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Abstract

A new model for confidence judgments in recognition memory is presented. In the model, the match

between a single test item and memory produces a distribution of evidence, with better matches

corresponding to distributions with higher means. On this match dimension, confidence criteria are

placed, and the areas between the criteria under the distribution are used as drift rates to drive racing

Ornstein-Uhlenbeck diffusion processes. The model is fit to confidence judgments and quantile

response times from two recognition memory experiments that manipulated word frequency and

speed versus accuracy emphasis. The model and data show that the standard signal detection

interpretation of z-transformed receiver operating characteristic (z-ROC) functions is wrong. The

model also explains sequential effects in which the slope of the z-ROC function changes by about

10% as a function of the prior response in the test list.
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Over the last 15 years, receiver operating characteristic (ROC) functions, as defined by signal

detection theory (SDT; Green & Swets, 1966), have often been used to interpret recognition

memory data. ROC analyses have been used extensively to test memory models, to guide the

development of memory models, and to argue for and against single versus dual process

retrieval models.

In a recognition memory experiment, a list of words is studied and the study list is followed

by a list of test words. In a standard two-choice experiment, subjects are asked to decide whether

or not the test words appeared in the study list. To model this judgment with SDT, a single

criterion value is placed on a dimension that represents the degree to which a test item matches

information in memory. If the match value is above the criterion, an “old” response is produced;

and, if it is below, a “new” response is produced. Changes in the placement of the decision

criterion are used to model the effects of bias toward one or the other of the two choices. In

Figure 1, there are two normal distributions, one for old items and one for new items, with

unequal standard deviations. The figure shows three possible confidence criteria. For each one,

the hit rate is the proportion of “old” responses to studied stimuli and the false-alarm rate is

the proportion of “old” responses to new stimuli. If the criterion is moved from the right to the
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6 subjects who showed higher hit and false-alarm rates following an “old” response.
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left, from the rightmost criterion in Figure 1 to the middle or leftmost criterion, both the hit

and false-alarm rates increase. ROC functions are obtained by plotting hit rates against false-

alarm rates for each criterion. If the proportions of hits and false alarms are transformed to z-

scores, then a plot of ZHit versus ZFA produces a straight line with the slope equal to the ratio

of the standard deviations: σN/σO, as illustrated in the bottom panel of Figure 1.

In a confidence judgment procedure, subjects are asked to rate their confidence that a test item

is old or new. The same match dimension is assumed as for the two-choice task, but instead of

one criterion, there are several. The position of the match value relative to these confidence

criteria determines the confidence response. For a confidence judgment task with four

confidence categories, the three criteria might be placed as in Figure 1 to partition the match

dimension into four response regions. To form a z-transformed receiver operating characteristic

(z-ROC) function, hit and false-alarm rates are computed first for the rightmost, highest

confidence old category, then for the two rightmost categories (adding the number of responses

in the two categories), then for the three rightmost, and so on. Just as for the two-choice task,

if the distributions are normal, the z-ROC function is linear with a slope that equals the ratio

of standard deviations, as in the bottom panel of Figure 1.

In most of the recent applications of ROC functions in memory research, the probabilities of

hits and false alarms have been the only dependent variable used to test models. Another major

dependent variable, response time (RT), has not been considered. The few attempts to model

both RTs and probabilities have either not been fit explicitly to data or they have not been

widely applied. Most importantly, they have not provided any direct linkage between RTs,

SDT, and ROC data.

As will be discussed in detail below, once the proportions of responses in each confidence

category are modeled jointly with the RTs for each category, theoretical conclusions that

consider only the proportions of responses become invalid. Crucially, the model we propose

allows different sources of noise to be independently estimated. All sources of noise are not

combined into a single value, as with SDT. When the multiple sources of noise are identified,

they can be separated away from the information that is of theoretical interest—the information

from memory that guides old–new and confidence judgment responses.

In this article, we present a model (the RTCON model) for confidence judgments in recognition

memory that is designed to simultaneously explain ROC functions and RT distributions for

each of the confidence categories in an experiment. In the model, when a test word is presented,

it is matched against information in memory. The degree to which a test item matches is not a

single value. Instead it is represented by a normal distribution. Confidence criteria divide the

distribution into regions, one for each confidence category. The area under the normal

distribution for each confidence category determines the rate at which evidence is accumulated.

For each category, there is a criterial amount of evidence such that when the criterion is met,

a response is made. The accumulator that first reaches its criterion amount of evidence

determines which confidence judgment is made.

In the sections below, we first review previous attempts to model confidence judgments and

RTs and then turn to a review of SDT approaches to memory.

RT and Confidence

In early efforts to combine confidence judgments and RTs for two-choice tasks, Volkmann

(1934) and Reed (1951) suggested that a confidence judgment is a function of RT. Audley

(1960) explicitly proposed that confidence judgments are determined by random walk

processes. The more steps toward a response criterion, the slower the RT. (Note that the number

of steps in a discrete model is the analog of time in a continuous model.) The problem with
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using number of steps in a random walk model is that the model predicts that the RT

distributions for the different confidence categories will be nonoverlapping. This is because

the amount of evidence for a decision is the same for all responses at a boundary (e.g., Edwards,

1965; Laming, 1968; Pleskac & Busemeyer, 2007). For example, high-confidence responses

will be fast and low-confidence responses will be slow, and a fast response cannot be a low-

confidence response (although the distributions might overlap slightly as a result of variability

in encoding or response output processes). The RT distributions from our experiments,

described below, and other experiments (e.g., unpublished RT results from Ratcliff, McKoon,

& Tindall, 1994, Experiments 3 and 4) almost completely overlap and so this type of model is

ruled out (see the more complete discussion in Vickers, 1979). Two other random walk models

(Audley & Pike, 1965; Laming, 1968, p. 86) have also been proposed for tasks that involve

more than two choices, but neither has been fully developed or applied to experimental data.

Another class of models, balance-of-evidence models (Vickers, 1979), has been applied to

experiments in which, for each test item, subjects first make an old/new judgment and then a

confidence judgment. Evidence is accumulated in two counters (cf., LaBerge, 1962) and which

counter first reaches its criterial amount of evidence determines the old/new response. The

confidence judgment is then determined by the difference in accumulated evidence between

the two counters, in other words, the balance of evidence. To calculate the difference in

evidence, the system must have access to the amounts of evidence in each of the counters

(Vickers, 1979; Vickers & Lee, 1998, 2000). There has been relatively little evaluation of this

model using RT and confidence judgment data.

Pleskac and Busemeyer (2007) recently extended the diffusion model to accommodate

confidence ratings. As with the balance-of-evidence models, this model is tailored to a

paradigm in which confidence judgments follow an initial two-alternative decision. The initial

two-alternative decision is modeled with a standard diffusion process. After the process reaches

a boundary for the initial yes–no decision, there is an additional period of evidence

accumulation, and confidence ratings are based on the position of the process at the end of this

period. The model makes predictions about RTs for the two-choice task but makes no

predictions about RT for the confidence judgments. The confidence RT will always be a

constant. Pleskac and Busemeyer speculate that their model could be extended to a paradigm

in which subjects make a single selection from a confidence scale if one assumes that subjects

make an implicit two-alternative decision and then select a confidence level. However, these

suggestions have not been translated into an explicit model.

For memory research, the focus of this article, Van Zandt and colleagues (2000; Merkle & Van

Zandt, 2006; Van Zandt & Maldonado-Molina, 2004) have proposed a balance-of-evidence

Poisson counter model as the basis for confidence judgments and RTs. In this model, unit

counts arrive in two accumulators at exponentially distributed times. The accumulator that

reaches criterion first determines the old/new decision, and then the difference in evidence

between the terminated winning accumulator and the nonterminated losing accumulator is used

to make the confidence judgment.

Both the Vickers (1970) accumulator model and the Poisson counter models were evaluated

for two-choice tasks by Ratcliff and Smith (2004), who found that neither model satisfactorily

accounted for the distributions of correct and error RTs or accuracy values. Also, the Poisson

counter confidence model appears to be unable to account for the shapes of the RT distributions

for the confidence categories (Van Zandt, 2000, Figure 11). In particular, the predicted

confidence distributions appear to be much less skewed than the empirical data.

In a different kind of model, Juslin and Olsson (1997) attempted to explain RTs, accuracy, and

confidence judgments with assumptions similar in spirit to the runs model (Audley, 1960).
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Evidence was sampled at equally spaced time steps and a response was made when the amount

of evidence in a window of the last k samples was greater than one criterion or lower than

another criterion. Confidence judgments were then determined by the variability in the samples

represented by the proportion of evidence samples greater than zero versus the proportion less

than zero. This model was critiqued by Vickers and Pietsch (2001), who showed that the

relationship between accuracy and RT as a function of speed–accuracy instructions was not

correctly predicted nor was the relationship between RT and confidence judgments.

The balance-of-evidence models are primarily designed to explain confidence judgments that

are made after old/new decisions. They would need to be modified to explain performance

when subjects make only a confidence judgment decision, not an old/new decision followed

by a confidence judgment decision.

Even when confidence judgments are made after old/new decisions, these models have a

serious problem: The confidence judgment is a second decision, after the old/new decision,

and it could be based on a separate process that does not use the information accumulated to

make the yes/no decision. The confidence judgment might be completely independent of the

first decision, or it might be partially dependent on it (e.g., Baranski & Petrusic, 1998). In the

majority of experiments in memory research, subjects make only a confidence judgment, not

a yes/no response. Our model was developed to explain performance with this procedure.

Signal Detection Theory and Recognition Memory

There has been a long history of applying SDT to recognition memory, starting with Egan

(1958). Egan found linear z-ROC functions with slopes of about 0.7, consistent with normal

distributions of match for old and new items with unequal standard deviations (see also

Wickelgren & Norman, 1966). Although Egan used normal distributions, Banks (1970) and

Lockhart and Murdock (1970) showed that linear z-ROC functions are consistent with other

kinds of distributions, for example, exponential distributions. With exponential distributions,

the slope would not be the ratio of standard deviations, as it is if the distributions are normal.

In the experimental literature, linear z-ROCs (or functions in-distinguishable from linear) are

a typical finding. However, there have been some cases in which the z-ROC functions have

been systematically nonlinear, and these have inspired theoretical development (Arndt &

Reder, 2002; DeCarlo, 2002; Malmberg & Xu, 2006; Ratcliff et al., 1994; Rotello, Macmillan,

& Van Tassel, 2000; Yonelinas, Dobbins, & Szymanski, 1996). Several theories have focused

on accommodating U-shaped z-ROC functions, sometimes seen in recognition memory

experiments and commonly seen in associative recognition and source memory experiments

(Glanzer, Hilford, & Kim, 2004; Hilford, Glanzer, Kim, & DeCarlo, 2002; Kelley & Wixted,

2001; Qin, Raye, Johnson, & Mitchell, 2001; Slotnick & Dodson, 2005; Slotnick, Klein,

Dodson, & Shimamura, 2000; Wixted, 2007; Yonelinas, 1997, 1999).

