order structure S[x] induced by [x] is

defined as S[x] = (Σ̂E
x ,≺[x],@[x]) = St = (Σ̂E

x ,≺t ,@t), where t ∈ [x]. 2

Theorem 9 alone is not enough to claim that interval traces can represent all the proper-

ties of interval order structures. We also have to show that for any x∈ InSeq(E ∗), Interv(Sx),

the set of all interval order extensions of Sx (see Definition 8) is equal to the set of all inter-

val orders generated via Fishburn’s Theorem (Theorem 2) from all t̂ (enumerated version

of t) such that t ∈ [x]. Interval orders generated by appropriate sequences from E ∗, and

denoted by Jx for x ∈ E ∗, are described by Definition 4(3).

Our second main result is the following.

Theorem 10 For every x ∈ InSeq(E ∗),

Interv(Sx) = Interv([x]) = {Jt | t ∈ [x]}.

64

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Proof (⇐) Let t ∈ [x] and a(i),b(j) ∈ Σ̂E
x . Let us consider the relation ≺x first. We have

a(i)≺x b(j) Def.22⇐⇒ Ea(i)l[x]Bb(j) Def.13
=⇒ Ea(i)�t Bb(j) Def.4(3)⇐⇒ a(i)Jx b(j). Hence, by Definition

2, the relation Jx is an extension of ≺x. Let us now consider the relation @x. Here we

have a(i) @x b(j) Def.22⇐⇒ Ba(i)l[x] Eb(j) Def.13
=⇒ Ba(i) �t Eb(j). Because �t is a total order,

Ba(i) �t Eb(j) ⇐⇒ ¬(Eb(j) �t Ba(i)). But ¬(Eb(j) �t Ba(i)) Def.4(3)⇐⇒ ¬(b(j) Jx a(i)) ⇐⇒

a(i) J_
x b(j). Hence a(i) @x b(j) =⇒ a(i) J_

x b(j), so, by Definition 2, Jx is an extension

of @x as well, which means, now by Definition 8, Jx∈ Interv(Sx).

(⇒) Let <∈ Interv(Sx) and let �< ⊆ Σ̂E
x × Σ̂E

x be a total order representation of < via

Fishburn Theorem (Theorem 2), i.e. a(i) < b(j) ⇐⇒ Ea(i) �< Bb(j). Furthermore let

t< ∈ E ∗ be the sequence representation of the total order �<, i.e. �< = �t< , where �t<

is the total order generated by t< as in Definition 3(5). Note that, by Definition 4(3), the

interval order < equals the interval order Jt< . To show that <∈ {Jt | t ∈ [x]}, we have to

prove that t< ∈ [x].

Since <∈ Interv(Sx) then < is an extension of ≺x and @x, i.e., by Definition 8, ≺x⊆<

and @x⊆<_. We will show that �< is a total extension of l[x], i.e. �< ∈ Total(l[x]). To

prove this we will just show that for all α,β ∈ {Ba(i),Ea(i),Bb(j),Eb(j)} we have α l[x]

β =⇒ α �< β .

First note that from Theorem 5(1) and Theorem 2(1) we have Ba(i)l[x] Ea(i), Bb(j)l[x]

Eb(j), and Ba(i)�< Ea(i), Bb(j)�< Eb(j). Now we have to consider the remaining four

cases.

(Case 1). Consider Ea(i) and Bb(j). By Definitions 22, 8 and Theorem 2(2), we have:

Ea(i)l[x] Bb(j) Def.22⇐⇒ a(i) ≺x b(j) Def.8
=⇒ a(i) < b(j) Th.2(2)⇐⇒ Ea(i)�< Bb(j).

(Case 2). Consider Ba(i) and Eb(j). Again by Definitions 22, 8 and Theorem 2(2),

we have: Ba(i)l[x] Eb(j) Def.22⇐⇒ a(i) @x b(j) Def.8
=⇒ a(i) <_ b(j) ⇐⇒ ¬(b(j) < a(i)) Th.2(2)⇐⇒

65

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

¬(Eb(j)�< Ba(i)) ⇐⇒ Ba(i)�< Eb(j).

(Case 3). Consider Ba(i) and Bb(j). From Lemma 2(1) it follows: Ba(i)l[x] Bb(j) ⇐⇒

(Ea(i)l[x] Bb(j))∨ (∃c(k) ∈ Σ̂E
x . Ba(i)l[x] Ec(k)l[x] Bb(j)). From Case 1 we obtain

Ea(i) l[x] Bb(j) =⇒ Ea(i) �< Bb(j), i.e., by Theorem 2(2), Ba(i) �< Ea(i) �< Bb(j), so

Ba(i)�< Bb(j). Similarly from Case 2 and Case 1 we obtain Ba(i)l[x] Ec(k)l[x] Bb(j) =⇒

Ba(i)�< Ec(k)�< Bb(j) =⇒ Ba(i)�< Bb(j).

(Case 4). Consider Ea(i) and Eb(j). Similar to Case 3 but using Lemma 2(2) instead.

This means that indeed �< ∈ Total(l[x]). By Theorem 6, �< ∈ {�t | t ∈ [x]}. But

�< =�tx , so tx ∈ [x], which end the proof of (⇒). 2

Theorems 9 and 10 show that interval traces, i.e. sets of legal sequences of beginnings

and ends, correspond to interval order structures in the same way as Mazurkiewicz traces

correspond to partial orders (dependency graphs of [Mazurkiewicz [1995]]) and comtraces

correspond to stratified order structures.

We will now show that the partial order l[x] equals <Sx
, i.e. it is the least partial order

that satisfies Theorem 5 for Sx.

Proposition 7 For every x ∈ InSeq(E ∗), l[x] =<Sx
.

Proof We will show that for each < that satisfies Theorem 5, and every α,β ∈ Êx, we have

αl[x] β =⇒ α < β . Since α and β are of the form Ba(i) or Ea(i) where a ∈ Σ, we have to

consider four cases.

(Case 1). α = Ba(i),β = Eb(j). In this case we have

Ba(i)l[x] Eb(j) Def.22⇐⇒ a(i) @x b(j) Th.5⇐⇒ Ba(i) < Eb(j).

(Case 2). α = Ea(i),β = Bb(j). Now we have

Ea(i)l[x] Bb(j) Def.22⇐⇒ a(i) ≺x b(j) Th.5⇐⇒ Ea(i) < Bb(j).

(Case 3). α = Ba(i),β = Bb(j). By Lemma 2 we have

Ba(i)l[x]Bb(j) ⇐⇒ (Ea(i)l[x]Bb(j))∨(∃c(k) ∈ Σ̂E
x . Ba(i)l[x]Ec(k)l[x]Bb(j)). If Ea(i)l[x]

66

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Bb(j) the case is reduced to Case 2, so assume (∃c(k) ∈ Σ̂E
x . Ba(i)l[x] Ec(k)l[x] Bb(j)). Thus

Ba(i)l[x] Ec(k)l[x] Bb(j) Def.22⇐⇒ a(i) @x c(k) ≺x b(j) Th.5⇐⇒ Ba(i) < Ec(k) < Bb(j) =⇒ Ba(i) <

Bb(j), so Ba(i)l[x] Bb(j) =⇒ Ba(i) < Bb(j).

(Case 4). α = Ba(i),β = Bb(j). Dually to Case 3, by exchanging B with E. 2

Example 11 Let Σ = {a,b,c}, so E = {Ba,Ea,Bb,Eb,Bc,Ec}. Let ind ⊆ E ×E be indQ

from Figure 6.10, and let x = BcBaEaBbEcEb ∈ InSeq(E ∗). Note that [x] = x, where x is

from Example 9 (it contains nine sequences).

The interval order structure S[x] = Sx = (Σ̂E
x ,≺

Q
2 ,@

Q
2), where Ê Σ

x = {a(1),b(1),c(1)},

and the relations ≺Q
2 and @Q

2 are these from Figure 6.10, after replacing a with a(1), b with

b(1), and c with c(1). The set Êx is {Ba(1),Ea(1),Bb(1),Eb(1),Bc(1),Ec(1)} and the relation

l[x] ⊆ Êx× Êx equals <Q
2 also from Figure 6.10, after replacing Ba with Ba(1), Ea with

Ea(1), etc.

The set Interv(S[x]) = histQ
2 = {<Q

2 ,<
Q
3 ,<

Q
4 }, where <Q

2 , <Q
3 , and <Q

4 are interval or-

ders from Figure 6.10, again after replacing a with a(1), b with b(1), and c with c(1).

Moreover <Q
2 =JBcEcBaEaBbEb,

<Q
3 =JBaBcEcEaBbEb=JBaBcEaEcBbEb=JBcBaEcEaBbE=JBcBaEaEcBbEb,

<Q
4 =JBaBcEaBbEbEc=JBaBcEaBbEcEb=JBcBaEaBbEbEc=JBcBaEaBbEcEb.

Finally note that the results would be the same if x would be replaced by any t ∈ [x]. 2

Example 12 Let Σ = {a,b,c,d}. Then we have E = {Ba,Ea,Bb,Eb,Bc,Ec,Bd,Ed}. Let

ind ⊆ E ×E be the interval independency from Example 10.

