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Modeling Continuous Self-Report Measures of Perceived Emotion Using
Generalized Additive Mixed Models

Gary McKeown and Ian Sneddon
Queen’s University Belfast

Emotion research has long been dominated by the “standard method” of displaying posed or acted static
images of facial expressions of emotion. While this method has been useful, it is unable to investigate
the dynamic nature of emotion expression. Although continuous self-report traces have enabled the
measurement of dynamic expressions of emotion, a consensus has not been reached on the correct
statistical techniques that permit inferences to be made with such measures. We propose generalized
additive models and generalized additive mixed models as techniques that can account for the dynamic
nature of such continuous measures. These models allow us to hold constant shared components of
responses that are due to perceived emotion across time, while enabling inference concerning linear
differences between groups. The generalized additive mixed model approach is preferred, as it can
account for autocorrelation in time series data and allows emotion decoding participants to be modeled
as random effects. To increase confidence in linear differences, we assess the methods that address
interactions between categorical variables and dynamic changes over time. In addition, we provide
comments on the use of generalized additive models to assess the effect size of shared perceived emotion
and discuss sample sizes. Finally, we address additional uses, the inference of feature detection,
continuous variable interactions, and measurement of ambiguity.

Keywords: ●●●

For many years the predominant experimental paradigm within
emotion research has been what Russell (1994) has referred to as
the standard method—the use of static pictures of people display-
ing posed or acted facial expressions of emotion. The benefit of
this approach is that it permits a high level of control over the
emotional expression at the focus of investigation. However, this
comes at a heavy price in terms of the level of ecological validity
offered by such stimuli. It is true that many studies have shown
high levels of recognition for emotions expressed in static images
(Elfenbein & Ambady, 2002). Yet, these stimuli are far from the
dynamic real time emotional stream of information that we expe-
rience in everyday interaction with other people, and that is likely
to have formed the basis upon which the machinery of our emo-
tional perception has evolved.

There is now considerable evidence that our perception of facial
expressions of emotion is influenced by the presence or absence of
dynamic information (Tcherkassof, Bollon, Dubois, Pansu, &
Adam, 2007). Researchers have used a range of methods to com-
pare dynamic and static images that has included dynamically
morphing a sequence of still images (Kamachi et al., 2001),

animating synthetic images (Wehrle, Kaiser, Schmidt, & Scherer,
2000), and presenting film of spontaneous responses to emotional
slides (Wagner, MacDonald, & Manstead, 1986). All of these
studies have employed a recognition paradigm in which observers
are asked, after viewing the stimulus, to judge what emotion was
being displayed. Additionally, Biele and Grabowska (2006), using
morphed sequences of still images, have asked observers to rate
the intensity of emotion displayed, again after viewing the stimu-
lus. Research that allows the observer to respond while viewing the
stimulus, however, has been less commonly reported. Tcherkassof
et al. (2007), using a forced choice paradigm, have recorded
judgments of the presence and duration of emotions while facial
expressions are being viewed, and, more recently, Sneddon, McK-
eown, McRorie, and Vukicevic (2011) have described results
based on a method that permits continuous rating of intensity of
emotion dimensions.

Continuous rating of the facial expression of emotion may have
appeared rarely in the psychological literature, but its importance
has been recognized in engineering and human computer interac-
tion contexts during attempts to construct emotion recognition
devices (Gunes & Schuller, 2013). Also in musical disciplines and
the psychology of music, continuous self-report rating of the
musical expression of emotion has been much more widely ad-
opted. Continuous self-report measurement requires a participant
to watch or listen to a stimulus and continuously report on the
nature of their perception, feeling, or understanding of that stim-
ulus as they are perceiving it—providing real-time feedback on
their current state in response to the stimulus.

Rozin, Rozin, and Goldberg (2004) have emphasized the im-
portance of continuous response in understanding the emotion
induced by music and provide evidence that summative judgments
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(taken after the stimulus has finished) differ from those taken
during the stimulus. However, Schubert (2010) discussed the dif-
ficulties that researchers face in developing statistical techniques
that can cope with the fluctuations over time and inherent nonlin-
earity that characterize continuous self-report data. The kinds of
data produced in these experiments involve changes over time, but
they differ from more traditional longitudinal measurement such as
that found in panel surveys and clinical, developmental, or educa-
tional studies, which typically have small numbers of trials or
measurements over a long time period. Increased computational
power and the pervasive nature of modern computing have led to
new data-gathering techniques that can take many more meaning-
ful measurements, often over short time spans, which has led to
these kinds of data being labeled intensive longitudinal data
(Walls & Schafer, 2006). These kinds of data, which have been
common in affect-related research and in research where biosensor
data are collected, are sometimes known as functional data (Ram-
say & Silverman, 2005) and are likely to become increasingly
common in other areas of psychology as psychologists begin to
utilize modern smartphones as data gathering devices (Miller,
2012).

Some recent efforts to account for temporal issues in emotion
research have aimed to enable new types of research questions to
be addressed using intensive longitudinal data (Oravecz, Tuer-
linckx, & Vandekerckhove, 2011; Tan, Shiyko, Li, Li, & Dierker,
2012). A range of techniques that can be used to address issues of
nonlinearity and that can fit nonlinear regression models or pro-
vide alternatives to simple and multiple linear regressions include
the following: classification and regression trees (CART; Finch,
Chang, & Davis, 2011; Strobl, Malley, & Tutz, 2009), neural
network modeling techniques (Marshall & English, 2000), and
functional data analysis (FDA; Levitin, Nuzzo, Vines, & Ramsay,
2007). Careful consideration should be given to the choice of
technique. Often an inertia driven by the investment in time
required to learn new techniques means researchers stay with
familiar, tried and tested techniques; yet, there are many tech-
niques that offer better performance and greater statistical power.
Care must also be taken concerning the appropriateness of a given
technique for the data; a good comparison of some of these
techniques in application to the prediction of intelligence is given
in Finch, Chang, Davis, Holden, et al. (2011).

Studies incorporating continuous self-report measures often in-
volve recruitment of a number of participants to observe or listen
to some stimuli; typically they move a mouse/slider/stylus in a one
or two dimensional space to report on their perceived emotion at a
given instance in time. There is, however, an important statistical
issue that stands in the way of broad adoption of the techniques;
the issue concerns the non-independence of the data—this violates
the basic assumption of generalized linear models that the resid-
uals of a fitted model will be independent and randomly distrib-
uted. It occurs in two important and related ways in continuous
self-report measures: First, the data are correlated within-partici-
pant—they are equivalent to a series of rapid repeated measures;
second, they are autocorrelated (sometimes referred to as serial
correlation)—the measurement at one point in time strongly de-
pends on the measurement at the previous point in time. In addition
to these statistical issues, we would like to be able to include
information about the individual differences between participants
in any model in a satisfactory manner. Both the within-participant

correlation and individual differences can be accommodated by
moving to a mixed model framework and treating the participant
measurements as random effects components in a model. This
views the participants as a sample from a population—an assump-
tion that is usually valid. It also ensures within-participant infor-
mation is incorporated in the model, and variability due to indi-
vidual differences is estimated as a variance component.
Autocorrelation occurs as the data are collected in time order
without resetting to the same initial position for each measurement.
The placement of a measured point at time t will in part depend on
the placement of the previous data point t " 1 and in part depend
on responses to new information available at time t. This is
obvious in the emotion perception example given above where the
physical placement of a mouse or slider cannot be returned to the
initial or zero point used in the first measurement when measure-
ments are taken 10 times a second. Thus, we require analysis
techniques that can account for individual differences, within
participant correlation, and autocorrelation inherent in data gath-
ered by the same participants over time.