U-shaped functions violate SDT's assumption of normal distributions. Theorists have

responded by elaborating SDT. One such elaboration is the dual process model (Yonelinas,

1994), which attempts to explain recognition memory performance in terms of a standard signal

detection process plus a “recollection” process. For the SDT process, the distributions of match

values for old and new items are normally distributed with equal variance. For the recollection

process, a threshold retrieval process recovers qualitative details from the learning event. In

this model, subjects respond based on recollection on some proportion of trials and degree of

match on the other trials. The joint influence of recollection and degree of match leads to a U-

shaped z-ROC function, and empirical nonlinear functions are taken as evidence for the dual-

process approach. Alternatively, DeCarlo (2002, 2003) showed that U-shaped functions can

be produced if the distributions of match values are probability mixtures of two different
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distributions, for example, distributions from items that were attended during study versus

items that were not attended at study (see Kelley & Wixted, 2001, for a similar approach).

In both DeCarlo's (2002, 2003) and Yonelinas's (1994) proposals, the nonlinearity of z-ROC

functions has been used to draw conclusions about the nature of memory evidence. In

Yonelinas's model, evidence comes from two qualitatively different processes; and, in

DeCarlo's model, it comes from a mixture of qualitatively similar processes. As we will

demonstrate, our model can produce nonlinear z-ROC functions without assuming two

qualitatively different processes or mixtures of processes. It follows, then, that z-ROC shapes

cannot be used to directly infer the nature of evidence from memory.

There have also been attempts to directly link SDT to RT in the recognition memory literature.

The hypothesis was that the nearer the quality of evidence from a stimulus to the criterion, the

longer the RT (e.g., Murdock, 1985; Norman & Wickelgren, 1969). However, this approach

fails to capture the shapes of RT distributions, and it fails to account for the relative speeds of

correct and error responses (see Ratcliff, 1978; Ratcliff, Van Zandt, & McKoon, 1999).

The Two-Choice Diffusion Model and Signal Detection Theory

Ratcliff's two-choice diffusion model has been successful in explaining accuracy values and

RT distributions for correct and error responses in a wide variety of tasks (Ratcliff, 1978,

1988, 2006; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; Ratcliff et al., 1999). In the

model, evidence toward the decision criteria, one criterion for one of the possible responses

and the other criterion for the other possible response, is accumulated over time. The

accumulation process is noisy, with noise normally distributed. The rate at which evidence is

accumulated, the drift rate, is determined by the quality of the information from the stimulus.

For example, in a perception experiment, the drift rate is determined by the quality of perceptual

information. In a recognition memory experiment, the drift rate is determined by the match

between a stimulus and memory. The quality of the information from stimuli of the same type

(e.g., the high-frequency words in a recognition memory experiment) varies across trials (with

a normal distribution). In other words, drift rate varies across trials. A criterion, the drift-rate

criterion, is set such that if the quality of the stimulus information is above the criterion,

evidence accumulates toward one of the decision criteria; and, if it is below, evidence

accumulates toward the other decision criterion. The drift rate criterion is exactly analogous

to the criterion in SDT (Ratcliff, 1978, 1985; Ratcliff et al., 1999).

For two-choice decisions, the diffusion model's interpretation of ROC functions is quite

different from the SDT interpretation despite their similarities— both using normal

distributions of stimulus information. The diffusion model has two types of adjustable criteria:

the two-response decision criteria and the drift-rate criterion. Manipulating either or both of

these can produce ROC functions. Hit and false-alarm proportions can be altered by moving

the starting point of the evidence accumulation process from nearer one of the decision criteria

to nearer the other decision criterion. This is optimal for random walk and diffusion models

for a single condition in the sense that it produces the highest overall accuracy in the minimum

average decision time (e.g., Laming, 1968). However, hit and false-alarm proportions can also

be altered by moving the drift rate criterion from nearer the mean evidence for new items to

nearer the mean evidence for old items. This is exactly the same as changing the criterion in

SDT. The two possibilities are identifiably different because moving the starting point shifts

the leading edge of the RT distribution more, whereas moving the drift criterion shifts the

leading edge less (Ratcliff, 1978, 1985; Ratcliff et al., 1999; for a detailed review, see Ratcliff

& McKoon, 2008). These differences between SDT and the diffusion model are key. For the

diffusion model, ROC functions can be produced by changing the starting point between the

decision criteria, changing the drift criterion, or both.
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A second difference between the SDT and diffusion model interpretations of ROC functions

is that in SDT there is only one source of noise, noise in the distributions of stimulus quality.

In the diffusion model, there are three sources that affect accuracy: the noise across trials in

the quality of evidence from a stimulus (the noise in drift rates across trials), the noise in the

accumulation of evidence process, and the noise in the criteria (or equivalently, in the starting

point). The three sources of noise are identifiable. In SDT, these sources of noise cannot be

separated; and so ROC functions cannot be uniquely attributed to noise in stimulus quality (see

McNicol, 1972).

More specifically, in the diffusion model, the effects of noise in the distributions of stimulus

quality can be attenuated by noise in the decision criteria (or starting point), noise in the

accumulation-of-evidence process, or both. For example, suppose that the slope of the z-ROC

function was 0.8. In standard SDT, this would mean that the ratio of the standard deviations

of the match distributions for new versus old test items would be 0.8. But if there were also

within-trial noise in the diffusion process and between-trial noise in the decision criteria, then

these sources of variability would add to the noise in the stimulus information. The diffusion

process noise and criterion noise affect all item types, which makes the variability for old and

new items more similar when all noise sources are conflated (as they are in SDT). The true

ratio of the standard deviations in just the stimulus information would then have to be smaller

than 0.8.

Modeling Confidence Judgments

A bias that has guided our model development is that each response category requires a separate

response (separate key press); and so each must correspond to a separate unit that accumulates

evidence to a decision criterion. Thus, we assume that each confidence category has a different

diffusion process accumulating evidence to a different decision criterion. This means that each

diffusion process has a different drift rate and we need to have some way of relating match

values from memory to drift rate in a way that is more constrained than simply assuming six

different drift rates for each stimulus type in an experiment. We chose to constrain the models

using an SDT representation in which the output from a match of a test item with memory is

a normal distribution (not a single value). On this match dimension, confidence criteria are

placed, and the areas under the normal distribution between criteria represent accumulation

rates in diffusion processes.

Our proposal is that there is no access to position of the process in any accumulator prior to

the process terminating (e.g., Ratcliff, 2006). This is in contrast to the proposals discussed

above that assume that confidence is computed from the difference in evidence between a

terminated process and the competing process that did not terminate (Van Zandt, 2000; Vickers,

1979) or that confidence is based on the position of a binary process some time after a yes/no

decision has been made (Pleskac & Busemeyer, 2007).

In simple decision making-tasks, it is well accepted that there are multiple sources of noise in

processing, as there are in the diffusion model discussed above. First, there is perceptual or

memory noise so that the encoding of the stimulus or the match between a test item in memory

is not the same on every trial of the same type. Second, there is noise added by the decision

process. Third, there is criterion noise such that the decision criteria do not have the same values

on each trial. A major advantage of sequential sampling models is that these sources of noise

are identifiable. As just mentioned, this contrasts with SDT in which these sources of noise are

not identifiable.

The fact that there are multiple sources of noise in the model has important consequences both

for z-ROC functions and for the two-choice diffusion model. Because the multiple sources of

variability in our model are identifiable, the slope of the z-ROC is a function not only of
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variability in memory strength across trials but also of decision variability, criterion variability,

and even decision criterion settings.

A Description of the RTCON Model

In a confidence judgment experiment, each confidence category requires a different response

(a different key press). In the RTCON model, evidence from a stimulus is accumulated to

decision criteria, with different criteria for each category. Unlike the balance-of-evidence

models discussed above, there is no access to information as it accumulates (e.g., Ratcliff,

2006). Our model is a natural extension of two earlier approaches: racing diffusion processes

(Ratcliff et al., 2007; Smith, 2000; Usher & McClelland, 2001) and distributed representations

of information in memory (Ratcliff, 1981). The model has some global similarity to the model

for RT in absolute identification by Brown, Marley, Donkin, and Heathcote (2008), which uses

a different representation of information but has racing accumulators, though they are

deterministic rather than stochastic, as in the model here. Note that in the cases in which models

with two racing diffusion processes and the standard diffusion model have been fit to two-

choice data, the two tend to mimic each other with the standard diffusion model fitting

numerically a little better (Ratcliff, 2006; Ratcliff & Smith, 2004; Ratcliff, Thapar, Smith, &

McKoon, 2005).

Output From the Match Process

The output of the process that matches a test item against memory is not a single discrete value.

Instead, it is a distribution over the match dimension (cf. Ratcliff, 1981, for similar assumptions

about the distribution of letter representations over ordinal position in the perceptual matching

task). The assumption that each individual item produces a distribution of match is the key to

how the model works. The top panel of Figure 2 illustrates the distribution for one old test item

and the second panel illustrates the distribution for one new test item. For all test items, these

distributions are normal with SD = 1.0. The lines on the two panels are the confidence criteria

for six confidence categories, to be discussed below.

We assume that for the same item type, from trial to trial, it is impossible to produce identical

distributions over match values. This was an early assumption by Ratcliff (1978) and

subsequently proved necessary for diffusion models to correctly account for the relative speed

of correct and error responses (Ratcliff, 1981; Ratcliff et al., 1999). For items in the same

condition (e.g., high-frequency words), the positions (means) of their normal distributions vary

across trials, as shown in the third panel of Figure 2. The fine lines are the distributions for

individual test items, each with the same standard deviation, and the bold line is the distribution

of their means across trials. For our first experiment, the distributions of the means for the four

conditions in the experiment are shown in the bottom panel of the figure. The variability in the

means of the distributions from trial to trial is similar to the variability that is assumed in SDT.

But, as we show later, the ratios of the standard deviations in the RTCON model are not the

same as the SDT ratios provided by the slopes of the z-ROC functions. Further discussion of

the differences in the means and standard deviations of these distributions will be presented

below.

The Decision Process

The confidence criteria divide the match dimension into regions, one for each confidence

category. The size of a region, that is, the area under the curve for the region, provides the drift

rate for the diffusion decision process for that confidence category. The confidence criteria for

six categories are illustrated in the top two panels of Figure 2. In the top panel, the black region

is the area under the curve and drift rate for highest confidence old test items.
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Figure 3 shows how the distribution of match for a single test item is mapped to the decision

process. The top panel illustrates that the decision criteria for the different confidence

categories can be different from each other. The confidence criteria divide the match dimension

into regions. For example, the black area in the middle panel determines drift rate for the highest

confidence “old” response, the area immediately to its left determines drift rate for the medium

confidence “old” response, and the next area to the left determines drift rate for the lowest

confidence “old” response. The top panel shows the six accumulators and the amount of

evidence in each at some point in time before any of them have reached criterion. The far right

area in the top panel is relatively large, so its drift rate is relatively large, so the amount of

evidence that has been accumulated in the highest confidence “old” category is relatively large.

The area in the category to the immediate left is smaller, so the drift rate is smaller, so the

amount of evidence in the medium confidence old category is smaller. However, we stress that

because the accumulation process is noisy, the accumulator with the most evidence at this time

point will not necessarily be the one that wins.

Unlike SDT, the values of the confidence criteria are not uniquely identifiable from the

proportions of responses in the confidence categories because the decision criteria can trade

off against the confidence criteria. For example, the proportion of responses in one of the

confidence categories can be decreased either by moving the confidence criteria closer together

or by increasing the decision criterion for that category. In the RTCON model, the constraints

provided by RT largely eliminate tradeoffs between the decision and confidence criteria as we

show using Monte Carlo simulations later.