Take x = BaEaBbEbBcEcBdEd ∈ E ∗. Since x ∈ InSeq(E ∗), the interval trace [x] is

defined, and [x] = y, where y is that from Example 10 (it contains fourteen sequences).

The interval order structure S[x] = Sx = (Σ̂E
x ,≺,@), where Ê Σ

x = {a(1),b(1),c(1),d(1)},

and the relations ≺ and @ are these from Figure 3.2, after replacing a with a(1), b with

b(1), etc. The set Êx = {Ba(1),Ea(1),Bb(1),Eb(1),Bc(1),Ec(1),Bd(1),Ed(1)} and the relation

67

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

l[x] ⊆ Êx× Êx equals <1 also from Figure 3.2, after replacing Ba with Ba(1), Ea with

Ea(1), etc.

The set Interv(S[x]) = {<1,<2,<3,<4,<5}, where <1, <2, <3, <4 and <5 are interval

orders from Figure 3.2, again after replacing a with a(1), b with b(1), etc.

Moreover <1 =JBaEaBbEbBcEcBdEd , <2 =JBaEaBbEbBdEdBcEc,

<3=JBaEaBbBcEbEcBdEd=JBaEaBcBbEbEcEdEd=JBaEaBcBbEcEbBdEd=JBaEaBbBcEcEbBdEd ,

<4=JBaEaBbEbBcBdEcEd=JBaEaBbEbBdBcEcEd=JBaEaBbEbBdBcEdEc=JBaEaBbEbBcBdEdEc,

<5=JBaEaBbBcEbBdEcEd=JBaEaBbBcEbBdEdEc=JBaEaBcBbEbBdEdEc=JBaEaBcBbEbBdEcEd .

Finally note that the results would be the same if x were replaced by any t ∈ [x]. 2

7.3 Comtraces vs Interval Traces

While every stratified order is an interval order, every stratified order structure is an interval

order structure and every Mazurkiewicz trace can be interpreted as a simplified comtrace,

the similar relationship is much more complex between comtraces and interval traces.

Let (Σ,sim,com) be a comtrace alphabet, x a step sequence and x = [x](sim,ser) be a

comtrace defined by x.

It is usually false that there is an interval trace alphabet (E , ind) and an interval se-

quence y such that the interval trace y = [y]ind satisfies Strat(x) = Interv(y).

Consider Σ = {a,b,c}, sim and ser as below

rr ra

b
cHH

��

sim
rr r
?

a

b
c

ser

HHj

and x = [{a,b,c}](sim,ser) = {{a,b,c},{a}{b,c}}.

Suppose there is a relation ind on E = {Ba,Bb,Bc,Ea,Eb,Ec} and an interval sequence

68

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

y ∈ E ∗ such that the interval trace y = [y]ind satisfies Strat(x) = Interv(y). The stratified

order �{a,b,c} can be represented by the interval sequence y1 = BaBbBcEaEbEc, so y =

[y1]ind , and the stratified order �{a}{b,c} can be represented by the interval sequence y2 =

BaEaBbBcEbEc, so y1,y2 ∈ y, i.e. we must have y1 ≡ind y2. To obtain y1 from y2 we

must move Ea from after Bc to before Bb, hence (Ea,Bb) ∈ ind and (Ea,Bc) ∈ ind. Then

y3 = BaBbEaBcEbEc ∈ y is a contradiction since the order Jy3 is not stratified!

It can be shown by inspection that if y must contain all interval sequence representations

of �{a,b,c} and �{a}{b,c}, and the only stratified orders included in Interv(y) are �{a,b,c} and

�{a}{b,c}, then the relation ind must be as the one below:

r
rr r

r r.........................
...
...
..

.....
.....

.................
.....

.
A
A
�
�
�
�

Ec Bb

Ba Ea

Bc Eb

The interval trace y = [y1]ind generates the set of interval orders Interv(y) = {�1,�2,J3

,J4}, where the orders �1 =�{a,b,c}, �2 =�{a}{b,c}, and J3, J4 are given below:

rr ra(1)

b(1)
c(1)

�1

rr r
?

a(1)

b(1)
c(1)

�2

HHj rr r
?

a(1)

b(1)
c(1)

J3

rr ra(1)

b(1)
c(1)

J4

HHj

The orders �1 and �2 are stratified while J3 and J4 are not.

However, we have (see Definition 1 for the meaning of <_)

≺x=�1∩�2 =�1∩�2∩J3 ∩J4=≺y, and

@x=�_
1 ∩�_

2 =�_
1 ∩�_

2 ∩J_
3 ∩J_

4 =@y,

which implies that the stratified order structure Sx = Sy as

Sx = ({a(1),b(1),c(1)},≺x,@x) and Sy = ({a(1),b(1),c(1)},≺y,@y)

We show that this pattern holds in general case.

69

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

For every comtrace alphabet (Σ,sim,ser), let (E , ind(sim,ser)) be an interval trace alpha-

bet such that the relation ind(sim,ser) satisfies:

(Bb,Ea) ∈ ind(sim,ser) ⇐⇒ (a,b) ∈ ser.

Theorem 11 Let (Σ,sim,ser) be a comtrace alphabet, x be a step sequence, y be any inter-

val sequence such that �x =Jy, x= [x](sim,ser), y= [y]ind . Furthermore let Sx =(Σ̂x,≺x,@x)

be the stratified order structure generated by the comtrace x, and Sy = (Σ̂E
y ,≺y,@y) be the

interval order structure generated by the interval order y.

Then we have Sx = Sy.

Proof Clearly Σ̂x = Σ̂E
y . We will show that ≺x=≺y and @x=@y.

Let w= u1Au2 ∈ x, v= u1BCu2 ∈ x, A=B∪C, B∩C = /0 and B×C⊆ ser, i.e. w≈(sim,ser) v.

Note that �w ⊆ �v and �_
v ⊆ �_

w . Assume B = {b1, . . . ,bk}, C = {c1, . . . ,cm}, so A =

{b1, . . . ,bk,c1, . . . ,cm}. For every set X ⊆ Σ, let B(X) = {Ba | a∈ X} and E(X) = {Ea | a∈

X}. Let witv, vitv, uitv
1 and uitv

2 be some interval sequence representations of stratified orders

�w, �u, �u1 and �u2 respectively, i.e. Jwitv= �w, Juitv= �u, Juitv
1
= �u1 and Juitv

2
= �u2 .

We may assume that witv = uitv
1 zBAzEAuitv

2 , where zBA ∈ perm(B(A)) and zEA ∈ perm(E(A)), and

uitv = uitv
1 zBBzEBzBCzECuitv

2 , where zBB ∈ perm(B(B)), zEB ∈ perm(E(B)), zBC ∈ perm(B(C)) and

zEC ∈ perm(E(C)).

Because (Bb,Ea) ∈ ind(sim,ser)⇔ (a,b) ∈ ser, and ind(sim,ser) satisfies property (2) of Def-

inition 19, we have witv ≡ind(sim,ser)
vitv. Assume witv ≈ind(sim,ser)

s1 ≈ind(sim,ser)
. . . ≈ind(sim,ser)

sn ≈ind(sim,ser)
uitv.

Consider r = r1BaEbr2 and t = r1EbBar2 where (Ba,Eb) ∈ ind. Note that Jr⊆Jt and

J_
t ⊆J_

r .

But this means the Jwitv⊆Jsi⊆Juitv , and J_
uitv⊆J_

si
⊆Jwitv , for all i = 1, . . . ,n. Hence

�w∩�u =Jwitv ∩Js1 ∩ . . .∩Jsn ∩Juitv and �_
w ∩�_

u =J_
witv ∩J_

s1
∩ . . .∩J_

sn
∩J_

uitv .

Let x,x′,x1, . . . ,xl be step sequences such that x≡(sim,ser) x′ and x≈(sim,ser) x1 ≈(sim,ser)

70

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

. . .≈(sim,ser) xl ≈(sim,ser) x′, and let y, y′ be interval sequences such that �x =Jy and �x′ =Jy′ .

By the property of ind(sim,ser) we have y≡ind(sim,ser)
y′, so let y1, . . . ,y j be interval sequences

such that y≈ind(sim,ser)
y1≈ind(sim,ser)

. . .≈ind(sim,ser)
y j ≈ind(sim,ser)

y′. From what we have proved

above, we may conclude that

�x∩
⋂l

i=1�xi ∩�x′ =Jy ∩
⋂ j

i=1 Jyi ∩Jy′ , and

�_
x ∩

⋂l
i=1�

_
xi
∩�_

x′ =J_
y ∩

⋂ j
i=1 J

_
yi
∩J_

y′ .

Define ≺xx′=�x∩
⋂l

i=1�xi ∩�x′ , @xx′′=�_
x ∩

⋂l
i=1�

_
xi
∩�_

x′ , and

≺yy′=Jy ∩
⋂ j

i=1 Jyi ∩Jy′ , @yy′=J_
y ∩

⋂ j
i=1 J

_
yi
∩J_

y′ .