Standard linear regression techniques are well known and un-
derstood by most behavioral researchers, and they are easy to fit to
the kinds of data sets gathered in behavioral research paradigms.
There are many cases where it is unsafe to assume linearity, but
often these cases can be handled by data transformations or poly-
nomial regression models that can easily deal with a subset of
curvilinear relationships within the linear model framework.
Where these are applicable they are the preferred option. However,
when changes over time become more complex, models that can
provide the flexibility to adequately describe these often nonlinear
relationships are required. Returning to our example of continuous
self-report measures in emotion research, if the instructions to a
participant explicitly tell them to move a slider back and forth in
response to a dynamic stimulus the resulting data may take the
form of complex dynamic trajectories over time that require more
flexible modeling techniques. There are certainly occasions when
linear relationships occur, for example, observing a steadily in-
creasing smile. However, in most emotional expressions there is an
onset, emotional apex and offset, and often more than one apex. In
these situations, a parametric model would be better replaced with
nonparametric regression models that offer more flexibility to
capture dynamic changes over time.

Simple nonparametric regression techniques use loess (local
regression) or lowess (locally weighted scatterplot smoothing)
smoothing (Cleveland, 1979) or smoothing splines (which are
discussed in detail later) to capture the relationship between two
variables. These are popular techniques in what has become known
as scatterplot smoothing. Scatterplot smooths start with a plot
displaying data points placed on a plane defined by two variables.
The scatterplot smooth seeks to illuminate an underlying trend
between the two variables. These techniques are addressed in more
detail in the section on smoothing. When relationships become
more complex and involve more than two variables, trends iden-
tified by scatterplot smoothing are less useful. A type of model
proposed by Hastie and Tibshirani (1990), called additive models
or generalized additive models (GAMs), has become popular be-
cause it addresses these issues. In what follows, we provide a brief
introduction to GAMs but leave a more technical explanation of
GAM methods and their mixed model form generalized additive
mixed models (GAMMs) to a later section.
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GAMs have proved popular because they offer greater flexibil-
ity than scatterplot smoothing and they can be used in a manner
very similar to linear regression. Over the past decade, increasing
use has been made of GAMs in disciplines that often rely on
temporal data, notably in ecological modeling (for an overview in
relation to species distributions, see Guisan, Edwards, & Hastie,
2002); atmospheric modeling, for example, assessing trends in
traffic-related emissions (Carslaw, Beevers, & Tate, 2007); and
health applications, such as allowing inference in computer-aided
diagnosis systems based on the interaction of nonlinear and con-
tinuous variables with categorical variables (Lado, Cadarso-
Suárez, Roca-Pardiñas, & Tahoces, 2008), or adjustment for non-
linear confounding effects over time in risk of death from overdose
(Bohnert, Prescott, Vlahov, Tardiff, & Galea, 2010).

The flexibility offered by GAMs allows the use of smooth
nonlinear functions—often called nonparametic functions—in the
same model as parametric terms. These parametric terms can
describe linear relationships or can be dummy variables describing
categorical and binary variables, and there are also ways of ac-
commodating interactions. This ability to combine nonparametric
and parametric terms has led to additive and generalized additive
models being termed semiparametric models (Ruppert, Wand, &
Carroll, 2003), and it makes them particularly useful in the anal-
ysis of continuous self-report measures of perceived emotion. The
additive in the name of generalized additive models refers to the
assumption of additivity; this is one of the features that makes
them attractive. This means that the joint effect on the response
variable of all the predictor variables is determined by the sum of
all the individual effects of the predictor variables on the response
variable; each predictor variable operates independently of the
others, and so it does not matter at what level the other predictor
variables are fixed. As well as allowing inferences to be made
regarding changes over time, these models allow for the temporal
information to be accounted for so that sound inferences can be
made on other variables included in the model in an independent
way. This is preferable to the practice of ignoring or collapsing
temporal information in emotion perception studies, an unsatisfac-
tory practice that can lead to unsound inferences. The assumption
of additivity and independence of predictor terms that it implies
mean that interactions between predictors need to be treated with
care. It is prudent to check the assumption of additivity; if there is
evidence for an interaction, then it is wise to treat the two inter-
acting predictor terms within a single term in the additive model.
More detail on this is provided in the interactions section.

Another common goal in emotion research is to find answers to
questions about group differences or similarities in response to
emotion stimuli without necessarily asking questions about the
processes that led to the perceived emotion. In these circum-
stances, the single univariate parameter provided by static images
means analysis of variance (ANOVA) or linear regression designs
serve well. With more complex dynamic natural stimuli that play
out over time, such designs would require the collapsing of time
series data to a single parameter such as the mean. As has been
pointed out, this is unsatisfactory; it wastes the temporal informa-
tion in the data, has costs in terms of statistical power, and may
lead to incorrect inferences. In such circumstances, semiparametric
models offer the ability to account for the changes in the dynamic
stimuli over time while also retaining the ability to ask about linear
differences between groups.

This article aims to introduce GAMs and GAMMs as methods,
with a focus on analyzing continuous self-report measures of
perceived emotion. The data sets used in the article—introduced in
the following section—are all drawn from perceived emotion
studies but the techniques are broadly applicable to many research
domains in psychology. For example, GAMs or GAMMs could be
used in longitudinal and panel studies, signal detection (Knoblauch
& Maloney, 2008), eye tracking and gaze tracking studies, mod-
eling evoked response potentials, integrating psychological and
geographical components (Wieling, Nerbonne, & Baayen, 2011),
and in situations in which non-linear relationships between two
variables are suspected. The goal of this article is to make re-
searchers aware of these techniques and the new possibilities for
analyses that they permit rather than to present an in depth math-
ematical treatment of the GAM method. However, we attempt to
provide enough technical detail to allow an intuitive understanding
of the issues; this starts with a section on smoothing that covers
many of the basic concepts before addressing GAMs and GAMMs
in more detail in the sections that follow. The perceived emotion
studies are used to address the importance of dealing with corre-
lation within the data, and issues of effect size and sample size. It
highlights some techniques for making inferences in these models,
concentrating on showing how smoothed nonparametric compo-
nents can be used in combination with continuous and categorical
linear covariates to make inferences about differences between
groups and their interactions.