Decision Process Dynamics

Each accumulator implements an Ornstein-Uhlenbeck (OU) diffusion process with normally

distributed noise in the accumulation process. The OU process adds a decay factor to the

standard diffusion process. As a function of the amount of evidence in an accumulator, a term,

kx, is subtracted from the drift rate. k is the decay constant (in units of 1/ms) and it is multiplied

by the current amount of evidence, x. In modeling RT distributions with racing diffusion

processes, if decay is set to zero (i.e., a Wiener diffusion process), the tails of the distribution

are not skewed out enough. This contrasts with the diffusion process with one accumulation

process in which estimates of the OU decay parameter are zero (Ratcliff & Smith, 2004).

The equation for the change in evidence, dx(t), for a small time step, dt, is

(1)

where v is the drift rate (in units of 1/ms) derived from the area between confidence criteria

(where drift rates sum to 1), k is the decay rate (in units of 1/ms), a is the scaling parameter,

σ2dt is the coefficient of the diffusion process, representing within trial noise (σ2 in units of 1/

ms), and x is the current position in the process, that is, the current amount of evidence in the

accumulator (Brown, Ratcliff, & Smith, 2006). The parameters (except for drift rate) are the

same for all the accumulators. In implementing the model, we replaced the continuous equation

in Equation 1 with one that uses small discrete steps to approximate the continuous model as

is shown in Figure 3. In this form, dx(t) is replaced by Δx(t) and dt is replaced by Δt, where

these latter terms refer to small discrete steps. Evidence in this model is not allowed to fall

below zero; if it were to fall below zero at a particular iteration of the model, it is reset to zero.

Justification for Using a Distribution of Match Values for a Test Item Instead of a Single Value

For each confidence category, we use the area under the distribution of match to drive drift

rate, not the height of the distribution or position on the match dimension. This means that if
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there is a large area between two of the confidence criteria, there is a lot of evidence for that

confidence judgment. In contrast, if the height of the function (i.e., one component of a

likelihood computation) or position was used, there would be no way of making one confidence

response highly probable, the next not probable and the next one highly probable. This is

illustrated in the left bottom panel of Figure 3; the black area represents a judgment that is

unlikely, but the two to either side of it are more likely because their areas are larger. If height

were used, the middle category would have the highest probability, the judgment corresponding

to the black area a lower probability, and the area to the left of the black area a still lower

probability. However, subjects vary in how they distribute responses across confidence

categories. For a given category, some subjects might make very few responses, whereas others

might make many. In the bottom panel of Figure 3, the heights of the black areas in the two

figures are much the same, but the proportion of responses in them is different. Similarly, if

the position on the match dimension were used (e.g., strength), the match values for the two

cases in the bottom panel of Figure 3 would produce much the same values of match. Our

model captures the differences in response proportions by using area under the curve between

confidence criteria.

Drift rates strongly depend on memory strength in the RTCON model. As individual item

memory distributions shift to the right (i.e., as strength increases), high drift rates shift from

the low end of the response scale (on the “sure new” side) to the high end of the response scale

(on the “sure old” side). For an item with very high strength, much of the distribution will fall

above the highest confidence criterion, leading to a very high drift rate for the highest

confidence old response.

It is a little unusual to assume that the area under the distribution leads to drift rates (but see

Gomez, Ratcliff, & Perea, 2008; Ratcliff, 1981). An area should not be construed as

representing the probability that an item has that drift rate because all items have to be assigned

drift rates. We see no compelling reason that a traditional quantity, such as some value of

strength, can be the only possible quantity that can drive a decision process. To understand

how area could drive the decision process, suppose that a comparison for a single item involves

multiple samples from the distribution of evidence. When a random sample from the

distribution falls between the confidence criteria corresponding to an accumulator, then a small

fixed increment is added to that accumulator. Then, an accumulator that corresponds to a large

area would receive a larger number of increments and, hence, a higher drift rate than an

accumulator that corresponds to a small area. It is possible to speculate how this might be

accomplished neurophysiologically: If each accumulator (i.e., finger in this case) is fed by a

spatially represented motor area, then differences in the number of neurons contributing to

each accumulator might correspond to the area under the curve between the confidence criteria

(with more neurons corresponding to a larger area). Of course, these are metaphors, and more

would be needed to integrate the model with neural models or even neurophysiology (e.g.,

Ratcliff et al., 2007).

Predictions From the RTCON Model

Generating predictions from the model requires simulations because there are no exact

solutions for RTs or confidence judgments. For the predictions presented here, we used 20,000

simulations for each condition in an experiment (e.g., high/low-frequency words, old/new test

item).

Recognition memory confidence judgment experiments often produce data for which z-ROC

functions are linear with slopes less than 1. Our model must be capable of producing this pattern

of results at the same time that it fits the RT distributions for each of the confidence categories.

The model must also be capable of producing nonlinear z-ROC functions because individual
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subjects can produce nonlinearity consistently across the conditions of an experiment

(Malmberg & Xu, 2006; Ratcliff et al., 1994). As pointed out above, in the traditional SDT

analysis, if a z-ROC slope is different from 1, then the match distributions must have different

standard deviations for old versus new test items. Our model does not have this requirement.

The reason the RTCON model does not have the requirement is that z-ROC slopes different

from 1 can be produced by differences in the decision criteria for the confidence categories.

These differences can produce slopes different from 1 even when the standard deviations in

the match distributions are the same for old and new test items. If the decision criteria increase

from the high-confidence new category to the high-confidence old category and the standard

deviation in match across trials is the same for old and new items, then the z-ROC slope will

be less than 1. Differences in decision criteria can be separated from differences in the standard

deviations of the old and new items' distributions because these two possibilities have distinctly

different signatures in the location and spread of RT distributions. If one of the decision criteria

increases and all the others remain the same, the RT distribution shifts and spreads towards

longer RTs and fewer responses occur in the corresponding confidence category. If the standard

deviation of a match distribution increases, then the proportions of responses in the middle

confidence categories tend to decrease and the proportions in the extreme categories tend to

increase with only small changes in the RT distributions.

Figure 4 shows predicted z-ROC functions, values of the decision criteria, and across-trial

distributions of match values. Panels A, B, and C show the behavior of the model when the

old and new item distributions have equal standard deviations. In Panel A, the decision criteria

are all equal to each other. In Panel B, the decision criteria increase from the “sure new”

category on the left to the “sure old” category on the right, and the slope of the z-ROC function

is less than 1, 0.84. Panel C shows the additional effect of increasing the mean of the old item

distribution, an even larger decrease in the slope, to 0.59 (e.g., Heathcote, 2003;Hirshman &

Hostetter, 2000). Slopes greater than 1 can be obtained in the same way if the decision criteria

decrease from “sure new” to “sure old.” The important point of this demonstration is that, for

the B and C panels, the standard deviations of the old and new distributions are equal to each

other but the slopes of the z-ROC functions are less than 1. This means that, in the framework

of the RTCON model, the standard SDT interpretations of z-ROC slopes are wrong. They do

not necessarily represent the ratio of the standard deviations of the distributions of match across

trials for new and old test items.

Panel D shows what happens when the distributions of match across trials for old and new test

items have unequal standard deviations. If the old item distribution has the larger standard

deviation and the decision criteria have the same values across the confidence categories, then

the slope of the z-ROC function is less than 1, but again it is not the ratio of the standard

deviations. The slope is attenuated, closer to 1 than the ratio of the standard deviations. This

occurs because the other sources of variability in the model combine with variability from the

distributions of match (as in standard SDT with criterion variability, McNicol, 1972, pp.

199-204). The ratio of new and old item distribution standard deviations will rarely match the

slope of the z-ROC. If the values of the two old- and new-item standard deviations increase,

the z-ROC slope will approach the ratio. But these are not free to vary; they are estimated in

fits to the data.

Panels E and F show ways in which the model can produce nonlinear z-ROC functions. An

inverted-U-shaped function is produced when the values of the confidence criteria are larger

for the middle than the end categories, and a U shape is produced when the middle criteria have

lower values than the end criteria. Nonlinear functions are often obtained, especially for the

data from individual subjects. For example, in the studies by Ratcliff et al. (1994), some subjects
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showed U-shaped z-ROC functions, and others showed inverted-U-shaped functions, and these

shapes were consistent across the conditions of the experiment.

It is important to remember that the RTCON model makes strong predictions about the RT

distributions for each confidence category, although the predictions are not discussed here

because their relationship to z-ROC functions is not simple and easy to understand. However,

it must be stressed that the RT distributions severely constrain the model. The model must

accurately predict both the proportions of responses in each confidence category and the RTs

in each category: The predictions for ROC functions can be obtained only when all aspects of

the data are fit simultaneously.

The simulations presented in Figure 4 demonstrate that the RTCON model is able to produce

a wide range of z-ROC shapes, including linear, U-shaped, and inverted-U-shaped functions.

This flexibility is a virtue given that all of these functional forms have been observed, but critics

may conclude that the model is overly flexible and can fit any arbitrary z-ROC pattern.

Critically, this conclusion ignores the additional constraints placed on the model by RT data.

We performed a simulation to demonstrate the impact of RT data on the model's flexibility in

accommodating z-ROC form. We generated data from parameters that produce a roughly linear

z-ROC. We then hand adjusted the proportions to create an inverted-U shape in the z-ROC,

but we left the RT quantiles unaltered. We fit the model to this adjusted dataset either fitting

only the response proportions or fitting both response proportions and RT quantiles. When the

model was fit to response proportions only, the predicted proportions matched the curved z-

ROC function. Of course, we would never want the model to be fit to such a limited dataset,

but this shows that the model is capable of producing the nonlinear z-ROC function. When the

model was fit jointly to response proportions and RT quantiles, the predicted z-ROC function

was more linear than the target data—predictions in the middle of the function missed low,

whereas predictions at the end of the function missed high. Fitting reaction time quantiles that

were appropriate for a linear z-ROC constrained the model so that it could not dramatically

depart from linearity and so could not fit the contrived z-ROC curvature.

Fitting the Model to Data

In Experiment 1, presented below, there are four conditions (high-and low-frequency, old and

new test words) and because RT quantiles are fit, there are 140 degrees of freedom in the data.

In the model for these conditions, there are 24 parameters free to vary.

From Equation 1, there are three parameters that describe the change in amount of evidence

as a function of time in the accumulation process that are common to all accumulators: the

scaling parameter (a) accumulation rate, the standard deviation of the diffusion decision

process as evidence is accumulated over time (the square root of the diffusion coefficient; σ),

and decay (k). The scaling parameter was fixed at .1 in the first experiment. There are five

confidence criteria (placed on the match dimension to give six confidence categories) and six

decision criteria (one for each category). Ter is the duration of all the nondecision components

of processing combined (e.g., encoding the test word, memory access, response output). The

nondecision component and the decision criteria vary across trials (just as in the two-choice

model, Ratcliff, 1978; 1981; Ratcliff & McKoon, 2008; Ratcliff et al., 1999). The nondecision

component varies uniformly with range st (see Ratcliff, Gomez, & McKoon, 2004; Ratcliff &

Tuerlinckx, 2002 for justification) and the decision criteria vary uniformly with the same range

for each of them (sz).