Note that ≺x=
⋂

t∈[x](sim,ser)
�t =

⋂
x′∈[x](sim,ser)

≺xx′ ,

≺y=
⋂

r∈[y]ind(sim,ser)
Jr=

⋂
y′∈[x]ind(sim,ser)

≺yy′ , so ≺x=≺y.

Similarly, @x=
⋂

t∈[x](sim,ser)
�_

t =
⋂

x′∈[x](sim,ser)
@xx′ ,

@y=
⋂

r∈[y]ind(sim,ser)
J_

r =
⋂

y′∈[x]ind(sim,ser)
@yy′ , so @x=@y. Hence Sx = Sy. 2

Theorem 11 states that while comtraces cannot literally be simulated by interval traces,

the stratified order structures they represent, can.

71

Chapter 8

The Applications of Interval Traces

We focus on discussing the applications of interval traces in this chapter. And let’s first

start with the analysis of how the full semantics of inhibitor Petri nets can be expressed

with interval traces.

8.1 Operational Semantics of Inhibitor Petri Nets

The operational semantics of a given net N is defined as the set of appropriate systems

runs (observations) the net N generates. In principle we can distinguish three categories of

operational semantics: total orders or firing sequences semantics, stratified orders or firing

step sequences semantics, and interval orders semantics. For the net NQ from Figure 6.10

and the final marking m f = {s4,s5}, the set of all firing sequences from the initial mark-

ing m0 to the marking m f is FSNQ(m0→m f) = {abc,cab}, and the set of appropriate total

orders is TONQ(m0→m f) = {<Q
1 ,<

Q
2 }; the set of all firing step sequences from the initial

marking m0 to the marking m f is FSSNQ(m0→m f) = {{a}{b}{c},{c}{a}{b},{a,c}{b}},

and the set of appropriate stratified orders is SONQ(m0→m f) = {<Q
1 ,<

Q
2 ,<

Q
3 }. The set of

all interval orders equals IONQ(m0→m f) = {<Q
1 ,<

Q
2 ,<

Q
3 ,<

Q
4 }.

72

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

While both the firing sequences (total orders) semantics and the firing step sequences

(stratified orders) semantics are well established (c.f. [Janicki and Koutny [1995]; Kleijn

and Koutny [2004]]), formal description of interval orders semantics is one of the goals of

this thesis.

We will now briefly recall the firing sequences and the firing step sequences semantics.

8.1.1 Firing Sequence Semantics

The firing sequences semantics, the simplest operational semantics, is almost defined in the

same way as for any other kind of Petri nets. The only difference is that for the inhibitor

nets a transition can be enabled only if no place with which it is joined by an inhibitor arc

is marked.

Formally, a transition t is enabled at marking m if •t ⊆m and (t•∪ t◦)∩m = /0. For each

marking m, the set of all enabled transitions at m is denoted by enabledN(m).

An enabled t can fire leading to a new marking m′ = (m\• t)∪ t•, which is denoted by

m[t〉m′.

A firing sequence from a marking m1 to mk+1 is any sequence of transitions t1...tk for

which there are markings m2, ...,mk satisfying: m1[t1〉m1[t2〉m2...mk[tk〉mk+1. In such case

we write: m1[t1...tk〉mk+1.

The set of all firing sequence from the marking m to the marking m′ is defined as

FSN(m→m′) = {x ∈ T ∗ | m[x〉m′},

while the appropriate set of total orders is simply given by:

TON(m→m′) = {�x | x ∈ FSN(m→m′)}.

73

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

For example for the net NQ from Figures 6.10 and 8.11 the set of all firing sequences

from the initial marking {s1,s2} to the final marking {s4,s5}, FSNQ({s1,s2}→{s4,s5}) =

{abc,cab}, and TONQ({s1,s2}→{s4,s5}) = {<Q
1 ,<

Q
2 }, where <Q

1 and <Q
2 are those from

Figure 6.10.

8.1.2 Firing Step Sequence Semantics

The firing step sequence semantics is defined in a similar fashion. The only difference is

that sets of mutually independent transitions can be fired simultaneously.

Let A⊆ T be a non-empty set such that for all distinct t,r ∈ A, we have

(t•∪• t)∩(r•∪• r) = /0. Then A is step enabled at marking m if •A⊆m and (A•∪A◦)∩m =

/0. For each marking m, the set of all step enabled sets of transitions at m is denoted by

senabledN(m).

We also denote m[A〉m′, where m′ = (m\•A)∪A•.

A firing step sequence from the marking m1 to mk+1 is any sequence of non-empty sets

of transitions A1...Ak for which there are markings m2, ...,mk satisfying:

m1[A1〉m1[A2〉m2...mk[Ak〉mk+1.

In such case we may write: m1[A1...Ak〉mk+1.

The set of all firing step sequences from the marking m to the marking m′ is defined as

follows:

FSSN(m→m′) = {x ∈ (P(T)\ /0)∗ | m[x〉m′},

while the appropriate set of stratified orders is:

SON(m→m′) = {�x | x ∈ FSSN(m→m′)}.

For example, for the net NQ from Figure 6.10, we have

74

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

FSSNQ({s1,s2}→{s4,s5}) = { {a}{b}{c},{c}{a}{b},{a,c}{b} }, and

SONQ({s1,s2}→{s4,s6}) = {<1,<2,<3}, where <1,<2 and <3 are these from Figure 6.10.

8.2 Firing Interval Sequences Semantics

Since every interval order of events can be represented by some total order (i.e. an appro-

priate sequence) of event beginnings and ends (Theorem 2), if we figure out how a given

inhibitor net can generate appropriate sequences of event beginnings and ends, we might be

able to describe all interval orders the net generates.

Let N = (P,T,F, I,m0) be a given inhibitor net. For each t ∈ T we define Bt - the

beginning of t and Et - the end of t, and let T = {Bt | t ∈ T} ∪ {Et | t ∈ T}. Hence

InSeq(T ∗) is the set of all interval sequences defined by the set T .

We want a formal way to define the set of all firing interval sequences from the marking

m to the marking m′, FISN(m→m′) such that the set ION(m→m′) = {Jx| x ∈ FISN(m→m′)}

is the appropriate set of interval orders. Since total order representations of interval orders

via Theorem 2 is not unique, we also want the following relationship between FISN and

ION ,

FISN(m→m′) = {x |Jx∈ ION(m→m′)}.

In particular, for the net NQ of Figure 6.10 we want

FISNQ({s1,s2}→{s4,s5}) = {BaEaBbEbBcEc,BcEcBaEaBbEb,

BaBcEcEaBbEb,BaBcEaEcBbEb,BcBaEcEaBbEb,BcBaEaEcBbEb,

BaBcEaBbEbEc,BaBcEaBbEcEb,BcBaEaBbEbEc,BcBaEaBbEcEb},

as in such case IONQ({s1,s2}→{s4,s5}) = {<Q
1 ,<

Q
2 ,<

Q
3 ,<

Q
4 }, as expected.

Note that, if x = BaEaBbEbBcEc then Jx=<Q
1 , if x = BcEcBaEaBbEb then Jx=<Q

2 ,

for x ∈ {BaBcEcEaBbEb,BaBcEaEcBbEb,BcBaEcEaBbEb,BcBaEaEcBbEb}, Jx=<Q
3 ,

75

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

y

i

i

y

i
q

q
b

b

a

c

?

?

?

?

?

?

s1

s3

s5

s2

s4

NQ y
i
i
i
i

y
i
i

q
qb

%
%
%

b
�
�
�
�
�
�

Eb

Bb

Ea

Ba

Ec

Bc

?

?

?

?

?

?

?

?

?

?

?

?

s1

a

s3

b

s5

s2

s4

c

N1
Q y

i
i
i
i

y
i
i

q
qb

%
%
%

Eb

Bb

Ea

Ba

Ec

Bc

?

?

?

?

?

?

?

?

?

?

?

?

s1

a

s3

b

s5

s2

s4

c

N2
Q

s ss
�
��
A
AU

a

b c
<Q

5

ss s
?

a

b

c

<Q
4

y

i

i

y

i
q

q
b

b

a

c

?

?

?

?

?

?

s1

s3

s5

s2

s4

N0

b

b
B
B
B
B
B
B

Figure 8.11: Two inhibitor nets, N1
Q and N2

Q, derived from NQ by straightfor-
ward replacing each transition t by Bt and Et (c.f. [Zuberek [1980]]). Note
that FSN1

Q
({s1,s2}→{s4,s5}) is exactly the same as FISNQ({s1,s2}→{s4,s5}) - the

intended set of firing interval sequences of NQ, while FSN2
Q
({s1,s2}→{s4,s5}) =

FSN1
Q
({s1,s2}→{s4,s5}) ∪ {BaEaBbBcEcEb,BaEaBbBcEbEc}, where for each x ∈

{BaEaBbBcEcEb,BaEaBbBcEbEc}, Jx=<Q
5 /∈ IONQ({s1,s2}→{s4,s5}). The net N0

generates only interval order observations, as ION0({s1,s2}→{s4,s5}) = {<Q
4 } while

TON0({s1,s2}→{s4,s5}) = SON0({s1,s2}→{s4,s5}) = /0.

and x∈{BaBcEaBbEbEc,BaBcEaBbEcEb,BcBaEaBbEbEc,BcBaEaBbEcEb}, Jx=<Q
4 .