Data

For purposes of illustration, we use three data sets. These are
comprised of continuous self-report ratings of emotion perception.
The data were collected from individuals watching short video
clips of people exhibiting behavior associated with emotional
states. The first uses estimated ratings of the emotional valence—
the degree of positive or negative emotion displayed—from six
clips from Set 1 of the Belfast Induced Natural Emotion Database
(Sneddon, McRorie, McKeown, & Hannraty, 2012) in which 159
or 160 decoders (those perceiving the emotion and providing the
ratings while observing the clip) provided continuous ratings for
females encoding emotion expressions (encoders are the people
recorded, the focus of the video clip). The behavior of encoders
was recorded while they experienced an emotion induction proce-
dure designed to elicit either amusement or disgust and the record-
ings used as stimulus clips in this study are all 30-s extracts. Three
clips (2, 4, 6) show encoders exposed to the amusement inducing
procedure, and three clips (1, 3, 5) show encoders exposed to the
disgust inducing procedure. In the amusement inducing procedure,
encoders watched an amusing film, an extract from an episode of
Father Ted—a well-known television comedy series in the United
Kingdom and Ireland (Baker, Shortt, Perkins, & Lowney, 1996).
The 30-s extracts used as stimulus clips show encoders watching
the same segment of the film, the start point selected on the basis
of a cue on the soundtrack. In the disgust inducing procedure,
encoders were presented with a black box with a 10-cm diameter
hole cut in the top. Encoders were asked to reach into the box
which contained a bowl of cold, cooked, cut spaghetti in sauce.
The 30-s extracts used as stimulus clips show encoders from the
point when their hand entered the box. Often in these emotional
videos, sample rates of up to 50 frames per second are used for

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

3MODELING CONTINUOUS MEASURES USING GAMMS

tapraid5/met-met/met-met/met00413/met2255d13z xppws S!1 10/9/13 6:27 Art: 2012-0105
APA NLM



capturing emotional expressions and even higher sample rates are
used in audio analyses. In our clips, we have opted for a sample
rate for the continuous self-report ratings of 100 ms—the videos
were played back at 25 fps (for a useful discussion of the issues
surrounding sample rate, see Schubert, 2010). This sampling rate
gives 300 data points for each individual trajectory, and for most
clips in Set 1, there are 160 participants giving 48,000 data points
in the model. The details for the first data set are given in Table 1.
This data set was mainly chosen to illustrate these procedures due
to its large sample size.

The second data set (see Table 2) uses estimated ratings of the
emotional valence from six different clips from Set 1 of the Belfast
Induced Natural Emotion Database (Sneddon et al., 2012). For
each of the six clips in this data set, 40 decoders provided contin-
uous ratings of males and females encoding emotion expressions.
The stimulus clips in this data set consisted of recordings of female
(Clips 7 and 8) and male (Clip 9) encoders exposed to the amuse-
ment inducing procedure described above and recordings of fe-
male (Clips 10 and 12) and male (Clip 11) encoders exposed to the
disgust inducing procedure described above. This data set was
chosen for use as it contains a balanced sample of males and
females and therefore allows the addition of a simple categorical
variable to the models.

The third data set involved data from just one clip from Set 1 of
the Belfast Induced Natural Emotion Database (Sneddon et al.,
2012). In this data set, 86 decoders provided continuous ratings for
a male stimulus clip in which a male encoder was exposed to a fear
inducing procedure. In this procedure, the experimenter carefully
placed a black box in front of the encoder. The experimenter
moved slowly and spoke quietly while moving and touching the
box which had a hinged metal grill on top and was covered with
several warning icons and images of spiders. The decoders also
completed the NEO-FFI Big Five personality scale (McCrae &
Costa, 2004), and the agreeableness dimension was used in this
data set. This data set was chosen as it contains a combination of
continuous time series data and continuous variables from the Big
Five personality scale, permitting a simple illustration of an inter-
action between continuous variables within the GAMM frame-
work.

The stimulus clips were shown without sound to decoders on a
laptop computer using a variant of a computer logging program
called FeelTrace (Cowie et al., 2000). A 10 cm # 10 cm window
containing the stimulus clip appeared on screen alongside an
interactive horizontal scale (Sneddon et al., 2011). Decoders used
the mouse to move a colored spot along the scale to trace their
changing judgment of the intensity of the emotional expression of
the target individual. The bi-directional scale was anchored at the

left end by the text very strongly negative and at the right by very
strongly positive with a central neutral. Decoders were instructed
to use the computer mouse to move the dot along the scale to
“indicate how strongly you think the person in the video clip is
expressing either positive or negative emotion.”

Smoothing

A key concept in understanding GAMs and GAMMs is the idea
of smoothing; one of the key features of these models is that they
permit the incorporation of smooth components within a modeling
framework very similar in nature to the linear model and linear
mixed model frameworks. Smoothing seeks to illuminate the trend
in one variable as a function of one or more other variables,
typically in a nonparametric way. Following Hastie and Tibshirani
(1990), we call the techniques that do this smoothers and the
resultant trend line a smooth. The goal and usefulness of smoothers
is often simply to provide a description of relationships that may
not be linear in nature. This can be as simple as producing a
scatterplot smooth or, alternatively, can seek to find a function to
replace the regression slope. This function would describe the
change required to accommodate the irregular nature of the rela-
tionship between a predictor variable and a response variable—a
nonparametric mean function. Smooths can serve these descriptive
purposes, or, as mentioned, smoothing functions can have an
important role as components in models—such as GAMs and
GAMMs—where the dependence of the mean of the response
variable on one or more predictors is nonlinear in nature.

The choice of a smoothing technique requires consideration of
the bias/variance tradeoff—a common issue in the statistical learn-
ing literature (Briscoe & Feldman, 2011; Hastie, Tibshirani, &
Friedman, 2001). This is a complex issue that we can summarize
here by the terms underfitting—representing high bias—which
involves a model that is too simple and inflexible, and overfit-
ting—representing high variance—which fits a model too closely
to the sample data. A smooth seeks to minimize the variance in
some optimal way without the introduction of bias. The extreme
case of underfitting would take a straight line at the mean to
represent the relationship on a scatterplot—a high bias model;
extreme overfitting would involve interpolating every data
point—a high variance model.