In our experiment with the four conditions (high- and low-frequency, old and new test words),

the differences among them are determined by the mean values of match for the four conditions,

with the mean of the high-frequency new items set to zero. The match values are normally

Ratcliff and Starns Page 11

Psychol Rev. Author manuscript; available in PMC 2009 June 9.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



distributed across trials with standard deviations, σho, σhn, σlo, and σln, where the subscripts

h, l, o, and n refer to high frequency, low frequency, old, and new, respectively.

We used a straightforward method for fitting the model to data. First, we chose some set of

parameter values (that produced predictions somewhere near the data) and generated

predictions for the proportion of responses in each confidence category and their RTs. Then

the parameters were adjusted until the predictions matched the data as closely as possible, using

the robust simplex function minimization method (Nelder & Meade, 1965).

For simulation of the process given by Equation 1, we used the simple Euler's method with 10-

ms steps (cf. Brown et al., 2006; Usher & McClelland, 2001). Response proportions and .1, .

3, .5, .7, and .9 RT quantiles were generated for each confidence category for each condition

of the experiment using 20,000 iterations of the decision process for each condition. The results

were checked with 1-ms steps to make sure there were no serious deviations as step size was

reduced so as to more accurately approximate the continuous diffusion process. All differences

between parameter values for the two sets of fits for the different step sizes were less than 10%.

For each evaluation of the model, a chi-square statistic is computed over each bin between the

quantiles and outside the extreme quantiles for the six confidence categories (see Ratcliff &

Tuerlinckx, 2002). Specifically, .1 probability mass lies outside each of the .1 and .9 quantile

RTs, and .2 probability mass lies between the .1, .3, .5, .7, .9 quantile RTs, and this leads to

six bins per confidence category. The chi-square statistic uses the number of observations in

these six bins as the observed values. For the expected values, the quantile RTs from the data

and the RT distributions from the model are used to find the proportion of responses predicted

from the model between these quantile RTs. Then these are multiplied by the total number of

observations to give the expected proportions. The standard chi-square value is computed from

(O-E)2/E, where O denotes the observed frequency and E denotes the expected frequency.

There are six bins per confidence category, with six confidence categories, which gives 36

degrees of freedom, but the 36 numbers have to add to 1, which reduces degrees of freedom

to 35. With four types of items (as in Experiment 1), this gives a total number of degrees of

freedom of 140.

In other work (e.g., Ratcliff & Smith, 2004), we have found that the Wilks likelihood ratio chi-

square statistic, G2, produces almost identical fits to those using the chi-square statistic. These

two statistics are asymptotically equivalent, i.e., they approach each other as the number of

observations becomes large (see Jeffreys, 1961). A third statistic, the Bayesian Information

Criterion (BIC; Schwarz, 1978), can be derived from the G-square statistic. The BIC takes into

account the number of parameters in a model (see Ratcliff & Smith, 2004, for application of

BIC to evaluation of sequential sampling models). The best fit of a single model to a single

data set according to the G-square statistic is also the best fit according to the BIC. Until

competitive model testing is needed, these methods are essentially equivalent for our purposes.

For a set of starting values for the parameters and a range in each of the starting values, the

simplex routine computes a set of N + 1 values of chi-square where N is the number of

parameters. A set of ranges in the parameter values is also provided to the routine, in our case,

20% of each parameter value. N of the chi-squares use the starting parameter values, but with

one parameter value perturbed away by the range provided to the routine. The remaining chi-

square has all the parameters perturbed. The simplex routine then determines which chi-square

is the largest and adjusts the parameter values to make it smaller. The largest of the N + 1 values

is again determined from the new parameter values, and parameter values are again adjusted.

This process continues until some tolerance level in the change in the parameter values and a

tolerance level in the change in chi-square is reached (the parameter values change by less

than .001% percent and chi-square less than 0.1, say), or the maximum number of iterations is
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reached. In our fitting programs, we let the process reach a minimum and then restart it, in our

case, seven times, with the parameter values for the new run being the parameter values for

the old run with a new 20% range on the values.

The process is not guaranteed to reach a global minimum, i.e., the best fit. In fact, we often

have to rerun the program changing the starting values because the program gets stuck in a flat

part of the parameter space (i.e., the value of chi-square does not change much if the parameter

values are perturbed). However, the main point is that the quality of the fit shows how well the

model can do. It might be able to do better, but it can do at least as well as presented below.

The predictions of the model are then generated from a separate version of the fitting program.

If the fits are adequate, then we have demonstrated the adequacy of the model.

From our experience with the model, it is unlikely that a completely different set of parameter

values will produce a better fit. The issue is: if a different set of values produces a better fit,

the parameter values might produce a different interpretation of, for example, the relationship

between the across trial variability in the familiarity distributions and z-ROC functions.

However, we have each written a separate fitting program and tried a wide range of parameter

values to see if better fits could be obtained. We believe we are pretty near the optimum values.

Experiment 1

Experiment 1 was designed to provide enough data to allow the model to be evaluated. To this

end, subjects were tested on between 8 and 10 sessions. Experiment 1 used a standard

recognition memory paradigm with confidence judgments as responses. Subjects studied lists

of pairs of words, each list followed by a recognition test of single words. Pairs were used on

the study lists to encourage subjects to encode the words as strongly as possible. Study and

test words were displayed on a PC monitor. The study and test words were either high in

Kucera-Francis frequency or low. In each study list, half the words were high frequency and

half low, and in each test list, there were equal numbers of old and new, high- and low-frequency

words. For every test item, subjects were asked to make a confidence judgment on a 6-point

scale, from sure new to sure old.

Method

Subjects—Ten undergraduate students from Ohio State University participated and earned

$10 for each completed session. Two subjects completed 10 sessions, one completed 9 sessions,

six completed 8 sessions, and one completed 7 sessions. The first session for each subject was

considered practice and not included in the analyses.

Materials—The stimuli were drawn from a pool of 814 high-frequency words and 859 low-

frequency words. High-frequency words ranged from 78 to 10,595 occurrences per million

(M = 323.25; Kucera & Francis, 1967). Low-frequency words ranged from 4 to 6 occurrences

per million (M = 4.41). Each study list was constructed by randomly selecting (without

replacement) 16 high-frequency words and 16 low-frequency words from the pools. The words

were randomly paired to create 16 pairs such that the two words of a pair were both either high

frequency or low frequency. Each pair was presented twice in the study list, with at least one

other pair intervening. Four pairs (two high and two low frequency) served as buffer items for

the study list, presented in the first two and the last two positions of the list. The remaining 12

pairs (6 high and 6 low frequency) were randomly assigned to the middle study list positions.

Test lists consisted of the 24 nonbuffer words from the study list (12 high and 12 low) along

with 12 high-frequency and 12 low-frequency new words. Test words appeared on the screen

one at a time in random order.
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Procedure—Each experimental session lasted approximately 45 minutes and consisted of a

response-key practice block followed by 10 study/test blocks. Subjects responded using the

Z, X, C, comma, period, and slash keys on the PC keyboard, which were marked with stickers

labeled “−−−”, “−−”, “−”, “+”, “++”, and “+++”, respectively. Subjects placed the ring, middle,

and index fingers of their left hand on the “−−−”, “−−”, and “−” keys and the index, middle,

and ring fingers of their right hand on the “+”, “++”, and “+++” keys. Subjects were instructed

to use this mapping of fingers to response keys throughout the entire experiment.

For each item in the response-key practice, a response key label (e.g., “+++”) appeared on the

computer screen and subjects were required to press the indicated key as quickly as possible.

A message reading “TOO SLOW” appeared on the screen following any response with a

latency longer than 800 ms. The response practice block contained 20 repetitions of each of

the six response key labels for a total of 120 trials. The labels appeared in a random order with

the constraint that the same label could not be repeated on successive trials. RT quantiles for

the practice/calibration blocks of trials did not show significant differences across the different

keys.

After the response-key practice, subjects completed the study/test recognition memory blocks.

Subjects initiated the beginning of each study list by pressing the spacebar. Each word pair

was displayed for 1,800 ms followed by 50 ms of blank screen. A message prompting subjects

to press the space bar to begin the test list appeared immediately after the final study-list pair.

Each test word remained on the screen until a response was made. Subjects were instructed to

hit one of the “−” keys to indicate that the test word was not on the study list and one of the

“+” keys to indicate that it was. They were also told to use the keys to report their degree of

confidence that their response was correct, with more +'s or −'s reflecting a higher level of

confidence. Subjects were encouraged to respond both quickly and accurately. They were told

to use the confidence ratings in any way they pleased to best reflect their confidence in each

decision. They were not told that they had to use all of the response keys. They received

accuracy feedback such that the word “ERROR” appeared on the screen for 1 s following an

incorrect response. An incorrect response was defined as a −, −−, or −−− response to an old

item or a +, ++, or +++ response to a new item.

Results

There are five main results, discussed in detail below: First, the model fits the proportions of

responses in each confidence category and their RT quantiles well. Second, because the model

fits response proportions, it also fits z-ROC functions. Third, the model fit the data well for

subjects that showed linear as well as inverted-U-shaped z-ROC functions. Fourth, the model

accommodated the data when the slopes of the z-ROC functions were quite different from the

ratios of the standard deviations in the distributions of match values. Fifth, the model

accommodated sequential effects; the slope of the z-ROC function was different for responses

following an “old” response than a “new” response.

Quantile RTs and response proportions—Figure 5 shows the quantile RTs for the six

confidence categories. The “sure new” category is labeled 1 and the “sure old” category is

labeled 6. Five quantiles are shown, the RTs for the .1, .3, .5, .7, and .9 quantiles. For all the

confidence categories, the differences between the .7 and .9 quantiles are somewhat larger than

the differences between the .1 and .3 quantiles, reflecting the right skew that is commonly

obtained in RT experiments. There are only small differences in the quantiles across the

confidence categories, although the higher quantiles do show somewhat larger differences than

the lower quantiles. The reason that the RT distributions are relatively similar in location and

spread is likely due to the amount of practice we gave the subjects.
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Figure 6 shows the fits of the model to the data. The black dots are RT quantiles (same as in

Figure 5) and the Xs are the model's fits for them. Each of the six columns of quantiles is the

data for one of the six confidence categories, from “sure new” (−−−) to “sure old” (+++). The

x-axis shows the proportions of responses in each of the confidence categories. The tick marks

on the x-axis (the small scales around each response proportion) are the ranges from x − .125

to x + .125 (illustrated in the box at the bottom of the figure). The ellipses represent how much

variability there is in each quantile for each confidence category, in other words, the variability

that would be observed if the experiment were repeated with different subjects. The variability

estimates were calculated with a bootstrap computation. Five hundred sets of data were

generated from data randomly chosen (with replacement) from the 10 real subjects' data (RTs

and proportions of responses for each confidence category). From these data, the standard

errors in the RT quantiles and response proportions were calculated. They are displayed in

Figure 6, with 2-SE ellipses around each data point. In each case, the predictions made by the

model from its best-fitting parameter values fall within the 2-SE ellipses.