Moreover we also have FISNQ({s1,s2}→{s4,s5}) = {x |Jx∈ IONQ({s1}→{s4,s5})}.

The basic idea of defining the set of firing interval sequences for a given inhibitor net N

is briefly presented in Figure 8.11. If inhibitor arcs are not involved, to represent transitions

by their beginnings and ends we might just replace each transition t by the net Bt Eti- -t

as proposed for example by Zuberek in [Zuberek [1980]] for Timed Petri nets. However,

the inhibitor arcs cause some problems. The more natural transformation of the net NQ

into the net N2
Q (in NQ a token in s3 prevents c from being enabled, so a token in s3 of N2

Q

76

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

prevents starting c, i.e. Bc is not enabled), does not work. For N2
Q, the interval sequences

BaEaBbBcEcEb and BaEaBbBcEbEc are both firing sequences from the initial marking

{s1,s2} to the final marking {s4,s5} and they both define the interval order <Q
5 , which is a

stratified order that corresponds to the step sequence {a}{b,c}. However the step sequence

{a}{b,c} cannot be generated by the net NQ. Moreover, the interval sequences BcBbEcEb

and BcBbEbEc that also generate the order <Q
5 are not firing sequences of N2

Q.

On the other hand the more complex net N1
Q appears to have all the desired properties

as

FSN1
Q
({s1,s2}→{s4,s5}) = {BaEaBbEbBcEc,BcEcBaEaBbEb,

BaBcEcEaBbEb,BaBcEaEcBbEb,BcBaEcEaBbEb,BcBaEaEcBbEb,

BaBcEaBbEbEc,BaBcEaBbEcEb,BcBaEaBbEbEc,BcBaEaBbEcEb},

which is exactly the same set as we claim FISNQ({s1,s2}→{s4,s5}) should be.

In this case the inhibitor arc (b,Bc) prevents executing Bc before Eb (providing Ea has

been executed and Bc has not), i.e. after execution of a, if c has not started yet, c cannot

start until b ends, which is exactly what we want.

While defining the meaning of one entity by transforming it into another is good for

providing intuition and motivation, in is not necessarily a good way to do it in a general

case. Hence we will formally define FISN(m→m′) in terms of the net N alone, without

explicitly using the transformation illustrated in Figure 8.11 (from NQ into N1
Q). The key

idea is to allow tokens not only in places but in transitions as well. A token in a transition t

could be interpreted as ‘t is active’, and removing all tokens from •t and placing one token

in t can be interpreted as an execution of Bt, while removing the token from t and placing

tokens in t• can be interpreted as executing Et. The whole definition is given below.

Definition 24 Let N = (P,T,F, I,m0) be a given inhibitor net.

1. For each t ∈ T we define Bt - the beginning of t and Et - the end of t, and the set

77

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

T = {Bt | t ∈ T}∪{Et | t ∈ T}. The elements of T are called BE-transitions.

2. For each t ∈ T we define:

(a) •Bt = •t,

(b) Bt• = {t},

(c) •Et = {t},

(d) Et• = t•,

(e) Bt◦ = t◦∪ (t◦)•, and

(f) Et◦ = /0.

3. We say that a set m⊆ P∪T is an extended marking if m∩ (•m∪m•) = /0.

4. A BE-transition end τ ∈T is enabled at extended marking m⊆ P∪T if •τ ⊆m and

(τ•∪ τ◦)∩m = /0. For each extended marking m, the set of all enabled elements of

T at m is denoted by enabledext
N (m).

5. An enabled BE-transition τ can occur leading to a new extended marking m′ =

(m\• τ)∪ τ•, which is denoted by: m[[τ〉〉m′.

6. An extended firing sequence from the extended marking m1 to the extended marking

mk+1 is any sequence of BE-transitions τ1...τk for which there are extended markings

m2, ...,mk satisfying: m1[[τ1〉〉m2...mk[[τk〉〉mk+1.

In such case we write: m1[[τ1...τk〉〉mk+1. 2

The above definition is pretty much self explanatory as it mimics the standard fining

sequence semantics approach, with the exception of condition 2(e). In the standard model,

a token in a place p ∈ t◦ means t cannot be fired until this token is removed. In the new

78

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

model it means that Bt cannot be fired. But if this token is removed for instance by firing

Bt1 where t1 ∈ p•, then Bt could be enabled, and potentially fired before firing Et1, which

can be interpreted as simultaneous execution of t and t1, contrary to the fact that p ∈ t◦∩• t1

was supposed to prevent it. This is the case for Bc, Bb and Eb in the net N2
Q in Figure

8.11. To prevent this we need to extend Bt◦ (see the rule (τ•∪τ◦)∩m = /0 in condition 4 of

Definition 24) by (t◦)•, which lead to Bt◦ = t◦∪ (t◦)•.

In particular each marking is an extended marking. For the net NQ from Figure 8.11, for

example {s2,s3},{s1,c},{a,c} are extended markings, but {s3,b} is not as s•3 = {b} and

•b = {s3}.

Corollary 3 If an extended marking m⊆ P, then for each a ∈ T ,

a ∈ enabledN(m) ⇐⇒ Ba ∈ enabledext
N (m). 2

We can now formally define the set of firing interval sequences.

Definition 25 The set of all firing interval sequence from the marking m to the marking m′

is defined as

FISN(m→m′) = {x ∈T ∗ | m[[x〉〉m′}.

Note that we assume m,m′ ⊆ P. 2

For example, for the net NQ from Figures 6.10 and 8.11, we have BaBcEaBbEcEb ∈

FISN({s1,s2}→{s4,s5}) since

{s1,s2}[[Ba〉〉{a,s2}[[Bc〉〉{a,c}[[Ea〉〉{s3,c}[[Bb〉〉{b,c}[[Ec〉〉{b,s4}[[Eb〉〉{s4,s5},

so {s1,s2}[[BaBcEaBbEcEb〉〉{s4,s5}.

It is not immediately obvious that Definition 25 is sound. The soundness would require

the set FISN(m→m′) to satisfy the following two properties

• every element of FISN(m→m′) must be an interval sequence, and

79

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

• since all total order representations of a given interval order are considered equiv-

alent and none is preferred, if x ∈ FISN(m→m′), then Jx=Jy should imply y ∈

FISN(m→m′).

Note that if we replace Bt◦ = t◦ ∪ (t◦)• with Bt◦ = t◦ in Definition 24.2(e) (which for

the nets in Figure 8.11, corresponds using the net N2
Q to represent the net NQ), the sec-

ond property does not hold! For example for the net NQ from Figure 8.11, we have x =

BaEaBbBcEcEb∈ FISN({s1,s2}→{s4,s5}) and Jx=<Q
5 . However, y=BaEaBcBbEcEb /∈

FISN({s1,s2}→{s4,s5}) but Jy=<Q
5 =Jx.

The following result guarantees the first property.

Proposition 8 For all markings m,m′ ⊆ P, we have FISN(m→m′)⊆ InSeq(T ∗).

Proof It suffices to show that if m[[x〉〉m′, then x ∈ InSeq(T ∗), or (see Definition 4(1)) to

show that for each a ∈ T , π{Ba,Ea}(x) ∈ (BaEa)∗.

Let x = y Ba z and m[[y Ba〉〉m′′. Since Ba• = {a}, a ∈ m′′. We also have: for any

ma ⊆ P∪T , if a ∈ma, then Ba is not enabled in ma, and the only way to remove a from ma

is to fire Ea (as •Ea = {a}). Hence we must have x = y Ba w Ea v, where π{Ba,Ea}(w) = ε .

2

The second property requires a proposition like the one below.

Proposition 9

If x ∈ FISN(m→m′), then for every y ∈T ∗, if Jx=Jy then y ∈ FISN(m→m′).

Proof From Theorem 8, it follows that Jx̂=Jŷ means x̂ ∈ ISR(Jx) and ŷ ∈ ISR(Jx).

Since Jx=Jx̂, Jx=Jx̂ and Jx=Jy, it suffices to show that if {x̂, ŷ} ⊆ ISR(Jx) then x ∈

FISN(m→m′) implies y ∈ FISN(m→m′).

80

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

All elements of ISR(Jx) satisfy a pattern given by Definition 18(2). Assume �Jx=

A1 . . .Am. Hence x̂ = u1v1 . . .unvn and ŷ = s1t1 . . .sntn, where for all i = 1, . . . ,n, ui,si ∈

perm(BJx(Ai)) and vi, ti ∈ perm(EJx(Ai)).

Assume that m[[ũ1〉〉m1
1[[ṽ1〉〉m2

1 . . .m
2
n−1[[ũn〉〉m1

n[[ṽn〉〉m′. We need prove that

m[[s̃1〉〉m1
1[[̃t1〉〉m2

1 . . .m
2
n−1[[s̃n〉〉m1

n[[̃tn〉〉m′ also hold.