We illustrate this relationship with an explanatory example that
can apply to many statistical situations in psychology including the
time series data in emotion perception studies. Hastie and Tibshi-
rani (1990) pointed out that one of the simplest smoothers is a
categorical predictor variable; although not normally thought of as
a smoothing technique, it does involve taking the average of
predefined categories which creates a smooth of the data over two

Table 1
Data Characteristics for Data Set 1

Clip Emotion Set N Time (s) Hz Data points

1 Disgust 1 160 30 10 48,000
2 Amusement 1 160 30 10 48,000
3 Disgust 1 160 30 10 48,000
4 Amusement 1 160 30 10 48,000
5 Disgust 1 159 30 10 47,700
6 Amusement 1 160 30 10 48,000

Table 2
Data Characteristics for Data Set 2

Clip Emotion Set N Time (s) Hz Data points

7 Amusement 2 40 30 10 12,000
8 Amusement 2 40 30 10 12,000
9 Amusement 2 40 30 10 12,000

10 Disgust 2 40 30 10 12,000
11 Disgust 2 40 30 10 12,000
12 Disgust 2 40 30 10 12,000
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or more levels of the categorical variable as they relate to the
response variable. A technique similar to the categorical predictor
example is the ill-advised but still commonly used statistical
practice of the dichotomization of continuous variables by median
split (MacCallum, Zhang, Preacher, & Rucker, 2002); this process
can be thought of as a poor smoothing technique. The problem
with such a “smooth” is the loss of much of the information and
statistical power in the continuous variable for reasons that are
difficult to defend (DeCoster, Iselin, & Gallucci, 2009). Splitting a
continuous variable into two big groups includes more informa-
tion, and produces a slightly better model, than the simple mean—
high bias—model outlined previously. This process can be viewed
as the crudest form of one of the simplest types of smoother, the
bin smoother. In more concrete terms, a valence response variable
could be paired with a start phase and end phase as two levels of
a categorical predictor variable in time series data. Alternatively, it
could be a dichotomized personality variable like agreeableness
giving low agreeableness and high agreeableness as two levels of
the predictor variable. The variance of the variable has been
reduced by averaging the values of the variable in two large “bins,”
but a source of bias has been introduced by using this arbitrary
categorization—the model underfits the data due to the choice of
a bad model. Further splitting the variable into equal bins of four
and then eight gives smooths with increased variance and less bias.
Finally, if we further subdivide the bins all the way until they
contain just one instance of the predictor variable we return to the
original data; interpolating all this original data would result in the
high variance and overfitted model mentioned previously.

In these examples, if we imagine that the underlying relationship
between the two variables is linear and the residuals are normally
distributed then the averages in the bins may approximate a linear
mean function—the regression slope—with the distances between
the bin means defined by a parametric constant—the $ coefficient.
We can get from one bin average to another by adding the
parametric constant. However, if the relationship is not linear then
we would expect this nonlinearity to be picked up by this tech-
nique and the distances between the bin means would not be
similar but irregular and not easily definable by a single parametric
constant; in this case, the bin averages when joined would produce
a curvilinear or jagged line on a scatterplot.

There are many types of smoothers; the simplest cases—like the
previous example—involve just one predictor variable, and as
these can be illustrated easily on a scatterplot, the process is called
scatterplot smoothing. To create these smooths, one must typically
determine the size of the neighborhood or bandwidth that will
influence the smooth—this would be the width of the bin in a bin
smoother. The parameter that defines the neighborhood is typically
known as the smoothing parameter. Additionally, one must deter-
mine how values of the response variable will be averaged within
these neighborhoods. Decisions regarding these choices influence
the fundamental trade-off between bias and variance. Informally a
large neighborhood will reduce the variance but increase the bias
while a small neighborhood will result in increased variance but
reduced bias.

A bin smoother represents a crude approach. Cutoff points are
chosen according to some criteria—equal divisions of the data in
the previous example—and the response variable is averaged
within these points; this leads to jumps at the boundaries between
bins and it is rarely a safe assumption that such discontinuities

exist in the data. These abrupt changes can be overcome by
allowing the cutoff points to overlap as in a moving average or
running mean smoother; here, an average for a point is calculated
from a set number of nearest neighbors above and below the
current point—the neighborhood. This has the benefit of simplicity
but an obvious bias is introduced by these methods in the way they
deal with the endpoints, where the neighborhoods must be short-
ened due to a lack of data at the endpoints. The importance of this
issue depends on the importance of the endpoints in an analysis
and can be mitigated to some extent by the choice of neighborhood
size. An improvement can be made by calculation of a least-
squares line within the neighborhood instead of the mean, creating
a running-line smooth; this improves the problem of endpoint bias
but often produces jagged lines due to discrete jumps, as points
outside the neighborhood do not contribute to the least-squares line
and those inside contribute equally. This issue can be overcome by
giving more weight to the points closest to the central point within
a neighborhood and less weight to those at the edges; this is the
basis of the popular locally-weighted running-line smoother more
commonly known as loess.

Smoothers, such as the ones described so far, assist in recog-
nizing and describing nonlinear relationships between two vari-
ables. When it comes to creating models that deal with nonlinear
relationships between the predictor and response variable, two
important parametric methods should be considered. The first is to
transform either the response or the predictor in some way to make
the relationship a linear one, typically using square root, log, or
reciprocal transformations. In the first instance, it might prove
simpler to adopt an approach based on the use of transformations.
However, where complex nonlinear relationships exist, the utility
of transformations is limited. Another important approach is poly-
nomial regression. It creates a nonlinear model, but it is linear and
parametric in the relationship of the $ coefficients of the predictor
variables with the response variable, as can be seen in the quartic
polynomial regression shown in Equation 1.

yi ! "0 # "1xi # "2xi
2 # "3xi

3 # "4xi
4 # εi

εi ! N"0, $ε
2# (1)

where yi is the response variable—valence in the emotion percep-
tion data; $0 is the intercept; xi is a predictor variable—time coded
at one point every 100 ms in the emotion perception data; and εi is
the error term which is assumed to be independent and normally
distributed (N(0, %ε

2)). This is a linear model that requires finding
suitable $ coefficients for the intercept and each of the polynomial
terms in Equation 1; so in this example, it involves an intercept and
four separate $ coefficients for up to the 4th order polynomial
term. This will produce a curvilinear line that may represent
certain data sets, and it has the very useful property of being linear
in the parameters. However, it is of limited use as it is global in
nature, meaning that it deals with all the data at once as opposed
to the local neighborhood approach of a loess smoother. It requires
the specification of the order polynomial—a specification that can
be guided by a criterion (e.g., variance explained, or an informa-
tion criterion such as the Akaike information criterion [AIC]).
However, these factors reduce its flexibility and utility in situations
where it is difficult to know the form a curve may take ahead of
fitting a model.
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A final important class of smoothing techniques are called
splines which make special use of local polynomial regression.
Regression splines offer a more flexible solution by using piece-
wise polynomial regressions over local neighborhoods joined to-
gether at points known as knots. The nature of these splines and the
selection of neighborhood sizes using knots is dealt with in more
detail in the following section.