We examined whether we needed variability in decision criteria from trial to trial (decision

criteria were assumed to be uniformly distributed with range sz), variability in confidence

criteria, or both. We refit the model with no variability in decision criteria and variability in

confidence criteria (uniformly distributed, but not allowing any criterion to cross a neighbor)

and found roughly equivalent fits. Allowing both to vary provided about the same goodness

of fit as for variability only in decision criteria. For this reason we decided to only allow decision

criteria to vary from trial to trial. But this does not mean that confidence criteria do not vary

from trial to trial, rather the goodness of fit for this experiment is not improved by allowing

them to vary. Future experiments may require such variability.

Parameter values—The model was fit to the data for individual subjects and to the data

averaged over subjects. The best-fitting parameter values for the group data were similar to

the averages of the parameter values for the individual subjects (Tables 1 and 2). The standard

deviations in the parameter values that are shown in the tables are the standard deviations across

individual subjects. In only one case is there a difference between the two sets of parameter

values that is larger than one standard deviation. Thus, at least for this experiment, fitting group

data gives about the same values as fitting individual subject data.

z-ROC functions—Figure 7 shows the z-ROC functions for the group data (the circles in

the figure) and the values predicted by the model (the Xs in the figure). The middle diagonal

line is a reference line with slope 1. The ROC function from the data and the function predicted

from the model are the lines to the upper left of the reference line. The model's predictions are

so close to the data that the two functions almost completely overlap for both slope and

intercept. The predicted and observed functions are slightly nonlinear with inverted ⋃ shapes.

The slopes are less than 1, slightly lower for low-frequency words (0.86) than high-frequency

words (0.92). A paired-samples t test showed that the frequency effect on slope was significant,

t(9) = 3.93, p < .01.

It is important to stress that the model's predictions for the z-ROC functions are completely

constrained by the proportions of responses in each confidence category and the quantile RTs.

This means that the parameters of the model cannot be adjusted to produce better fits to the z-

ROC functions without affecting the fits for all of the data, the response quantiles and

proportions for each confidence category and each experimental condition. The z-ROC

functions can be calculated only after the model generates its best fitting values for the response

proportions and quantile RTs.

Figure 8 shows the observed and predicted z-ROC functions for high- and low-frequency words

for each of the subjects individually. The slopes vary from 0.76 to 0.98 across subjects and

Ratcliff and Starns Page 15

Psychol Rev. Author manuscript; available in PMC 2009 June 9.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



frequency conditions. The z-ROC functions are inverted ⋃ shapes for some of the subjects

(e.g., AT, LB, and SA). In general, the observed and predicted slopes and intercepts are close

to each other.

As discussed in the introduction, the slope of a z-ROC function has previously been taken as

a direct measure of the ratio of the standard deviations in match values for old and new test

items. For our experiment, this was not the case. The ratio of the standard deviations in match

across trials that was estimated from the model's best-fitting parameter values (for the group

data) was 0.39 for low-frequency words and 0.65 for high-frequency words. In the individual

subject fits, the standard deviation ratios for high- and low-frequency words were significantly

different, t(9) = 4.66, p < .01. The ratios from the RTCON model are quite different from the

standard deviations that would be calculated directly from the data's z-ROC functions, 0.86

and 0.92, respectively. So, as discussed earlier, when RTs are taken into account and when

there are multiple sources of noise in processing, then the SDT mapping between distributions

of match values and z-ROC slopes is not valid.

Individual differences—In other research in which RT distributions have been examined

for confidence judgments or, more generally, tasks that provide one of several possible

responses (e.g., absolute identification, Brown et al., 2008), different patterns of RT data are

sometimes obtained. Murdock (1974) and Murdock and Dufty (1972) presented results that

showed that mean RT increased by 500 ms going from high-confidence to low-confidence

responses (see also Norman & Wickelgren, 1969; Ratcliff & Murdock, 1976). One possible

explanation of these results is that subjects make a judgment about high confidence and then

move to lower confidence decisions (e.g., the conveyor belt model makes this assumption

explicitly; Murdock, 1974, p. 271; Murdock & Anderson, 1975).

In piloting the experiments reported here, we ran a few subjects in this experiment first with a

set of sessions with instructions to use categories as they wished, then sessions in which they

were told to spread their responses across categories, and finally revert to how they performed

the task originally. The results for one subject are shown in Figure 9. Initially, there was a huge

bow in all RTs, then with the “spread responses across categories” instruction, the bow

disappeared, and finally the subject was unable/unwilling to perform as he did in the first set

of sessions. One other subject out of 5 showed the same kind of bow in the initial set of sessions,

the other 3 showed data very much like those in Figure 5.

These results show that, for an individual, performance may be under strategic control and that

subjects may evaluate some of the response categories first and then evaluate some of the others

a little later. But it is clear that performance can be under strategic control and that individual

differences can be large. Note that the RTCON model cannot accommodate the large bow in

the leading edge of the distribution coupled with a bow in the other quantiles that is not too

much larger than the leading edge bow. When the model produces a bow in the leading edge,

it produces a much larger bow in the higher quantiles, unlike the data for the subject in the top

panel of Figure 9.

To investigate the bowing effect in a little more detail, we examined the difference in the .1

quantile RTs in the middle four confidence categories and the extreme two confidence

categories in the data from Experiments 1 and 2 of Glanzer, Kim, and Hilford (1999). These

correspond to the two extreme categories and the middle four categories in the top panel of

Figure 9. Figure 10 shows the difference in the .1 quantile RTs averaged over all conditions in

the experiment plotted against mean RT for all the subjects in the two experiments. The plot

shows that a number of subjects (maybe half) show little bow in the leading edge, but there are

some subjects who show a large bow. But the size of the bow is a function of mean RT. This

means that the bow is more pronounced when mean RT is larger, which is consistent with our
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contention that the bow might be the result of strategic effects or sequential evaluation (first,

decide whether the stimulus belongs in a high-confidence category, then, if not, decide about

lower confidence categories). The Glanzer et al. experiments used one session of data with

unpracticed subjects. Figure 10 shows that without practice, mean RTs (for all except 2 or 3

individual subjects) are much larger than those in Experiment 1 (which has means around 700

ms). In fact, about 14 subjects in Glanzer et al.'s experiments have means three times those in

Experiment 1. It is hard to believe that there is only a single decision process running when

the mean RT is over 2 s and the .9 quantile RT is well over 3 s.

In an additional analysis, we present the accuracy of responses in the six confidence categories

(see Table 3). This shows that accuracy increases as confidence increases, as is found in other

studies (e.g., Mickes, Wixted, & Wais, 2007).

Sequential effects—An important prediction from standard SDT is that the ROC slope

should not change as a function of the prior response. This prediction comes from the

assumption that the slope of the z-ROC function measures the ratio of standard deviations for

noise and signal distributions (in the memory application here, new and old item match

distributions) and the standard deviations should not change as a function of prior response.

Even if the signal and noise distributions were not normal, there should be no change in the

slope as a function of the prior response. However, the z-ROC slopes from the experiment

reported here did change as a function of the prior response. Figure 11 shows the functions

(averaged over high and low word frequency) for responses following an “old” response and

following a “new” response.1 The slopes differ by 0.09. This is a large difference: Differences

between slopes of 0.8 and 1.0 have fueled a great deal of theoretical work in evaluating global

memory models. In standard SDT, the interpretation of the 0.09 difference would have to be

that the standard deviations of the old and/or new distributions change a great deal depending

on the prior response.

In contrast, the RTCON model accommodates the sequential effects observed in the experiment

while fitting response proportions (and hence ROC functions) and RT quantiles. The data used

for fitting are averaged response proportions and RT quantiles over word frequency and

subjects. For the best fits to the data, all parameters other than the decision criteria were fixed

and the fits showed the decision criteria changed by about 5% between an “old” previous

response and a “new” previous response. The change in the criteria for prior “old” minus prior

“new” were, in order from “sure new” to “sure old,” 0.116, 0.004, 0.108, −0.110, −0.072, and

−0.198. The “new” decision criteria were higher when the previous response was “old,” and

the “old” decision criteria were higher when the previous response was “new,” as illustrated

in the bottom panel of Figure 11 (note that the sizes of the differences in decision criteria

displayed in Figure 11 are exaggerated). Analyses of sequential effects in the two-choice

diffusion model are similar and the effects are explained by changes in criteria (Ratcliff,

1985; Ratcliff et al., 1999).

A sequential effect on the slopes of z-ROC functions is not unique to our experiment. Table 4

shows the same analysis carried out on six different published experiments, some that used

high-versus low-frequency words and some that manipulated encoding strength (study time or

number of repetitions). For each experiment, changes in slope as a function of prior response

were computed for each condition and averaged. The slopes and intercepts in Table 4 result

from 40 different conditions in the experiments, with no cases in which the slope after an “old”

response was less than the slope after a “new” response. In each experiment, the slope of the

z-ROC function differed as a function of the prior response by about 0.1.

Sequential effects on z-ROC slopes parallel the findings of studies that have explicitly

manipulated response bias in a confidence judgment procedure. Van Zandt (2000) varied the
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proportion of test items for which the correct response was “old” versus “new” and the relative

rewards associated with “old” and “new” responses. After an old/new response, a confidence

judgment was produced. The z-ROC slopes were larger in conditions that biased positive

responding (high proportion of old test words or a large reward for old responses) than

conditions that biased negative responding (low proportion of old test words or a large reward

for new responses). Similar effects have been observed in perceptual signal detection tasks

(Balakrishnan, 1998; Mueller & Weidemann, 2007). The sequential effects we obtained in our

experiment are consistent with the biases just described; subjects are biased to use the same

response as the previous trial. This yields higher slopes after yes responses and lower slopes

after no responses. As outlined above, the RTCON model explains this slope effect in terms

of the values of the decision criteria. Variation in decision criteria also provides a qualitative

explanation for Van Zandt's (2000) data.

The fact that, within an experiment, the z-ROC slope can change considerably for each

condition of an experiment as a function of the prior response poses serious problems for any

effort to use z-ROC slopes to interpret memory processes. It is difficult to imagine how changes

in slope come about in SDT in which slope is interpreted as a direct measure of the relative

standard deviations of the noise and signal distributions. For our model, it is natural for decision

criteria to vary as a function of prior response; and, in our experiment, such variation was

enough to explain differences in slope. We do not propose a model for the behavior of decision

criteria; that is something that has not been done successfully for models of two-choice

decisions (see discussion in Ratcliff & McKoon, 2008). However, these results show what

kinds of behavior of parameter values such a model should aim to explain (e.g., Triesman &

Williams, 1984).

Fits to individual subject data—Turning to the fits of the model to the data from individual

subjects, the mean chi-square value was 443 with a SD of 104. The mean, 443, is 2.6 times the

critical value (168.6). This indicates a mismatch between theory and data. The size of the

mismatch is about what has been obtained in other experiments with diffusion models. For the

two-choice decision model, Ratcliff, Thapar, Gomez, and McKoon (2004) examined how large

misses between model and data had to be in order to produce increases in chi-square values as

large as 2 to 3 times the critical value. They did this because the chi-square goodness of fit

values were typically 2–3 times the critical value. They found that a miss as large as .1 in the

proportion of responses between quantiles would be large enough to produce an addition to

the chi-square as large as the critical value. Specifically, for the observed data, for the .3, .5,

and .7 quantiles, there is .2 probability mass between them. If, for one of the conditions, the

predicted proportions between these quantiles changed from .2 and .2 to .1 and .3, the addition

to chi-square was as large as the critical value. This suggests that relatively small systematic

deviations in the quantile RTs are enough to produce the observed inflated chi-square values.