Since both u1 and s1 belong to perm(BJx(A1)), from Definition 24 we have that m[[ũ1〉〉m1
1

implies m[[s̃1〉〉m1
1. Similarly both v1 and t1 belong to perm(EJx(A1)), so from Definition 24

we have that m1
1[[ṽ1〉〉m2

1 implies m1
1[[̃t1〉〉m2

1.

Repeating this reasoning n−1 times we obtain m[[s̃1〉〉m1
1[[̃t1〉〉m2

1 . . .m
2
n−1[[s̃n〉〉m1

n[[̃tn〉〉m′, i.e.

m[[y〉〉m′, i.e. y ∈ FISN(m→m′). 2

We can now formally define the set of interval orders that is generated by a given in-

hibitor net.

Definition 26 The set of all interval orders that lead from the marking m to m′ is defined

as:

ION(m→m′) = {Jx| x ∈ FISN(m→m′)}. 2

The next result shows that the interval sequence semantics is consistent with both se-

quence semantics and step sequence semantics. First we show consistency with standard

firing sequences and extended firing sequences.

Lemma 4 For every two m,m′ ⊆ P, then for each t ∈ T ,

m[t〉m′ ⇐⇒ m[[BtEt〉〉m′.

ProofSince •Bt = •t and Bt◦ = t◦∪ (t◦)•, t is enabled at m if and only if Bt is enabled at m.

(⇒) If m[t〉m′ then m′ = (m \• t)∪ t•. Let m[[Bt〉〉mB, i.e. mB = (m \• Bt)∪Bt• = (m \•

t)∪ {t}. Hence Et is enabled at mB. Let mB[[Et〉〉mE . And mE = (mB \• Et)∪ Et• =

81

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

(((m\• t)∪{t})\{t})∪ t• = (m\• t)∪ t• = m′. Hence m[[Bt〉〉mB[[Et〉〉m′, i.e. m[[BtEt〉〉m′.

(⇐) If m[[BtEt〉〉m′ then reasoning as in the proof of (⇒) we can show that m′ = (m\• t)∪

t•. Hence m[t〉m′. 2

We have a similar relationship between firing step sequences and extended firing se-

quences. For every A = {t1, ..., tk} ⊆ T , let ABE ⊆T ∗ be defined as follows

ABE = {Bti1...BtikEt j1...Et jk | i1, ..., ik and j1, ..., jk are permutations of 1,2, ...,k}.

For example {a,b}BE = {BaBbEaEb,BaBbEbEa,BbBaEaEb,BbBaEbEa}.

Lemma 5

For every two markings m,m′ ⊆ P and every A⊆ T ,

m [A〉 m′ ⇐⇒ ∀x ∈ ABE. m [[x〉〉 m′.

Proof(⇒) Let A = {t1, ..., tk}. This means, if i 6= j then (t•i ∪• ti)∩ (t•j ∪• t j) = /0, •A⊆ m,

(A• ∩A◦)∩m = /0, and m′ = (m \• A)∪A•. Let y = Bti1...Btik and z = Et j1...Et jk , where

i1, ..., ik and j1, ..., jk are permutations of 1,2, ...,k. Since •ti = •Bti and t◦i = Bt◦i , we have

m [[y〉〉mB, where mB = (m\(•Bti1∪ ...•Btik))∪(Bt•i1∪ ...Bt•ik) = (m\•A)∪(Bt•i1∪ ...Bt•ik). But

Bt•i = {ti}, so mB = (m\•A)∪A. However, •Eti = {ti}, so mB [[z〉〉 mE , where mE = (mB \

(•Et j1 ∪ ...∪•Et jk))∪ (Et•j1 ∪ ...Et•jk). Since •Eti = {ti} and Et•i = t•i , mE = (mB \A)∪A• =

(((m\•A)∪A)\A)∪A• = (m\•A)∪A• = m′.

Hence m [A〉 m′ =⇒ ∀x ∈ ABE. m [[x〉〉 m′.

(⇐) Let A = {t1, ..., tk} and m [[yz〉〉 m′.

Hence there are markings m0
B,m

1
B, ...,m

k
B,m

0
E ,m

1
E , ...,m

k
E in NBE such that m=m0

B, mk
B =

m0
E , mk

E = m′, and

82

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

m0
B [[Bti1〉〉 m1

B [[Bti2〉〉 m2
B...m

k−1
B [[Btik〉〉 mk

B [[Et j1〉〉 m1
E [[Et j2〉〉 m2

E ...m
k−1
E [[Et jk〉〉 mk

E .

We have ml+1
B = (ml

B \•Btil)∪Bt•il , and ml+1
E = (ml

E \•Et jl)∪Et•jl , for l = 0, ...,k− 1. Since

•Bti =• ti and Bt•i = {ti}, m0
E = mk

B = (m0
B \•A)∪A = (m\•A)∪A. However, •Eti = {ti} and

Et•i = t•i , so mk
E = (m0

E \A)∪A•.

Thus, m′ = mk
E = (m0

E \A)∪A• = (((m\•A)∪A)\A)∪A• = (m\•A)∪A•. But this means

m [A〉 m′. 2

Hence:

Proposition 10 For every inhibitor net:

TON(m→m′)⊆ SON(m→m′)⊆ ION(m→m′).

Proof Let � ∈ TON(m→m′). Hence there is x ∈ FSN(m→m′) such that � = �x. Assume

that x = t1t2 . . . tn and define x′ = {t1}{t2}. . . {tn}. Clearly m[{t1}{t2} . . .{tn}〉m′ and � =

�x′ , so x′ ∈ FSSN(m→m′) and � ∈ SON(m→m′). Therefore TON(m→m′)⊆ SON(m→m′).

Let � ∈ SON(m→m′). Hence there is x ∈ FFSN(m→m′) such that � = �x. Assume

that x = A1A2 . . .An, and m = m0[A1〉m1[A2〉m2 . . .mn−1[An〉mn = m′. By Lemma 5 we have

m = m0[[x1〉〉m1[[x2〉〉m2 . . .mn−1[[xn〉〉mn = m′, for some xi ∈ ABE
i , i = 1, . . . ,n.

We define x′ = x1x2 . . .xn. Since each xi ∈ ABE
i , and in each element of ABE

i all appropriate Bt

occur before all appropriate Et we can have

a(i)�x b(j) ⇐⇒ Ea(i)�x′ Bb(j) ⇐⇒ a(i) Jx′ b(j),

i.e., �x =Jx′ . Clearly m[[x′〉〉m′, so Jx′∈ ION(m→m′). Hence we can get SON(m→m′) ⊆

ION(m→m′). 2

83

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

For the net NQ from Figures 6.10 and 8.11, we have

FISNQ({s1,s2}→{s4,s5}) =

BcEcBaEaBbEb,BaBcEcEaBbEb,BaBcEaEcBbEb,

BcBaEcEaBbEb,BcBaEaEcBbEb,BaBcEaBbEbEc,

BaBcEaBbEcEb,BcBaEaBbEbEc,BcBaEaBbEcEb,

BaEaBbEbBcEc

,

and IONQ({s1}→{s5,s6}) = {<Q
1 ,<

Q
2 ,<

Q
3 ,<

Q
4 }, where <Q

1 ,<
Q
2 ,<

Q
3 and <Q

4 are partial or-

ders from Figure 6.10. The detailed relationships between the partial orders <Q
1 , <Q

2 ,

<Q
3 ,<

Q
4 and the elements of FISNP({s1,s2}→{s4,s5}) are discussed at the end of Sec-

tion 7.1.

Note that there are inhibitor nets that all their observations are interval orders. The

net N0 from Figure 8.11 is such a net. For m0 = {s1,s2} and m f = {s4,s5}, we have

FISN0(m0→m f)= {BaBcEaBbEbEc,BaBcEaBbEcEb,BcBaEaBbEbEc,BaBcEaBbEcEb}

so ION0(m0→m f) = {<Q
4 }, while FSN0(m0→m f) = FSSN0(m0→m f) = /0, and

TON0(m0→m f) = SON0(m0→m f) = /0.

8.3 Trace and Comtrace Semantics

One of the disadvantages of any operational semantics is that it does not recognize equiv-

alent executions, so they cannot identify concurrent histories. For instance for the net NQ

of Figures 6.10 and 8.11 the observations <Q
2 ,<

Q
3 and <Q

4 are equivalent and we have two

concurrent histories {<Q
1 } and {<Q

2 ,<
Q
3 ,<

Q
4 }.

84

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

8.3.1 Trace Semantics

The trace semantics (and partially ordered behaviours it generates) can standardly be de-

rived from the firing sequence semantics (c.f. [Janicki and Koutny [1995]]).

Let N = (P,T,F, I,m0) be an inhibitor net. We define the (trace) independency relation

indtr
N ⊆ T ×T as (c.f. [Janicki and Koutny [1995]]):

(a,b) ∈ indtr
N ⇐⇒ [(a•∪ •a)∩ (b•∪ •b) = /0]∧

[(a◦∩ •b)∪ (b◦∩ •a) = /0]∧ [(a•∩b◦)∪ (b•∩a◦) = /0].