Generalized Additive Models

Here, we provide only a brief overview of the mathematical
background and cover the basics necessary to understand GAMs.
An accessible (for the mathematically proficient social or behav-
ioral scientist) review is provided by Andersen (2009), and de-
tailed mathematical accounts of GAMs and related techniques can
be found in Hastie and Tibshirani (1990, 1993), Wood (2000,
2003, 2004, 2006a, 2006b, 2006c, 2008, 2011), and Ruppert et al.
(2003). Throughout this article, the software used is the R package
mgcv; a list of available R packages that provide GAM function-
ality is provided in Appendix A.

A GAM is a generalized linear model in which at least one of
the linear predictors is made up of a sum of a smooth function of
one—typically time in the emotion perception context—or more
predictor variables. This is achieved by assuming that such a
smooth function can be approximated by a linear combination of a
given number of basis functions. In short, GAMs provide a means
by which we can substitute a function for a parameter estimate
with the effect of making the estimate not a single scalar number
but a smooth nonparametric function.

If we write the typical regression function as

yi ! "0 # "1xi # εi

εi ! N"0, $ε
2# (2)

then the simplest GAM takes the form:

yi ! "0 # f(xi) # εi

εi ! N"0, $ε
2# (3)

In these two equations, yi is the response variable—this could be
valence; $0 is the intercept; xi is a predictor variable—typically
time in the emotion perception examples; and ε is the error term
which is assumed to be independent and normally distributed (N(0,
%ε

2)). The important difference is that the parameter $ in Equation
2 is replaced by a smoothing function f in Equation 3.

To estimate the smooth function f(x) it must be represented as a
linear model, and this requires choosing a suitable basis. In the
case of a simple linear regression model such as Equation 2 with
observations 1 to i, the basis functions are 1 and x such that the
design matrix X will look like the following:

X ! $
1

É
1

x1

É
xi
% (4)

When we wish to estimate the smooth function, we similarly
require a suitable set of basis functions that define the space of
functions of which f is an element. One possibility here is to use a
polynomial basis similar to that used in Equation 1 such that

f(x) ! "0 # "1x # "2x
2 # "3x

3 # "4x
4 (5)

This would then result in a model equivalent to Equation 1 and
a correspondingly more complex model design matrix:

X ! $
1 x1 x1

2 x1
3 x1

4

É É É É É
1 xi xi

2 xi
3 xi

4 % (6)

However, as mentioned, such polynomial regressions suffer
from inflexibility and, for this reason, using cubic splines as a basis
is a preferable option; these similarly allow f(x) to be estimated in
such a way that it can become part of a linear model, but the
representation is much more complex than the example shown in
Equation 5. Ruppert et al. (2003) worked through an example in
some detail using linear spline basis functions that provides a good
intuitive understanding of how spline smooths are constructed.

Smoothing and Knot Selection

Smooths in GAMs are typically created using a cubic spline
basis (although see Ruppert et al., 2003, for a range of other
basis options); cubic spline curves are piecewise combinations
of smaller cubic polynomials joined at points called knots.
Cubic splines are particularly useful as they allow the genera-
tion of smooth curves by forcing the piecewise components to
join as smoothly as possible at the knot. The data collected in
perceived emotion studies seldom has abrupt shifts that cannot
be handled by smooth curves based on cubic splines.

Once again we come across the fundamental tradeoff between
reduction in variance and bias introduced by the technique. We
want to ensure a good fit to the data but also to avoid overfitting,
so choosing the correct smoothing parameter and selecting the
placement of knots are fundamental issues in GAMs. In creating
the larger curve each piecewise section is comprised of a basis
function from a cubic regression spline basis multiplied by a $
parameter. The design matrix for the model then consists of the
sequence of cubic sections separated by the knots. The $ param-
eters must be estimated and the model is now treated as an
ordinary linear model; this is achieved using a design matrix of the
type shown in Equation 7.

X ! $
1 x1 "x1, x1

!# "x1, x2
!# "x1, x3

!#
É É É É É
1 xi "xi, x1

!# "xi, x2
!# "xi, x3

!# % (7)

where we use (x1, x1
!) to represent the basis function that corre-

sponds to the knot at point xk
! using the ! to denote that it is a knot

and k is the number of the knot. The smooth term function can then
be represented as a sum of the basis functions.

f(x) ! "0 # "1x # &
k!1

K

bk"x, xk
!# (8)

where $0 and $1 are equivalent to the linear basis functions in the
simple linear model design matrix in Equation 4, and the (x, xk

!) are
the new basis functions required for the spline, and bk is a vector
of $ coefficients that must be estimated for the basis functions. The
smooth function f(x) is now linear in the parameters in the same
way that a polynomial regression is linear in the parameters.
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The number of basis functions used, and therefore parameters to
be estimated, depends on the number of knots used. This means
that knot placement decides the number of bends or “wiggliness”
of the smooth and the points at which the bends should occur. One
option for knot placement is to manually provide the optimal
placement and fit by ordinary least squares methods; this is the
“regression spline” approach. The “smoothing spline” approach
starts with a very large number of knots and therefore parame-
ters—often as many parameters as there are observations—and
these are then reduced to an appropriate number by deletion, which
is computationally inefficient. Another way of describing this
deletion is that some of the coefficients associated with these knots
are shrunk to zero while the others are left intact. Eilers and Marx
(1996) proposed an alternative method that represented a sort of
compromise between the regression and smoothing spline ap-
proaches. We start by slightly overfitting the function; this is done
by making an estimation of slightly more knots than is thought
necessary and imposing a penalty that shrinks all of the coeffi-
cients toward zero. This is in effect an ordinary least-squares fit
with a “wiggliness” or roughness penalty associated with it, and
the roughness penalty is controlled by a parameter & that is the
smoothing parameter. The large number of initial knots lessens the
need for precise placement of the knots, but the computational
efficiency is much greater than the smoothing spline method as we
only need to start with slightly more knots than needed. These
splines are known as penalized splines or P-splines.

A result of using penalized splines is that the issue of finding a
good tradeoff between fit to the data and smoothness reduces to an
estimation of the smoothing parameter &,where if & ! 0, all data
are interpolated, and & ¡ ' leads to a constant slope. One way of
dealing with this issue is to use cross validation where each datum
is omitted in turn and a new model is fitted to the remaining data;
the position of the omitted datum is predicted from the new model,
and the squared difference between the datum and its predicted
value is calculated. The smoothing parameter is chosen to mini-
mize the average squared difference between all the data and the
predicted values when they are left out. This lessens the risk of
overfitting as the difference is calculated from a predicted variable
rather than an estimated one. In practice, the problem of finding a
suitable & parameter in mgcv defaults to estimation by a general-
ized cross-validation technique that represents an efficient com-
promise between performance and computationally prohibitive
alternatives (Andersen, 2009; Wood, 2006a).