We performed an analysis similar to that of Ratcliff et al. (2004) using the data from the

experiment reported here. We generated a simulated data set using the average parameter values

across subjects and a sample size corresponding to eight sessions of data. The chi-square of a

fit to these data with the true parameter values was 155. We then perturbed each quantile

reaction time by 10 ms. We randomly selected whether each quantile was increased or

decreased with equal probability. This slight perturbation of the quantile data increased the

chi-square to 410. This demonstration shows that minor sources of variation outside of those

incorporated into the model can lead to large increases in chi-square. Thus, the fairly high chi-

squared values from individual subject fits do not undermine the quality of the fits and should

not be considered evidence against the model. In contrast, modest alterations to the response

proportions had only minor effects on the chi-square values.
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In summary, although the chi-square values are significant, the goodness of fit values are

adequate in the context of other sequential sampling models for RT and accuracy.

Correlations among parameter values—If there were large correlations among the best-

fitting parameter values, then our interpretations of the differences in parameter values that we

found would be suspect. For example, we might offer an interpretation of the difference

between two parameters when, in fact, the difference was caused by other, correlated,

parameters.

To check this, we examined covariances among parameter values using Monte Carlo

simulations. The same method used to generate predicted data for model fits was used here to

generate data from simulated subjects. The number of simulations per condition was not

20,000, as in fitting the model to data, but, instead, the average numbers of observations for

each subject in the experiment: 900 observations for each of the four conditions defined by

high- and low-frequency words and old and new test words. Data for 50 simulated subjects

were generated using the parameter values for the best fits to the group data (see Tables 1 and

2). We fit the model to each simulated data set to obtain the best-fitting parameter values for

each set and then calculated the correlations among the values.

Results showed no strong tradeoffs in parameter values. The largest correlations (.49, .53, .59)

were correlations between the standard deviation of the noise in the accumulation of evidence

process (i.e., in the diffusion coefficient) and three of the confidence criteria (the correlations

for the other three confidence criteria were smaller). There were a few correlations between

decision criteria and confidence criteria that reached around .4, but they were not consistently

high across all the decision and confidence criteria.

The lack of systematic tradeoffs indicates that the model's parameters are reasonably

identifiable. Although this investigation is by no means exhaustive, it does indicate that, for

the parameter values we obtained, the model does not suffer from large tradeoffs among

parameters.

Goodness of fit and parameter recovery—We used the 50 sets of parameter values

recovered from the Monte Carlo study just described to assess how well the model recovers

true parameter values, that is, the values used to generate the simulated data. The starting values

used in the fitting program were between 10 and 30% different from the values used to generate

the data. The means and standard deviations across the 50 simulations are shown in Tables 1

and 2. There were no significant differences between the parameters used to generate the data

and those recovered. The chi-square statistic for the data from this experiment has 140 degrees

of freedom, as described earlier. For the chi-square statistic, the mean value for 140 degrees

of freedom is 139.3 with an upper .95 confidence limit (the critical value .05) of 168.6 and a

lower confidence limit of 113.7.

The mean chi-square value for the fits to the 50 sets of Monte Carlo data was 120.5 with a

SD of 21.1. There were 6 out of 50 values that had chi-square values that were significant and

there were 18 out of 50 values of chi-square that were below the lower .05 chi-square limit

(only 8 of those were below the .01 level). This indicates to a small degree that the model can

accommodate noise in the data (i.e., accommodate differences in the data that come from

variability). But in general, even though the model is quite complicated, with 24 free parameters

for this data set, parameter recovery is surprisingly good.
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Experiment 2

In Experiment 1, the RTs are much shorter than those usually reported for confidence

judgments in recognition memory experiments. We attribute the speed of responses in

Experiment 1 to training on the response keys and an emphasis on both speed and accuracy. It

is possible that the bowed pattern of RT results (e.g., Figure 9, top panel) is more typical of

regular processing and that we have simply eliminated RT differences by emphasizing speed.

Experiment 2 is designed to address this issue by manipulating speed–accuracy instructions in

an experiment similar to Experiment 1; in fact, Experiment 2 follows Experiment 1 in most

details apart from instructions. We might expect that only decision criteria change in moving

from speed to accuracy instructions.

Method

Subjects—Four Ohio State University undergraduate students participated. Subjects earned

$10 for each session. Subjects completed between 8 and 11 sessions, and the first session for

each subject was ecluded from all analyses.

Materials and procedure—This experiment used the same materials as in Experiment 1,

and the procedures matched Experiment 1 except for the manipulation of a speed versus

accuracy emphasis. Instruction conditions were randomly assigned to blocks under the

constraint that five test blocks were completed with a speed emphasis and five were completed

with an accuracy emphasis in each session. The initial instructions informed subjects that their

responding should always be relatively fast and accurate but that on some blocks they would

be asked to sacrifice accuracy to improve speed and on other blocks they would be asked to

sacrifice speed to improve accuracy. Throughout the experiment, the test signal indicated

whether speed or accuracy should be emphasized on the upcoming test. On speed blocks,

subjects saw a “TOO SLOW” message each time they took more than 900 ms to respond. No

feedback regarding the accuracy of their responses was provided. On accuracy blocks, subjects

saw an “ERROR” message for each incorrect response. No feedback regarding response speed

was provided.

Results and Discussion

Two subjects had low frequencies of responses (e.g., less than 5) in high-confidence categories,

so we aggregated over high- and low-frequency words. Even so, there were still some response

categories with few observations. To remedy this problem, we pooled adjacent responses to

estimate RT quantiles for any response category with below 15 responses for a subject. For

example, if a subject had only 10 “−−−” responses for old items, the quantile for this response

would be computed by pooling the 10 reaction times with the reaction times for a “−−” response

to old items. Similarly, when a subject made fewer than 15 “+ + +” responses, quantiles were

based on the pooled RTs from “+ +” and “+ + +” responses. Pooling was required for 4 of 36

sets of quantiles for one subject and 5 of the 36 for another subject. No quantiles had to be

pooled for the other two subjects. The model was fit to four types of items: old and new items

in both the speed and accuracy conditions. Just as in the first experiment, having four item

types results in 144 total response frequencies and 140 degrees of freedom in the data. Table

3 presents accuracy as a function of confidence and shows the same pattern as in Experiment

1, namely that accuracy increases as confidence increases.

We can compare the changes in the RT data between this experiment and two-choice

experiments in the literature. In Experiment 2, going from speed to accuracy instructions,

averaging over all conditions (six confidence categories for both old and new items), the .1

quantile RT changed from 515 ms to 623 ms (a 108 ms difference), the median RT changed

from 609 ms to 762 ms (a 153-ms difference), and the mean RT changed from 622 ms to 773
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ms (a 151-ms difference). For the two-choice recognition memory task for young subjects in

Ratcliff, Thapar, and McKoon (2004), subjects studied high- and low-frequency words either

once or three times (Experiments 1 and 2 here had two presentations of each word). Averaged

over all conditions and subjects, the difference in the .1 quantile RT was 76 ms (569 ms versus

635 ms), the difference in the median RT was 90 ms (650 ms versus 740 ms), and the difference

in mean RT was 113 ms (670 ms vs. 783 ms). Ratcliff and Smith (2004) presented fits of a

dual diffusion model to a speed–accuracy manipulation in a lexical decision task

(Wagenmakers, Ratcliff, Gomez, & McKoon, 2008). In this experiment, averaged over all

conditions and subjects, the difference in the .1 quantile RT was 102 ms (409 ms versus 511

ms), the difference in the median RT was 151 ms (506 ms versus 657 ms), and the difference

in mean RT was 193 ms (528 ms vs. 771 ms). These results show that the changes in the RT

distributions in our six-choice task and these two two-choice tasks show about the same pattern.

The lexical decision experiment in Ratcliff and Smith (2004) was fit by one model with racing

diffusion processes with only the decision criteria changing. In the application of our

confidence judgment model, as in the Ratcliff and Smith application with the two-choice

model, all parameters defining characteristics of the accumulation process were held constant

across speed and accuracy instructions. The only parameters allowed to change between the

two conditions were the values of the decision criteria.

Figure 12 shows the observed and predicted z-ROCs. The empirical functions show that the

speed/accuracy manipulation changed the z-ROC intercept by about 30% (the intercept can be

compared with d′ from two-choice SDT because, if the signal and noise distributions have the

same variance, the intercept is d′). This is not too different from the result from Ratcliff and

Smith's (2004) lexical decision experiment in which overall d′ values for speed versus accuracy

instructions were 3.09 versus 2.06, averaging over all conditions. But this was larger than the

difference in Ratcliff et al.'s, 2004, recognition memory experiment which had d′ for accuracy

versus speed conditions of 1.97 and 1.71 averaging over all conditions. This indicates better

memory performance when test instructions emphasized accuracy. Slopes were about the same

in the two instruction conditions and the predicted points show a good fit to accuracy overall.

For both conditions, the intercepts of the functions for the model predictions showed the

appropriate effect of instruction condition, but the fitted values underestimated the intercept

by a little over 10%. Theoretical slopes were close to empirical slopes.

Figure 13 shows the probability-quantile plots. The empirical RT quantiles (dots) show a

similar pattern to the first experiment. RTs are relatively stable across confidence categories,

with only a small increase (if any) from the high-confidence to low-confidence responses.

Furthermore, this pattern characterized both the speed and accuracy conditions, suggesting that

the pattern is not created simply because subjects overemphasize the quickness of their

decisions. As discussed above, RTs were substantially shorter with speed instructions than

with accuracy instructions, including a large shift in the .1 quantile RT. The Xs in Figure 13

show the model predictions. In general, the model provided a good fit to the empirical

proportions and response quantiles with perhaps the only exception a slight overestimation of

the .9 quantile RT with accuracy instructions. Parameter values are reported in Tables 2 and

5. Overall, parameter values are similar to those generated for fits to the data from Experiment

1. In all, there were 26 free parameters to fit the 144 response frequencies.

The relative standard deviations of the new-item and old item memory evidence distributions

tell a similar story to those in the first experiment. Old-item evidence was always more variable

than new item evidence, and the ratio was 0.75. This contrasts with the slope of the z-ROC

function, which averaged 0.87 and, as in Experiment 1, the standard deviation ratio was

substantially lower than the z-ROC slopes. Once again, z-ROC slope makes old- and new-item

evidence variability appear more similar than the results of the RT model. This is the expected
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result, because the z-ROC analysis combines multiple sources of variation that the RT model

estimates separately.

General Discussion

The RTCON model proposed in this article is intended to explain recognition memory

performance when subjects are asked to make confidence judgments. The model successfully

combines the two parts of the data, the proportions of judgments in each confidence category

and their RTs. The model coherently integrates a diffusion decision process with a

unidimensional measure of the degree of match between a test item and memory. There are

three features of the model that are responsible for its success. First, each of the confidence

categories accumulates evidence in its own accumulator. Second, evidence is accumulated as

an OU diffusion process with a modest amount of decay. Third, the output of the process that

matches a test item against memory produces a distribution of memory evidence. Confidence

criteria divide the distribution into areas, one for each confidence category (Figure 2). The area

between the confidence criteria determines the drift rate for the accumulator corresponding to

the confidence category and the drift rate determines RTs. In this way, RTs are constrained by

the same confidence criteria that determine confidence judgments.