The trace alphabet is (T, indtr
N).

The following result validates the above definition of indtr
N .

Lemma 6

(a,b) ∈ indtr
N ⇐⇒ ∃m,m′ ∈ P. {a,b} ⊆ enabledN(m)∧m[ab〉m′∧m[ba〉m′.

Proof (⇒) If (a,b) ∈ indtr
N then m = •a∪ •b and m′ = a•∪b• satisfy

{a,b} ⊆ enabledN(m), m[ab〉m′ and m[ba〉m′.

(⇐) If {a,b} ⊆ enabledN(m) then •a∪• b⊆m and (a•∪a◦)∩m = (b•∪b◦)∩m = /0. Let

ma and mb be such markings that m[a〉ma[b〉m′ and m[b〉mb[a〉m′. Hence ma = (m\• a)∪a•

and mb = (m\• b)∪b•. Since b is enabled at ma then •b⊆ (m\• a)∪a• and b•∩((m\• a)∪

a•) = /0, so •a∩• b = /0 and a•∩b• = /0. Moreover b◦∩ ((m\• a)∪a•) = /0 so b◦∩a• = /0.

Similarly, since a is enabled at mb then a◦ ∩ b• = /0. Suppose that t ∈• a∩ b•. Since

m[a〉ma[b〉m′ and m[b〉mb[a〉m′, then m′ = (((m \• a)∪ a•) \• b)∪ b• = (((m \• b)∪ b•) \•

a)∪a•. But t ∈ (((m\• a)∪a•)\• b)∪b• and t /∈ (((m\• b)∪b•)\• a)∪a•, a contradiction,

so •a∩b• = /0. Symmetrically •b∩a• = /0. Hence we obtained (a•∪ •a)∩ (b•∪ •b) = /0.

85

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Suppose t ∈ b◦∩• a. But •a⊆m while b◦∩m = /0, a contradiction, so b◦∩• a = /0. Similarly

we can show that a◦∩•b = /0. Hence (a◦∩ •b)∪(b◦∩ •a) = /0 and (a•∩b◦)∪(b•∩a◦) = /0.

Thus (a,b) ∈ indtr
N . 2

In the above lemma we do not assume that either m or m′ are reachable from the initial

marking m0, they both may be unreachable.

When we have the relation indtr
N , then for each firing sequence x, the trace [x]indtr

N
de-

scribes a behaviour of the inhibitor net N.

The set of all traces defining behaviours that start from the marking m and end at the

marking m′ is defined as

TrN(m→m′) = {[x]indtr
N
| x ∈ FSN(m→m′)}.

For the net NQ in Figures 6.10 and 8.11, we have indtr
NQ

= /0; however for the net N1
Q in Figure

8.11, indtr
N1

Q
is the symmetric closure of {(Ba,Bc),(Ba,Ec),(Ba,Bb),(Ba,Eb),(Bb,Ec),(Ea,Ec),(Eb,Ec)},

and

TrNP({s1,s2}→{s4,s5}) = {x1,x2}, where

x1 = [BaEaBbEbBcEc]indtr
NQ

= {BaEaBbEbBcEc}, and

x2 = [BcBaEaBbEbEc]indtr
NQ

=

BcEcBaEaBbEb,BaBcEcEaBbEb,BaBcEaEcBbEb,

BcBaEcEaBbEb,BcBaEaEcBbEb,BaBcEaBbEbEc,

BaBcEaBbEcEb,BcBaEaBbEbEc,BcBaEaBbEcEb

 .

The partially ordered behaviour defined by the trace x2, i.e lx2 , is just the partial order lQ
2

from Figure 6.10.

Note that the properties (Ba,Bb) ∈ indtr
NQ

or (Ba,Eb) ∈ indtr
NQ

are never used, as there is

no firing sequence x starting from {s1,s2} such that x = uBaBbw or x = uBaEbw In other

86

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

words, the relation indtr
NP

is unnecessarily big, but this is all we can get by using the static

structure on the net N to define the relation indN (c.f. [Mazurkiewicz [1977, 1995]]).

Traces cannot express simultaneity directly, for this we need the concept of comtraces

[Janicki and Koutny [1995]].

8.3.2 Comtrace Semantics

The comtrace semantics (and behaviours defined by stratified order structures it generates)

can standardly be derived from the firing step sequence semantics [Janicki and Koutny

[1995]; Kleijn and Koutny [2004]]. Let N = (P,T,F, I,m0) be an inhibitor net. In this case

we define the following relations simN ,serN ⊆ T ×T :

(a,b) ∈ simN ⇐⇒ (a•∪ •a)∩ (b•∪ •b) = /0∧ (a◦∩ •b)∪ (b◦∩ •a) = /0,

(a,b) ∈ serN ⇐⇒ (a,b) ∈ simN ∧a•∩b◦ = /0.

The comtrace alphabet here is (T,simN ,serN).

The interpretation of relations simN and serN is identical to that of sim and ser for

comtraces (see Section 4.3). The relation simN , called simultaneity, is symmetric and

(a,b) ∈ simN means that a and b can potentially be executed simultaneously. The rela-

tion serN is called serializability and is not necessarily symmetric. We say (a,b) ∈ serN if

either a and b can execute simultaneously, or a can execute before b. If (a,b) ∈ serN and

(b,a) ∈ serN , then a and b can potentially either execute simultaneously, or in any order (a

before b or b before a). The relations simN and serN represent the potential concurrency

structure of a given net.

The validity of simN and serN follows from the following simple result, where right

hand sides of equivalence express the meanings of simultaneity and serializability in terms

87

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

of firing step sequence semantics.

Lemma 7

1. (a,b) ∈ simN ⇐⇒ ∃A⊆ T.∃m,m′ ⊆ P. a,b ∈ A∧m[A〉m′,

2. (a,b) ∈ serN ⇐⇒ ∃A,B,C ⊆ T.∃m,m′ ⊆ P. a ∈ A∧b ∈ B∧A∩B = /0∧

A∪B =C∧m[C〉m′∧m[AB〉m′

Proof (1)(⇒) If (a,b) ∈ simN then A = {a,b}, m = •a∪ •b and m′ = a• ∪ b• satisfy

m[A〉m′.

(1)(⇐) m[A〉m′ means A is enabled at m, hence (t• ∪• t)∩ (r• ∪• r) = /0 for all distinct

t,r ∈ A, so (a•∪ •a)∩ (b•∪ •b) = /0. Since A is enabled at m, we also have •A ⊆ m and

(A•∪A◦)∩m = /0, which implies A◦∩•A = /0, so (a◦∩ •b)∪ (b◦∩ •a) = /0.

(2)(⇒) Let (a,b)∈ serN . Then A= {a}, B= {b}, C = {a,b}, m= •a∪ •b and m′= a•∪b•

satisfy m[C〉m′ and m[AB〉m′.

(2)(⇐) By (1) of this lemma, m[C〉m′ means that (a,b) ∈ simN . Let m′′ = (m\• A)∪A•,

i.e. m[A〉m′′ and m′′[B〉m′. Clearly a•⊆A•⊆m′′. Since B is enabled at m′′ then B◦∩m′′= /0,

so b◦∩m′′ = /0. But this means a•∩b◦ = /0. 2

Again, as in Lemma 6, in the above lemma we do not assume that either m or m′ are

reachable from the initial marking m0.

In this case for each firing step sequence x, the comtrace [x](simN ,serN) describes a be-

haviour of the inhibitor net N.

The set of all comtraces defining behaviours that start from the marking m and end at

the marking m′ is defined as

88

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

ComTrN(m→m′) = {[x](simn,serN) | x ∈ FSSN(m→m′)}.

For the net NQ from Figure 6.10 we have

simNP ={(a,c),(c,a)},

serNP ={(c,a)}.

i.e. (a,c) /∈ serNP , ComTrNP({s1,s2}→{s4,s5}) = {x1,x2}, where x1 = {{a}{b}{c}}, x2 =

{{c}{a}{b},{a,c}{b}}. When step sequences are interpreted as partial orders, the com-

trace x1 represents the set {<Q
1 } and the comtrace x2 represents the set {<Q

2 ,<
Q
3 }, where

<Q
1 ,<

Q
2 ,<

Q
3 are the partial orders from from Figure 6.10. Note that <Q

4 is also a possible

system run of the net NQ, but this is not expressible in this model.

The process semantics (in the sense of [Nielsen et al. [1990]; Reisig [1998]]) has been

proposed in [Janicki and Koutny [1995]] and substantially refined in [Kleijn and Koutny

[2004]]. It was proven the process semantics and comtrace semantics are equivalent to

some extent. The process semantics will not be discussed in this thesis, the details can be

found in [Janicki et al. [2010]; Kleijn and Koutny [2008]].

8.4 Interval Trace Semantics and Interval Order Struc-

ture Semantics

Since interval traces are just a special kind of general traces, we will just modify the stan-

dard trace semantics of inhibitor nets. The main difference is to define the independency

relation on BE-transitions instead on transitions.