GAMMs and Autocorrelation

Two related problems arise in using continuous perceived emo-
tion data that need to be addressed if GAMs are to be useful; these
concern the independence of the residuals. Simple GAMs assume
that the data are independent yet the data are correlated within-
participant. There is likely to be less variability within an individ-
ual participant than between the participants; therefore, there is
structure at the level of the individual decoder that is not accounted
for by a simple GAM. In a related issue, a further source of error
arises as the residuals cannot be assumed to be independent be-
cause they are autocorrelated. It is important to note that the
problem is not with autocorrelation in the time series itself but
autocorrelation in the residuals that leads to violation of the inde-
pendence assumption (Huitema & McKean, 1998). The model

could be improved by incorporating this structure within the model
rather than assuming it can be accommodated in normally distrib-
uted random error. An important risk associated with both these
issues is the likelihood of underestimating the standard errors,
which equates to an overestimation in the level of precision we can
claim for an estimate. Consequently, any inference based on these
estimates is not safe. A better model can be achieved using a
generalized additive mixed model with autocorrelated errors (Lin
& Zhang, 1999; Wood, 2006a). GAMMs are an extension of
generalized linear mixed models (GLMMs) to include a smooth
function that allows smooth terms to be treated as random effects.
The move to a mixed model has a number of desirable properties
in the case of perceived emotion data. In addition to the treatment
of smooths as random effects, it allows the decoders to be treated
as a sample from a population—which is much more in keeping
with our theoretical viewpoint—rather than a fixed population,
and facilitates the handling of autocorrelation of the residuals.
In matrix notation, the linear model in Equation 2 is typically
written as

y ! X" # ε

ε! N(0, I$2)
(9)

where y is the response vector, X is the model design matrix (as in
Equation 4), $ is the $ coefficient vector, and ε is the error term.
In a mixed model this extends to

y ! X" # Zu # ε

u ! N(0, %&)

ε! N(0, !$2)
(10)

where u contains a random effects vector, and Z is a model matrix
for these random effects, ( is the covariance matrix, and ) the
unknown parameters within that covariance matrix. ! is a matrix
that is part of the error term and can be used to model the residual
autocorrelation but is often just the identity matrix I, in which case
it is no different from the error term in Equation 9.

Ruppert et al. (2003) emphasized the closely related nature of
penalized splines with mixed models. In these cases, the smooth
components of a GAMM become ordinary components of a gen-
eralized linear mixed model (GLMM) and are estimated using
ordinary GLMM software (lme from the R nlme library in the case
of mgcv). Equation 10 is simply the standard linear mixed effects
model, but in the GAMMs case, the model design matrix Z would
take the more complex form of the design matrix incorporating
knots shown in Equation 7. The vector u corresponds to the
random effects coefficients used to estimate the amount of smooth-
ing. Importantly, the smoothing parameters, &, are now treated as
variance components ) within the covariance matrix ( and are
estimated as the ratio of the variance of the random effect %u

2 and
the variance of the errors %ε

2. These estimations use maximum
likelihood (ML) or restricted maximum likelihood (REML) tech-
niques for additive mixed models or using penalized quasi likeli-
hood (PQL) techniques for the generalized additive mixed model
case (estimated in mgcv using glmmPQL from the R MASS
library). In essence, the fixed effect parts of a smooth, the unpe-
nalized components, are added to the fixed effects model matrix X,
and the random effects parts, the penalized components, are added
to the random effects model matrix Z, and the model parameters
are estimated as an ordinary GLMM.
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These GAMMs can get complex very quickly and are unwieldy
when written in their full linear form. Here, we present a simple
illustrative model. This model presents a GAMM with a global
smoothing function and a random intercept. The smoothing pa-
rameters and random intercepts are estimated variance components
of a mixed model, and each participant possesses a separate
function. The function or smooth is the same for each participant
and differs only in the intercept; in the terminology of Gelman and
Hill (2007), it would be a varying-intercept model. Later in the
categorical interactions section we examine a type of model known
as a varying-coefficient model that allow smooths to vary levels of
a factor variable. There are also models that are equivalent to the
varying-intercept varying-slope models in the terminology of
Gelman and Hill, where each individual has a specific smooth;
these are known as subject-specific curves and are addressed in
detail by Durbán, Harezlak, Wand, and Carroll (2005). The illus-
trative model takes the following form:

valenceij ! Uj # f(xij) # εij

Uj ! N"0, $U
2 #

εij ! 'εj,i(1 # )ij

)ij ! N"0, $)
2#

(11)

where valenceij is the response variable for individual j at time i. Uj

represents the random effect intercept which is assumed to be nor-
mally distributed N(0, %U

2 ). f(xij) is the smooth term specifying the
expected valence for individual j at time i. εij is the error term that
includes an independent component *ij and a first-order autoregressive
or AR(1) component +εi,j"1 (where |+| , 1) accounting for the serially
correlated errors (Ruppert et al., 2003). An important aspect of this
model is that we now have random effects that assess some
level of individual differences in the random intercept, and that
estimate the amount of smoothing. This is achieved by having
a combined vector u from Equation 10 that contains the random
effect intercept and smoothing random effects, and an extended
model design matrix Z incorporating the knots shown in Equa-
tion 7 and columns for the random intercept. This allows the
simultaneous estimation of between participant variation %U

2

and amount of smoothing %u
2 as variance components.

Figure 1 shows smooth plots for stimulus Clips 1–6 for both the
simple GAM smooths and the GAMM smooths with autocorre-
lated error components and incorporating the within-participant
correlation. The shaded areas represent pointwise confidence es-
timates or variability bands in the terminology used by Ruppert et
al. (2003) for the smooth bounded at 2 standard errors above and
below the smooth estimate. This provides approximate 95% point-
wise confidence intervals for the smooth (this can be achieved
simply by adding the se!TRUE and shade!TRUE commands to
plots; see Appendix B). There is very little difference in the
smooth terms, but the underestimation of the standard errors in the
simple GAMs is easy to see by looking at the difference in
thickness of the variability bands—the GAM smooths have very
thin confidence bands which represent the underestimation of the
standard errors in comparison with the thicker variability bands
evident in the GAMM smooths.

Covariates can be added to these models and can be treated as
any fixed effect covariate would be in a linear version of the model

with no smooth. These can be continuous (e.g., personality traits),
categorical (e.g., country), or simple binary covariates (e.g., sex).
A model including these examples would take the following form:

valenceij ! Uj # f(xij) # "1EDAi # "2aj # "3cj # "4sj # εij

Uj ! N"0, $U
2 #

εij ! 'εj,i(1 # )ij

)ij ! N"0, $)
2#

(12)

Here, the variables are the same as Equation 2 but include the
one Level 1 variable EDAi for electrodermal activity (also
known as galvanic skin response), which is modeled here as a
fixed effect parameter that would be a candidate to be modeled
as a second smooth term. There would also be three Level 2
variables, the continuous variable aj for agreeableness, and a
factor variable with three or more categories cj for country.
These would be recoded as binary (dummy) variables for each
level of the factor and would also include the binary variable sj

for sex. This model is much more complex than would be
advisable and contains all of these extra variables for illustra-
tive purposes. In general, more parsimonious models are favor-
able, but of course if a predictor warrants inclusion for either
theoretical reasons or because it provides a useful explanatory
covariate, then it should be included.