We used simulations of the RTCON model to demonstrate that common z-ROC interpretations

based on accuracy-only models are invalid. Specifically, traditional SDT holds that the slope

of the z-ROC function equals the ratio of the standard deviations in memory evidence for new

and old items. In RTCON, this relationship breaks down because z-ROC slope is affected by

a number of factors other than characteristics of the memory evidence distributions, including

nonmnemonic sources of variability and changes in decision criteria. Accuracy-based theories

also draw simple links between z-ROC shape and memory processes; for example, nonlinear

z-ROCs mark the presence of processes such as signal mixing (DeCarlo, 2002) or recollection

(Yonelinas, 1994). In RTCON, a variety of z-ROC shapes can be produced based on changes

in the decision criteria (see Figure 4) without any changes in the underlying memory evidence.

In experimental data, the slope of the z-ROC is usually less than 1. In the fits to data we have

performed so far, this, to a large degree, is the result of a wider distribution of match values

for old items relative to new items. But, we reiterate, the ratio of the standard deviations in the

match distributions is not the same as the slope of the z-ROC function.

Although we used the RTCON model to reveal problems with accuracy-only models, the

resulting conclusions are in no way dependent on the details of RTCON. Consider the primary

reasons why standard interpretations do not apply to the RTCON model: The RTCON model

implements several sources of variability other than variability in memory processes, and the

model produces responses based on accumulated evidence using decision criteria. Decades of

development in RT models suggests that any successful model will have these properties

(Ratcliff & Smith, 2004). Thus, standard z-ROC interpretations will change for any model that

is capable of predicting RT data.

Of course, the RTCON model not only reveals problems with accuracy-only models, it also

represents a first step in the development of models that can accommodate RTs for confidence

judgments. We evaluated the model's ability to fit recognition confidence datasets with

manipulations of word frequency (Experiment 1) and speed–accuracy emphasis (Experiment

2). In both cases, the model fit the data well. For all the conditions in Experiment 1, the predicted

RT quantiles and response proportions are within 2 standard errors of the data (the ellipses

shown in Figure 6). The model also accommodated the effect of word frequency on the z-ROC

slope, i.e., lower slopes for low-frequency words (see Figure 7). The model accounts for the

data from individual subjects as well as the data averaged across subjects. In Experiment 2,

the model reproduced the effects of speed–accuracy emphasis on both z-ROC intercepts and
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full RT distributions by changing only the position of the decision criteria. Taken together,

these results are promising and suggest that memory researchers can begin to capitalize on the

powerful constraints introduced by RT data in model development.

It is important to understand that, although the model has a relatively large number of

parameters, the parameters are interrelated throughout the structure of the model. This means

that if the predictions miss one data point, the miss cannot be remedied by adjusting one

parameter to bring the misprediction into line. A change in one parameter alters predictions

across some or all of the conditions in an experiment.

The model is also identifiable for the parameter values from fits to our data. There are no strong

correlations across parameter values for the parameter ranges from fits to the data from our

experiments. This means that the model does not allow effects that should be explained by

changes in one parameter to be accommodated by changes in a different parameter.

Furthermore, we showed that the model was unable to jointly fit RT distributions and response

proportions when the proportions were artificially adjusted to form a nonlinear z-ROC

function.

In the RTCON model, drift rates are determined both by the quality of memory evidence and

the position of the confidence criteria. Holding the confidence criteria constant, drift rates for

“higher” confidence responses tend to dominate when memory evidence is high because, if the

memory evidence distribution is shifted far to the right, most of its mass will lie in the region

associated with a high-confidence response, leading to a high drift rate. With a constant memory

strength, drift rates will also change with changes in the position of the confidence criteria. As

Figure 3 demonstrates, drift rates are higher when the decision region associated with a

response is wider. Widening a decision region has a large effect on the probability of using the

response and a small effect on the RTs. For example, in one simulation using parameter values

similar to those in Experiment 1, we increased the width of the region for a “+ +” category by .

5, which led to a .21 increase in the probability of the response (.15 to .36), but with only about

a 10 ms decrease in mean RT. In a second simulation, we took the same parameter values and

increased the mean of the old item distribution so that the proportion of high-confidence “old”

responses increased from .14 to .56. Mean RT for the high-confidence responses decreased

from 665 ms to 632 ms. The relatively small effects on RT occur because the processes are

racing. Accumulators with lower drift rates only win the race when they terminate unusually

quickly as a result of noise in the diffusion process. Even when an accumulator has a low drift

rate, higher drift rates for competing accumulators keep all responses relatively fast because

the high drift ones will usually win. As a result, moving from a high to a low drift rate on one

accumulator can substantially decrease response proportions without leading to a large

decrease in RT. Another consequence of this competition mechanism is that responses for all

response categories are faster when one accumulator gets a high drift rate than when drift rates

are evenly distributed across accumulators.

Drift rates will also be affected by the number of response categories. For example, with a four-

level response scale there would be only four response regions and each would cover a larger

area than the six response regions shown in Figure 3. Simulations suggest that the effect of

number of response regions on RT is subtle, i.e., only about a 20 to 30 ms decrease in mean

RT going from a six-category to a four-category scale. However, it is also possible that other

parameters might change in going from six to four response categories.

It may seem unusual that confidence criteria affect drift rates, but this property is shared by

the two-choice diffusion model and has contributed to this model's success in fitting data from

a wide range of two-choice decision tasks. Specifically, the diffusion model includes a drift

criterion that defines the zero point in drift— evidence values above the criterion have positive
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drift rates and evidence values below the criterion have negative drift rates, with the magnitude

given by the distance from the criterion (Ratcliff, 1985; Ratcliff & McKoon, 2008).

Model Mimicking and Constraints

We have assumed that decision criteria have variability across trials but confidence criteria are

fixed. However, we have also found that if variability is put in the confidence criteria (with the

restriction that the criteria cannot cross) and removed from the decision criteria, all the fits are

about as good. Therefore, variability in either class of criteria mimic each other and cannot be

uniquely identified. However, we do not see this as a problem unless some theoretical issue

depends on identifying the source of variability.

We have performed a modest number of investigations into what aspects of the functional form

of distributions in the RTCON model are critical for its behavior and what aspects can be

changed without affecting the qualitative behavior of the model. First, we changed the

distributions across trials of nondecision time and decision boundaries from uniform

distributions to truncated normal distributions (with range truncated at plus and minus 2.5

SDs in the full normal distribution). The standard deviations matched those of the uniform

distributions. Another assumption that might be critical is the assumption of normal

distributions in the distributions of match across trials. Instead, we assumed back-to-back

exponential distributions (a double exponential distribution). Again, the standard deviation

matched the standard deviation in the normal distributions of match in the original model fits

to data. Simulated data were generated and the original model fit to the simulated data. The

largest deviation between predictions from the original model fit to the simulated data and the

simulated data was about 2% in response proportion and about 27 ms in RT. Across all response

proportions, the mean deviation was less than 1% and across all RT quantiles, the mean miss

was 6 ms. This shows that the functional form of the distributions of nondecision time, mean

match values across trials, and decision boundaries is not critical, at least for parameters around

the values for fits to our data.

Predictions for z-ROC Slopes

Our claim is that recognition memory performance can only be understood with a model that

simultaneously accounts for confidence judgments and RTs. A critical implication of this is

that the standard SDT interpretation of confidence data is not valid. The slopes of z-ROC

functions cannot be used as indices of match values or as measures of the relative standard

deviations of old and new item distributions. Once there is a decision mechanism that takes

into account RTs, then the interpretation of z-ROC functions changes. Noise in the process

that accumulates evidence and noise in the decision criteria combine with noise in match values

to make the slope of the z-ROC function from the model predictions closer to 1 than the ratio

of the standard deviations for new and old test items. Because the model identifies the different

sources of noise, it solves the problem of criterion variability that is inherent in SDT (see

McNicol, 1972, p. 199; Norman & Wickelgren, 1969).

Many researchers have used z-ROC slopes to test global memory matching models, a popular

class of memory models (for a review, see Clark & Gronlund, 1996). Many of these models

predict a larger standard deviation in match values for old than new test items (Ratcliff, Sheu,

& Gronlund, 1992). They also predict that the difference in the standard deviation values should

increase as memory for old test items becomes stronger (e.g., items are repeated or studied for

more time). If the z-ROC slope were truly the ratio of new to old item standard deviations, this

prediction could be tested by evaluating whether the z-ROC slope decreases as old items are

strengthened. Some previous research has found that the slope does change in this way (Glanzer

& Adams, 1990; Glanzer et al., 1999; Ratcliff et al., 1994; Yonelinas, 1997). Other research

has found equivocal results, either slopes decreasing with increased strength of old items or
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no effect at all on slopes (Glanzer et al., 1999, Experiments 1, 2, and 4; Heathcote, 2003;

Hirshman & Hostetter, 2000; Ratcliff et al., 1994, 1992; Stretch & Wixted, 1998). The

equivocal results for manipulations of study time and item repetition have been cited as strong

evidence against the global matching models (Ratcliff et al., 1994, 1992). However, according

to the model we propose in this article, the equivocal findings are not as diagnostic as previously

believed. The problem, as we have pointed out, is that there is no way with SDT to separate

out the various sources of variability. The sources are combined, and so the slope of a z-ROC

does not measure the relative standard deviations of old and new item distributions.

For our experiments, the z-ROC slopes decreased from 0.92 for high-frequency test items to

0.86 for low-frequency test items and average 0.87 for the speed and accuracy conditions in

Experiment 2. This difference does not reflect the differences in the standard deviations of the

old and new test item distributions: The ratio of the across trial standard deviations in the match

distributions are 0.66 and 0.30 for high- and low-frequency test items and 0.75 for the speed

and accuracy conditions in Experiment 2 in the model (Tables 1 and 5).

Relationship Between Decision Criteria and Confidence Criteria

As discussed above, in contrast to traditional SDT, the RTCON model involves two distinct

types of criteria. The confidence criteria determine how memory evidence is translated into

accumulation rates and the decision criteria determine the amount of evidence the accumulators

must achieve for a response to be produced. These correspond to the drift criterion and decision

criteria in the two-choice diffusion model (Ratcliff, 1985; Ratcliff et al., 1999). In principle,

either or both types of criteria could be influenced by manipulations of response bias, such as

the proportion of old versus new items on a test and the relative payoffs and penalties associated

with “old” versus “new” responses. Although there is no a priori reason for predicting which

type of criteria should change to accommodate a bias manipulation, the two types are separately

identifiable in fits to data. For example, changing the decision criteria more dramatically

impacts the RT quantiles than changing the confidence criteria. Specifically, RT distributions

are fast and compact when decision criteria are low versus slow and skewed when decision

criteria are high. Moreover, changes in the different types of criteria have distinct influences

on the ROC data. Changes in bias can be achieved in two ways: Confidence criteria can be set

at low (liberal) or high (conservative) values. Alternatively, decision criteria can be relatively

low on the “old” side of the scale and relatively high on the “new” side of the scale for liberal

responding, and vice versa for conservative responding. With the confidence criteria strategy,

z-ROC slope increases as responding moves from liberal to conservative. With the decision

criteria strategy, z-ROC slope decreases as responding moves from liberal to conservative.