Let N = (P,T,F, I,m0) be an inhibitor net, and let T = {Bt | t ∈ T}∪{Et | t ∈ T}. We

89

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

define the (interval trace) independency relation indN ⊆T ×T as follows.

Definition 27 For all distinct a,b ∈ T :

1. (Ba,Bb) ∈ indN ∧ (Ea,Eb) ∈ indN

2. (Ba,Eb) ∈ indN ⇐⇒ [(Ba•∪ •Ba)∩ (Eb•∪ •Eb) = /0]∧

[(Ba◦∩ •Eb)∪ (Eb◦∩ •Ba) = /0]∧

[(Ba•∩Eb◦)∪ (Eb•∩Ba◦) = /0].

The interval trace alphabet is (T , indN). 2

Corollary 4 For each t ∈ T , (Bt,Et) /∈ indN and (Et,Bt) /∈ indN .

Proof Since Bt•∩ •Et = {t}, for each t ∈ T . 2

Corollary 4 shows that Definition 19 is satisfied so (T , indN) is indeed an interval trace

alphabet indeed.

The following results validate Definition 27. The first result guarantees that the con-

dition (1) of this definition, it does not introduce undesired non-existent behaviours. This

result is a consequence of Definition 24(2e) and (2f) which defined Bt◦ and Et◦.

Proposition 11 For all distinct a,b ∈ T :

1. If ¬([(Ba•∪ •Ba)∩ (Bb•∪ •Bb) = /0]∧ [(Ba◦∩ •Bb)∪ (Bb◦∩ •Ba) = /0]∧

[(Ba•∩Bb◦)∪ (Bb•∩Ba◦) = /0]),

then there are no m,m′ ∈ P∪T such that m[[BaBb〉〉m′ or m[[BbBa〉〉m′, so the rela-

tionship (Ba,Bb) ∈ indN can never be used to commute Ba with Bb.

2. [(Ea•∪ •Ea)∩ (Eb•∪ •Eb) = /0]∧ [(Ea◦∩ •Eb)∪ (Eb◦∩ •Ea) = /0]∧

[(Ea•∩Eb◦)∪ (Eb•∩Ea◦) = /0].

90

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Proof (1) Case 1: (Ba• ∪ •Ba)∩ (Bb• ∪ •Bb) 6= /0. Suppose that m[[Ba〉〉m1. Then

Bb /∈ enabledext
N (m1). Similarly for m[[Bb〉〉m1.

Case 2: (Ba◦ ∩ •Bb)∪ (Bb◦ ∩ •Ba) 6= /0. Let r ∈ Ba◦ ∩ •Bb and m[[Ba〉〉m1. However

firing Ba does not remove any token from Ba◦, so r ∈ m1∩Ba◦, i.e. Bb /∈ enabledext
N (m1).

If r ∈ Bb◦ ∩ •Ba then Ba /∈ enabledext
N (m) for any m such that r ∈ m. Hence m[[Ba〉〉m1

means r /∈ m. Since m1 = (m \• Ba)∪ {a}, then r /∈ m1 so ¬(•Bb ⊆ m1), which means

Bb /∈ enabledext
N (m1) again.

Case 3: (Ba•∩Bb◦)∪ (Bb•∩Ba◦) 6= /0. Let Ba•∩Bb◦ 6= /0. Since Ba• = {a}, this means

a ∈ Bb◦. Suppose that m[[Ba〉〉m1. Hence m1 = (m \• Ba)∪{a}. But a ∈ m1∪Bb◦ means

Bb /∈ enabledext
N (m1). Now let Bb• ∩Ba◦ 6= /0, i.e. b ∈ Ba◦. By Definition 24(2e), Ba◦ =

a◦ ∪ (a◦)•. Since b ∈ a◦ then b ∈ (a◦)•. But this means a◦ ∪•b 6= /0, or, as •b =• Bb,

a◦∪•Bb 6= /0, which implies Ba◦∪•Bb 6= /0, is a part of Case 2.

(2) Since •t = {t} and Et◦ = /0, for each t ∈ T . 2

The next result states that interval traces produced by applying the relation indN are

consistent with the concept of firing interval sequences.

Lemma 8 For all extended markings m,m′:

x ∈ FISN(m→m′) ⇐⇒ [x]indN ⊆ FISN(m→m′),

Proof (⇐) Because x ∈ [x]indN .

(⇒) It suffices to show that if xaαβx2 ∈ FISN(m→m′) and (α,β) ∈ indN , then xaβαx2 ∈

FISN(m→m′). Assume m[[xa〉〉m1[[α〉〉m2[[β 〉〉m3[[x2〉〉m′, i.e., •α ⊆ m1, (α•∪α◦)∩m1 = /0,

m2 = (m1 \•α)∪α•, and •β ⊆ m2, (β •∪β ◦)∩m2 = /0, m3 = (m2 \• β)∪β •.

Since (α,β)∈ indN then •β ∩(•α∪α•) = /0, so •β ⊆m2 = (m1\•α)∪α• implies •β ⊆m1.

If (α,β) ∈ indN then also (β •∩β ◦)∩ (•α ∪α•) = /0, which implies:

(β •∪β ◦)∩m2 = /0 ⇐⇒ (β •∪β ◦)∩((m1\•α)∪α•) = /0 ⇐⇒ (β •∪β ◦)∩m1 = /0. Hence

β is enabled at m1. Let m′2 = (m1 \• β)∪β •. As (α,β) ∈ indN then

91

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

•α ∩ (•β ∪β •) = /0, so •α ⊆ m1 implies •α ⊆ (m1 \• β)∪β • = m′2.

Again, if (α,β) ∈ indN then also (α•∩α◦)∩ (•β ∪β •) = /0, which implies:

(α•∪α◦)∩m1 = /0 ⇐⇒ (α•∪α◦)∩((m1\•β)∪β •) = /0 ⇐⇒ (α•∪α◦)∩m′2 = /0. Hence

α is enabled at m′2. Since (α•∪ •α)∩ (β •∪ •β) = /0, we have:

(m′2 \•α)∪α• = (((m1 \• β)∪β •)\α•)∪α• = (((m1 \•α)∪α•)\β •)∪β • =

(m2 \β •)∪β • = m3.

But this means that m[[xa〉〉m1[[β 〉〉m′2[[α〉〉m3[[x2〉〉m′, i.e. xaβαx2 ∈ FISN(m→m′). 2

The last result shows that commutation of BE-transitions induced by the relation indN

apply to, and only to, sequences that can be interpreted as equivalent executions.

Lemma 9

1. (α,β) ∈ indN =⇒ (α = Ba∧β = Bb)∨

(∃m,m′ ∈ P∪T. {α,β} ⊆ enabledext
N (m)∧m[[αβ 〉〉m′∧m[[βα〉〉m′).

2. (α,β) ∈ indN ⇐= ∃m,m′ ∈ P∪T. {α,β} ⊆ enabledext
N (m)∧m[[αβ 〉〉m′∧m[[βα〉〉m′.

Proof In principle this is almost exactly the same proof as the proof of Lemma 6. 2

In Lemma 9(2), we do not assume that either m or m′ are reachable from the initial

marking m0.

When we have the relation indN , then for each firing sequence x, the trace [x]indN de-

scribes a behaviour (concurrent history) of the inhibitor net N.

The set of all interval traces defining behaviours that start from the marking m and end

at the marking m′ is defined as

IntTrN(m→m′) = {[x]indN | x ∈ FISN(m→m′)}.

Since every interval trace uniquely defines an interval order structure, we may define

the set of all interval order structures defining behaviours that start from the marking m and

92

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

end at the marking m′ as

IOSN(m→m′) = {S[x]indN | [x]indN ∈ IntTrN(m→m′)}.

By Theorem 9 we can also write IOSN(m→m′) = {Sx | x ∈ FISN(m→m′)}.

For the net NQ from Figures 6.10 and 8.11 we have

indNQ = indQ∪{(Ba,Bb),(Ea,Eb),(Bb,Ba),(Eb,Ea),(Ba,Eb),(Eb,Ba)},

[BaEaBbEbBcEc]indNQ
= {BaEaBbEbBcEc},

[BcEcBaEaBbEb]indNQ
= {BcEcBaEaBbEb,

BaBcEcEaBbEb,BaBcEaEcBbEb,BcBaEcEaBaEb,BaBcEaEcBbEb,

BaBcEaBbEbEc,BaBcEaBbEcEb,BcBaEaBbEbEc,BaBcEaBbEcEb},

and IntTrNQ({s1,s2}→{s4,s5}) = {[BaEaBbEbBcEc]indNQ
, [BcEcBaEaBbEb]indNQ

}.

Also IOSNQ({s1,s2}→{s4,s5}) = {SQ
1 ,S

Q
2 }, where SQ

1 = ({a,b,c},<Q
1 ,<

Q
1) and

SQ
2 = ({a,b,c},≺Q

2 ,@
Q
2), where <Q

1 , ≺Q
2 and @Q

2 are these from Figure 6.10.