Full GAMMs with autocorrelated errors are computationally
intensive (Yang, Qin, Zhao, Wang, & Song, 2012) and take time
to compute. In practice, we have found it can be useful to conduct
exploratory work using the simpler GAMs for exploratory data
analysis (Tukey, 1977). Yang et al. (2012) proposed a GAM with
autoregressive terms that is less computationally intensive, but it
currently only works with count data and in Poisson regression
situations. However, the underestimation of the standard error
remains a problem with such models, so where necessary the more
complete GAMMs should be used where inferences are being
made.

Often the questions of interest in emotion perception research
concern the details of what causes individual peaks and troughs
within a smooth, that is, the signals of emotion that lead to an
increase in the response variable at a certain moment in time.
For example, does a smile, or more specifically does the com-
bination of Facial Action Coding System Action Unit 12 and
Action Unit 6 (Ekman & Friesen, 1978) cause a peak in a
continuous self-report measure of perceived happiness, or does
a particular acoustic signal cause a decoder to rate someone as
feeling more negative? One approach to answering these sorts
of question is suggested in the inference section, but a full
exploration is beyond the scope of this article. The issues
covered in the remainder of this article deal with ensuring that
estimates of the optimal shared trajectory across time for a
group of participants are valid. A valid smooth function can
then inform us about how changes over time relate to other
variables or allow us to isolate the changes over time to allow
inference to be made concerning other variables. Time therefore
is seen as a valid variable, but the reader should not forget that
it is not time itself that causes the variation in the response
variable, but it provides a useful encapsulation of the set of
signals that lead to a shared response among the participants.
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Figure 1. Plots of simple generalized additive model (GAM) smooths and generalized additive mixed model
(GAMM) smooths (N ! 160; shading represents pointwise confidence estimates or variability bands in the
terminology used by Ruppert et al., 2003, for the smooth bounded at 2 SEs above and below the smooth
estimate); a–c and g–i plot simple GAM smooths, d–f and j–l plot the same data using GAMMs.
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Assessing Effect Size

Using both GAM and GAMM techniques, we can find a number of
useful statistics concerning dynamic emotional stimuli. The first of
these is the overall effect size for a given clip as measured by R2 for
the model. We take our definition of effect size from Kelley and
Preacher (2012, p. xx): “a quantitative reflection of the magnitude of
some phenomenon that is used for the purpose of addressing a
question of interest.” The question of interest in this case is how much
variability in the movement of a slider in response to emotional
stimuli is shared between the individuals in a sample.

Here, R2 serves in its role as an effect size measure rather than
assessing the goodness-of-fit of the model and we will consider the
simple interpretation of R2 as the square of the correlation of the
fitted smooth with the observed variables. We have mentioned that
we are principally interested in isolating the emotional signals
present within a clip so that we can make inferences about group
differences and similarities. However, informing the researcher
about the amount of variance explained by a model that just
describes the shared change over time for a group of participants
rating a particular emotional clip can be useful in practice.

Idiosyncratic changes from individuals should occur randomly
and cancel each other out, while shared changes should remain and
be reflected in the smooth. The correlation between the fitted
smooth and the observed values of the response variable that is
captured in the R2 statistic can serve as a quantitative reflection of
this effect. Assessing the effect size of a minimal model containing
only a smooth over time can tell us something about the level of
emotionality present in a clip. This is a pragmatically useful piece
of information when planning experiments or ranking video clips
within a database of emotional material (e.g., Sneddon et al.,
2012). If N participants have been asked to rate the same emotional
clip along a particular dimension (e.g., valence), we can use the
effect size of a simple model to provide us with an estimate of how
much emotional material is present within the clip. That is, how
much of the variance in a given clip can be explained due to the
shared movements of the input device across the individual par-
ticipants? We assume that any other variance is for reasons other
than the movements required of the participant in the instructions.
So in the language of Kelley and Preacher (2012), R2 can provide
us with a quantitative reflection of the magnitude of emotionality
present in any given clip.

In Table 3, we present the R2 statistics derived from simple
GAMs containing only a single smooth term representing time for
each of the clips in Data Sets 1 and 2. These can be compared with
R2 statistics for more complex GAMMs incorporating individual
participants as a random effect and including an autocorrelated
error structure. We have found that effect size estimates do not
differ much in practice, so given the computational expense of the
GAMMs, simple GAMs may be more useful for the practical
descriptive purpose of gauging the effect size, and R2 may prove
a useful measure as a proxy for the level of emotional signals
observed in each clip. However, where inferences are being made,
a more complete GAMM is advised.

We can see that for the first six clips we have a fairly consistent
medium effect size ranging from R2 ! .202 to R2 ! .318, whereas
the second set of six clips shows a greater variability, with an
effect size ranging from R2 ! .057 to R2 ! .642. Even with this
greater range of effect sizes and the smaller sample sizes used in

the second set of six clips, there is very little difference between
effect size observed in the GAMMs and the simple GAMs. Figure
2 displays the plots of the extremes of this range of effect sizes
where the more obvious curve in Clip 9 can be interpreted as
greater level of shared perceived emotion as it relates to changes in
valence, and the flatter line in Clip 10 can be interpreted as less
agreement in perceived emotion as it relates to changes in valence.

Sample Size

Given this measure of effect size, a further practical question of
use to many researchers is how many participants are required to
provide a reasonable estimated smooth, one that can give a re-
searcher reasonable confidence that it represents the smooth in the
population?

Here, we share the results of an exercise to assess model
behavior under differing sample sizes using R2 as an effect size
measure. We adopted an approach similar to the subsampling
bootstrap technique of Politis and Romano (1994); Politis, Ro-
mano, and Wolf (1999); and earlier subsampling approaches (For-
sythe & Hartigan, 1970; Hartigan, 1969). It is also similar to an
approach by Fritz and MacKinnon (2007), who used generated
data at different sample sizes to assess the sample size required to
detect mediated effects in mediation models. As the GAMMs
proposed in this article are computationally very intensive espe-
cially when they account for autocorrelation in the residuals, this
exercise was completed with GAMs.

In our approach, we make use of the large sample size of 160
participants in Clips 1–6. We assume that the 160 participants
represent the population and take a random sample of 100 sub-
samples starting with just 2 participants and increasing to sub-
samples of 159 participants. On these subsamples, we perform
simple GAMs of the relationship between variance and time and
compare the mean R2 for the model to the “population” R2. Figure
3 displays these relationships for each of the six data sets.