Thus, each type of parameter has a unique signature in the resulting predictions, and researchers

can determine which type of criteria is influenced by a bias manipulation through fits to

empirical data.

Large Numbers of Confidence Categories

Mickes et al., (2007) had subjects rate the strength of test items in a standard recognition

memory task on a 20-point scale (Experiment 1) or a 100-point scale (Experiment 2). They

directly calculated the standard deviation of ratings given to old items versus new items and

found that the ratios closely matched estimates of the standard deviation ratio based on z-ROC

slope. The results seem to provide independent validation of the z-ROC estimates, which

contradicts our claim that z-ROC slopes are much closer to 1 than actual ratios of standard

deviations in memory evidence.

To apply the RTCON model to the Mickes et al. (2007) data from Experiment 2, the model

would need 100 racing accumulators for the 100 confidence categories. However, this assumes

that the number of internal confidence categories used by subjects matches the number of
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categories in the response scale. Research in absolute identification suggests that subjects are

able to competently use a maximum of seven or eight response categories. We find it unlikely

that subjects in Mickes et al. truly discriminated between ratings of, for example, 75 and 77.

Indeed, some of the subjects reported compressing the scale explicitly by, for example, only

using ratings that were multiples of 5. There is little evidence in the Mickes et al. results that

establishes that subjects were using all of the confidence ratings.

To see if subjects could have been using many fewer response categories, we simulated the

100 category data using a standard signal detection process with nine criteria. The nine criteria

were used to produce 10 equally spaced response categories and these categories were

distributed across the 100-point scale randomly from trial to trial. Following Mickes et al., the

ratings were collapsed into 6 categories and the z-ROC slope closely matched the ratio of

standard deviations of the old and new item rating distributions. Thus, the Mickes et al. results

can be obtained from a model that uses a fraction of the number of experimental response

categories, and this suggests that the RTCON model does not need to use tens or hundreds of

accumulators in tasks that require that many categories. These results also indicate that

increasing the number of categories to 20 or 100 does not produce a direct measure of the

standard deviations of memory evidence distributions. Regardless of the number of ratings,

responses are the output of a decision process that is subject to both decision noise and criterial

noise.

Noise in the SDT Decision Criterion

Mueller and Weidemann (2008) recently developed a model that adds noise in the decision

criteria to the basic SDT model (e.g., McNicol, 1972). This model can accommodate results

that are problematic for basic SDT, such as the changes in ROC shape (or, equivalently, z-

ROC slope) that come about from manipulations of bias (Balakrishnan, 1998; Van Zandt,

2000). Their model is similar to ours in spirit in that changes in z-ROC slope can be produced

by changes in decision parameters. Both approaches highlight the importance of modeling

sources of variation. We go beyond Mueller and Weidemann's approach by including

variability in the accumulation of evidence process and variability in decision criteria. Our

results indicate that the additional model constraints imposed by RT data allow identification

of the separate sources of variability.

Dual Process Models

There are several implications of the success of the RTCON model for the dual process/single

process debate in recognition memory. It is clear that subjects can use a recall (or recollection)

process to retrieve contextual information if asked to do so and that this information can be

used in a recognition decision (Heathcote, Raymond, & Dunn, 2006; Rotello et al., 2000).

However, the recall process can be significantly slower than an assessment of match between

a test item and memory (Gronlund & Ratcliff, 1989; McElree, Dolan, & Jacoby, 1999).

Furthermore, there is no guarantee that it will be used in standard recognition memory tasks.

For example, in a study by Gronlund and Ratcliff, information about how words were paired

together at study, information that is likely to be retrieved by a recall mechanism, was not

available until later in processing than match information. Also, it played a large role only in

decisions in which the discrimination task required it. Specifically, it was used in associative

recognition, where the task was to decide if two words had been paired at study. But it was not

used when the task was simply to decide whether both words had been studied (in same or

different pairs).

Our model is highly consistent with the view that recall (or recollection) is not routinely used

in item recognition; there is only a single match process. Our model is also consistent with the

view that there are two processes in item recognition, a recall process and a match process,
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both continuous, both available at the same point in the time course of processing, and both

contributing to match distributions (e.g., Squire, Wixted, & Clark, 2007). However, the

RTCON model offers something that dual process models like this do not: an explanation of

processing. Dual process models have attempted to demonstrate that there are two qualitatively

different processes and they have used these to explain considerable amounts of empirical and

neurophysiological data. But the models go no further in understanding the two components

themselves. There is no model of familiarity and no model of recollection. The need to

understand processing seems to be finessed by the two process dichotomy.

Conclusion

In the wider context of sequential sampling models, the RTCON model jointly explains RTs

and confidence judgments just as other sequential sampling models have jointly explained RTs

and accuracy. Analyses that are based on only one of the dependent variables are almost

certainly wrong in the architectures of cognitive processes that they postulate. We see this

model as being the first in this class that handles these dependent variables, and we hope this

sets a standard for other models to surpass. In this article, we have demonstrated how

applications of SDT to recognition memory—applications that depend only on confidence

judgments and not RTs—are misleading. Skeptics of sequential sampling models for two-

choice tasks have pointed to the fact that the models have not explained confidence judgments,

an additional dependent variable to accuracy and RT. Here we have addressed this criticism.
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Figure 1.

An illustration of the standard signal detection model with one normal distribution for old

stimuli and another for new stimuli, the z-ROC plotted from the two distributions, and the

equation relating the z-transformed hit and false-alarm rates. μo is the mean of the distribution

for old words and σo and σn are the standard deviations for the distributions of old and new

words respectively. ZHit = z-score of the hit rate; ZFA = z-score of the false-alarm rate.
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Figure 2.

The top two panels show distributions of match for a single old test item and a single new test

item, respectively. The vertical lines are possible positions for decision categories, with the

same confidence criteria for each. The third panel shows the distributions for tests of single

items (thin lines) and the distribution of their means across trials (bold line). The bottom panel

shows the distributions of means for the four categories of test items in Experiment 1. For the

confidence categories, “−−−” is high-confidence new, “+++” is high-confidence old, and the

other symbols represent lower confidence responses. HF indicates words with high probability

of occurrence in English, and LF indicates low-frequency words.
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Figure 3.

The top panel shows accumulators for six confidence categories with the amount of evidence

accumulated in each at some point in time. The decision criteria for each accumulator are also

shown. The equation shows the change in evidence as a function of time, where v is the drift

rate, k is the decay rate, x(t) is the position of the accumulator at time t, dt is the size of the

time steps, and σ is the within-trial noise. The middle panel shows how six match values map

into the amounts of evidence, that is, how they map into drift rates for the diffusion decision

process. The black area determines the drift rate for the highest confidence old category. The

bottom panel shows how narrow versus wide separations of confidence criteria (the black areas

on the left and right distributions) can lead to large versus small drift rates. For the confidence

categories, “−−−” is high-confidence new, “+++” is high-confidence old, and the other symbols

represent lower confidence responses.
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Figure 4.

This figure illustrates how decision criteria and the old and new item distributions of evidence

interact in the model to produce predictions. The bold lines and the bold text represent the

changes in the values or predictions from the values in Panel A. In Panel A, the standard

deviations in the across-trial memory distributions (i.e., the distributions of the means of the

single-item evidence distributions) are equal and so are the decision criteria. The z-ROC

function is linear with slope = 1. In Panels B and C the decision criteria are not equal. This

produces a decrease in the slope of the z-ROC function. Panel D shows the effect of increasing

the standard deviation in match across trials for old items, which produces a decrease in z-ROC

slope. Note that the slope is not the ratio of the across trial distribution standard deviations.

Panels E and F show how nonlinear z-ROC functions can be produced by altering decision

criteria settings. For the confidence categories, “−−−” is high-confidence new, “+++” is high-

confidence old, and the other symbols represent lower confidence responses. μo and μn are the

means of the old and new across-item memory evidence distributions; σo and σn are their

standard deviations. ZHit = z-score of the hit rate; ZFA = z-score of the false alarm rate.
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Figure 5.

Response time (RT) quantiles plotted against six confidence categories. The x-axis shows

confidence: 1 is high-confidence new and 6 is high-confidence old.
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Figure 6.

Response time (RT) quantiles for experimental data (black dots) and predictions of the model

from fits to the data (Xs) are plotted against the proportions of responses in each confidence

category. The tick marks on the x-axis represent a common range of proportion from the data

value minus 0.125 to the data value plus 0.125, as illustrated in the box at the bottom of the

figure. The ellipses represent 2-SE confidence regions around the data points derived from the

bootstrap method described in the text. For the confidence categories, “−−−” is high-confidence

new, “+++” is high-confidence old, and the other symbols represent lower confidence

responses.
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Figure 7.

z-ROC functions for the data from Experiment 1 (the data in Figure 6). The circles are the data

and the Xs are the model predictions. The diagonal dotted line is a reference with slope 1 and

intercept 0. There are two straight line fits to the data and the predictions from the model (solid

and dashed lines, respectively), but these coincide so they largely overlap. ZHit = hit rate z-

score; ZFA = false-alarm rate z-score.
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Figure 8.

z-ROC functions as in Figure 7 plotted for all the individual subject data and model predictions.

The first two initials identify the participant. HF = high-frequency words; LF = low-frequency

words; ZHit = hit rate z-score; ZFA = false-alarm rate z-score.
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Figure 9.

Quantile probability functions for one subject showing the effects of different instructions as

described in the text. RT = response time.
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Figure 10.

A plot of the difference in the .1 quantile response times (RTs) for the two extreme (high-

confidence) confidence categories and the middle four categories (lower confidence) against

overall mean RT for 68 subjects from Glanzer et al. (1999) Experiments 1 and 2. A difference

above zero on the y-axis means that the RTs for the middle categories are larger than for the

two extreme categories.
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Figure 11.

In the top panel, two z-ROC functions for responses preceded by an “old” response or a “new”

response. The bottom panels show how the model accounts for this. For the confidence

categories, “−−−” is high-confidence new, “+++” is high-confidence old, and the other symbols

represent lower confidence responses. ZHit = hit rate z-score; ZFA = false-alarm rate z-score.
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Figure 12.

Experimental and predicted z-ROC functions for speed and accuracy conditions for the data

from Experiment 2. ZHit = hit rate z-score; ZFA = false-alarm rate z-score.
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Figure 13.

Response time (RT) quantiles for experimental data (black dots) and fits of the model to the

data (Xs) are plotted against the proportions of responses in each confidence category. The tick

marks on the x-axis represent a common range of proportion from the data value minus 0.1 to

the data value plus 0.1, as illustrated in the box at the bottom of the figure. For the confidence

categories, “−−−” is high-confidence new, “+++” is high-confidence old, and the other symbols

represent lower confidence responses.
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Table 4

Slope of the z-ROC Function as a Function of Prior Response

Experiment
Slope after an
“old” response

Slope after a
“new” response

Ratcliff, McKoon & Tindall (1994), Experiments 3, 4, & 5. 0.83 0.71

Glanzer et al. (1999), Experiment 1 & 2 0.88 0.79

Ratcliff, Sheu, & Gronlund (1992), Experiment 1 0.88 0.81

Experiment 1 above 0.92 0.83
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