Note that the properties (Ba,Bb) ∈ indNQ,(Ea,Eb) ∈ indNQ , and (Ba,Eb) ∈ indNQ are

never used, as there is no extended firing sequence x starting from {s1,s2} such that x =

uBaBbw, x = uEaEbw or x = uBaEbw, so the relation indNP is bigger than needed. Again,

this is the price paid for having indN derived only from the static structure of the net N.

93

Chapter 9

Conclusion

In this thesis, we have first introduced the concept of interval traces, a special kind of

Mazurkiewicz traces, that can provide an abstract semantics of concurrent systems when

the operational semantics involves interval orders.

Then, we proved that interval traces can model interval order structures in the same

manner as classical Mazurkiewicz traces can model partial orders [Mazurkiewicz [1995]]

and comtraces can model stratified order structures [Janicki and Koutny [1995]]. We also

showed each interval trace uniquely determins an interval order structure.

Finally, we discussed the application of interval traces with inhibitor Petri nets. In

particular, we have shown how to use interval traces to define interval order semantics of

inhibitor nets.

Now we would like to propose some comments for future research of interval traces.

As far as we know, the concept and theory of interval traces stems from three sources:

classical traces, comtraces and the representation theorem of Abraham, Ben-David and

Magidor ([Abraham et al. [1990]], Theorem 5 in this thesis). Like comtraces, interval traces

are generated by two relations sim and ser on a given set of events, and the interpretation of

these relations is the same as for comtraces. However, comtraces are sets of step sequences

94

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

of event occurrences, interval traces are just sets of ordinary sequences (like classical traces)

but with beginnings and ends of event occurrences. Like in classical traces, the structure of

interval traces is generated by a single independency relation ind(sim,ser) which is derived

from the relations sim and ser. Technically, interval traces are just a special case of classical

traces that are defined on the set of beginnings and ends of events.

The representation theorem of Abraham, Ben-David and Magidor allows representing

interval order structures by appropriate partial orders of beginnings and ends. We have

already shown that the partial order generated by a given interval trace uniquely defines

an interval order structure via the Abraham, Ben-David and Magidor theorem. While, for

both Mazurkiewicz traces and comtraces, an equivalent pure process semantics (in a sense

of [Nielsen et al. [1990]]) have been constructed [Diekert and Rozenberg [1995]; Janicki

and Koutny [1995]; Kleijn and Koutny [2004]]; for interval traces, this remains an open

problem for future research.

95

Bibliography

Abraham, U., S. Ben-David, and M. Magidor (1990). On global-time and inter-process

communication. In Semantics for Concurrency, Workshops in Computing, Springer, Hei-

derberg, 4,(311 - 323).

Agerwala, T. (1974). A complete model for representing the coordination of asynchronous

processes. opkins Computer Research Report, John Hopkins University, 32,.

Bakker, d. J., d. W. Roever, and G. Rozenberg (1989). Stepwise refinement of distributed

systems. Proc. of REX Workshop, Lecture Notes in Computer Science 430,.

Burris, S. N. and H. P. Sankappanavar (1981). A course in universal algebra. Springer-

Verlag,.

Diekert, V. and G. Rozenberg (1995). The Book of Traces. World Scientific, Singapore.

Fishburn, P. C. (1970). Intransitive indifference with unequal indifference intervals. Journal

of Mathematical Psychology, 7,(144 - 149).

Fishburn, P. C. (1985). Interval orders and interval graphs. John Wiley, New York,.

Fle, M. and G. Roucairol (1982). On serializability of iterated transactions. Proc. ACM 15

SIGACT-SIGOPS Symp. on Princ. of Distrib. Comp., Ottawa, (194 - 200).

96

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Gaifman, H. and V. Pratt (1987). Partial order models of concurrency and the computation

of function. Proc. of LICS’87 (Logic in Computer Science), (72 - 85).

Janicki, R. (2008). Relational structures model of concurrency. Acta Inform, 45,(279 -

320).

Janicki, R., J. Kleijn, and M. Koutny (2010). Quotient monoids and concurrent behaviours.

in martin-vide, c. (ed.). Imperial College Press, London, 2,(311 - 385).

Janicki, R. and M. Koutny (1991). Invariants and paradigms of concurrency theory. In

Proc. of PARLE’91, 506,(59 - 74).

Janicki, R. and M. Koutny (1993). Structure of concurrency. Theor. Comput. Sci, 112,(5 -

52).

Janicki, R. and M. Koutny (1995). Semantics of inhibitor nets. Inf. Comput, 121(1),(1 -

16).

Janicki, R. and M. Koutny (1997). Fundamentals of modelling concurrency using discrete

relational structures. Acta Inform, 34,(367 - 388).

Janicki, R. and D. T. M. Lê (2011). Modelling concurrency with comtraces and generalized

comtraces. Inf. Comput., 209,(1355 - 1389).

Janicki, R. and X. Yin (2012). Modeling interval order structures with partially commuta-

tive monoids. In Proc. of CONCUR 2012, 7454(425 - 439).

Janicki, R., X. Yin, and N. Zubkova (2014). Modeling concurrency with interval traces.

Information and Computation,.

Kleijn, H. C. M. and M. Koutny (2004). Process semantics of general inhibitor nets. Inf.

Comput., 190,(18 - 69).

97

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Kleijn, J. and M. Koutny (2008). Formal languages and concurrent behaviour. Studies in

Computational Intelligence, 113,(125 - 182).

Lamport, L. (1986). The mutual exclusion problem: Part i - a theory of interprocess com-

munication; part ii - statements and solutions. Journal of ACM, 33(2),(313 - 326).

Lê, D. T. M. (2011). On three alternative characterizations of combined traces. Fundam.

Informaticae, 113,(265 - 293).

Mazurkiewicz, A. (1977). Concurrent program schemes and their interpretation. TR DAIMI

PB-78, Comp. Science Depart., Aarhus University,.

Mazurkiewicz, A. (1989). Concurrent systems and inevitability. Theoretical Computer

Science 64, (281 - 304).

Mazurkiewicz, A. (1995). Introduction to trace theory. in Diekert and Rozenberg [1995] (3-

42).

Murata, T. (1989). Petri nets: properties, analysis and applications. Proceedings of the

IEEE, 77(4),(541 - 580).

Nielsen, M., G. Rozenberg, and P. S. Thiagarajan (1990). Behavioural notions for elemen-

tary net systems. Distributed Computing, 4,(45 - 57).

Ochmański, E. (1995). Recognizable trace languages. in Diekert and Rozenberg

[1995] (167 - 204).

Peterson, J. L. (1981). Petri net theory and the modeling of systems. N.J.: Prentice-Hall,.

Petri, C. (1962a). Fundamentals of a theory of asynchronous information flow. Proc. of

IFIP Congress’62, North Holland, Amsterdam, (386 - 390).

98

Ph.D. Thesis - Xiang Yin McMaster - Computing and Software

Petri, C. (1962b). Kommunikation mit automaten. english translation, 1966: Communi-

cation with automata. Technical Report RADC-TR-65-377, Rome Air Dev. Center, New

York,.

Reisig, W. (1998). Elements of distributed algorithms. Springer,.

Szpilrajn, E. (1930). Sur l’extension de l’ordre partiel. Fundam. Mathematicae, 16,(386 -

389).

Wiener, N. (1914). A contribution to the theory of relative position. Proc. of the Cambridge

Philosophical Society, 17,(441 - 449).

Zuberek, W. M. (1980). Timed petri nets and preliminary performance evaluation. In Proc.

of the 7-th Annual Symp. on Computer Architecture, (89 - 96).

99

	Abstract
	Acknowledgements
	Introduction and Motivation
	Problem Statement
	Contributions
	Organization of the Thesis

	Mathmatical Foundations
	Partial Orders
	Sequences and Their Relationship to Partial Orders
	Enumerated Sequences
	Interval Sequences

	Order Structures
	Stratified Order Structures
	Interval Order Structures

	Mazurkiewicz Traces and Comtraces
	Trace Theory
	Mazurkiewicz Traces
	Traces Semantics
	Mazurkiewicz Traces as Monoids

	Comtraces

	Petri Nets and Inhibitor Petri Nets
	Petri Nets
	Definition of Petri Nets
	Transition Firing
	Modeling Power

	Properties of Petri Nets
	Reachability
	Safeness
	Liveness

	Traces and Nets
	Action System
	Parallel Factorial Scheme

	Inhibitor Petri Nets
	Inhibitor Arcs
	Inhibitor Nets

	Interval Traces
	Concurrent Histories
	Intuition and Motivation of the Model
	Interval Traces
	Sequence Representations of Interval Orders
	Constructing Interval Traces

	Properties of Interval Traces
	Interval Traces and Interval Orders
	Interval Order Structures and Interval Traces
	Comtraces vs Interval Traces

	The Applications of Interval Traces
	Operational Semantics of Inhibitor Petri Nets
	Firing Sequence Semantics
	Firing Step Sequence Semantics

	Firing Interval Sequences Semantics
	Trace and Comtrace Semantics
	Trace Semantics
	Comtrace Semantics

	Interval Trace Semantics and Interval Order Structure Semantics

	Bibliography