We judge that for the data presented in this article somewhere
between 20 and 30 participants represents the point where the
required number of participants allow a confidence that the emo-
tional signal is present. Beyond this point, there are diminishing
returns from an increase in sample size for the data we have
examined. We make no claim that these results will generalize to

Table 3
Data for GAMM’s R2 Effect Sizes for Each of the Six Clips

Clip Emotion Set N GAMM GAM

1 Disgust 1 160 0.281 0.283
2 Amusement 1 160 0.310 0.312
3 Disgust 1 160 0.299 0.303
4 Amusement 1 160 0.318 0.319
5 Disgust 1 159 0.202 0.206
6 Amusement 1 160 0.282 0.282
7 Amusement 2 40 0.280 0.280
8 Amusement 2 40 0.325 0.326
9 Amusement 2 40 0.642 0.642

10 Disgust 2 40 0.057 0.057
11 Disgust 2 40 0.210 0.211
12 Disgust 2 40 0.345 0.346

Note. GAMM ! generalized additive mixed model; GAM ! generalized
additive model.
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other situations. The appropriate sample size for such analyses
remains an empirical question and is likely to vary with context
and participant group; we provide the results of this exercise to
encourage other researchers to share similar evidence.

Inference
Drawing inferences from GAMs and GAMMs presents interesting

problems. One of the primary issues is the fact that the smooth terms

are nonparametric and do not lend themselves readily to straightfor-
ward numerical comparison. Standard linear model and linear mixed
model techniques such as ANOVA tests can be used to compare
models that drop components or test against some minimal null
model. However, an interesting inferential question arises in the
situation of GAMs and GAMMs concerning the nature of certain
areas of curves: Do the features of the curve correspond to something
real or are they simply a spurious undulation? This is especially

(a) Clip 9 Male Amusement R2 = 0.642 (b) Clip 10 Female Disgust R2 = 0.057
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Figure 2. Plots of generalized additive mixed model smooths for Clip 9 (large effect size) and Clip 10 (small
effect size).
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Figure 3. Plots of mean R2 as a function of sample size for each of the data sets.
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interesting in the case of emotion perception where we may want to
know whether a given curve represents the occurrence of an emo-
tional signal or set of emotional signals or if the curve feature is just
there by chance. One approach to answering this question is provided
by Chaudhuri and Marron (1999) with their significant zero crossings
of derivatives (SiZer) technique. This approach involves taking the
first derivative of the regression function to create a new curve with
corresponding variability bands. Any area of the new curve in which
the variability band is greater than zero corresponds to an area in the
original regression function that is increasing significantly; where the
variability band crosses below zero the original regression function is
deemed to be decreasing significantly. A full exploration of these
techniques would require a separate article; here, we restrict further
discussion to inference in linear variables and interactions.

Inference in Linear Variables

How do we use these models to make statistical inferences about
covariate variables once the smooths have been accounted for? As
GAMs allow us to combine nonparametric and parametric terms
for categorical predictors, we can look at the importance of the
effect size of one level of a factor in place of another using the $
coefficients of binary or categorical variables, much as they would
be used in an ordinary linear model. Similarly, the $ coefficients
for continuous predictors can be used in the same way as for a
linear model. This means making inferences concerning the extra
terms shown in the model specified by Equation 12. In effect, we
can explain the shared change in the response variable over time
and partial it out to assess if there are differences due to levels of
a factor or binary variable. In the following examples, a binary
variable (between females and males) is the focus, examining
differences in the overall level of valence they provided in re-
sponse to observing the emotional clip.

Table 4 displays the relevant statistics for a GAMM, a GAM,
and an ordinary linear model for Clip 9 and Clip 12. We can see
that in the GAMM for Clip 9 we see no difference due to sex, a
non-significant estimate of a valence score that is 3.1 higher for
males than females, with a standard error of 4.97. The GAMM for
Clip 12 provides evidence for a difference due to sex with an
estimate of 19.37 higher in males than females, and we can say this
with reasonable confidence when we look at the standard error.
The GAMs provide similar R2 values to the GAMMs as they take
account of the change in the response variable over time; the
estimates for the difference due to sex are also not dissimilar.

However, we see the problem of the underestimated standard error
in both the models for Clip 9 and Clip 12. This leads to inflated
t values and the conclusion of significant estimates for both Clip 9
and Clip 12. This would lead to the incorrect inference that in both
Clips 9 and 12 males and females are different when the GAMM
only provides evidence for differences in Clip 12.

When we compare both these models with the linear versions of the
model that take no account of change over time we find that the R2 for
Clip 9 is very small, which is not surprising given the lack of any
effect, and the R2 for Clip 12 is 0.08. The estimates for the difference
due to sex are the same as those for the GAM. However, again we get
the problem of underestimated standard errors in both models leading
to a greatly inflated t value in the linear model for Clip 12 and a t value
that approaches the conventional significance level of 0.05 in Clip 9.
This would lead to the erroneous conclusion of a difference between
males and females in Clip 9 and an over estimation of the precision
with which we can state the relevant statistic in Clip 12.

An additional check that we would like to conduct on these
models to be confident that they are valid is to rule out the
possibility that there are interactions with the smooth terms.

Interactions

So far the explanations of the models have assumed that the
GAM specified smooth has no impact on other variables of
interest; in other words, we have accepted the assumption of
additivity and expect no interaction between the smooth over
time and other variables of interest. There may, however, be
cases where a researcher may seek to see how smooths interact
with other variables. One reason may be to rule out the possi-
bility of an interaction with the goal of ensuring the assumption
of additivity is sound, or it may be the case that an interaction
has been predicted. Models that include interactions can take
two main forms; smooths over time can interact with categor-
ical factor or binary variables or they may interact with con-
tinuous variables.

Categorical interactions. Interactions with categorical vari-
ables are achieved by adopting a version of the GAM paradigm
known as varying-coefficient models (Hastie & Tibshirani,
1993; for alternative approaches, see Durbán et al., 2005;
Ruppert et al., 2003). In such models, smooths are multiplied by
a covariate which has the effect of creating a separate smooth
function for each level of a categorical variable (this is achieved
in the R package mgcv using “by” variables in the formulation

Table 4
Comparison of Linear Parametric Differences in Sex Using GAMMs, GAMs, and Linear Models
for Clips 9 and 12

Measure

Clip 9 Clip 12

GAMM GAM Linear GAMM GAM Linear

R2 0.64 0.64 0.0003 0.42 0.42 0.08
Intercept 28.18 30.45 30.45 "8.35 "9.85 "9.85
$ male 3.1 "1.32 "1.32 19.37 22.32 22.32
SE 4.97 0.41 0.69 5.49 0.59 0.75
t 0.63 "3.19 "1.9 3.53 37.63 29.74
p .53 ,.01 .056 ,.001 ,.001 ,.001

Note. GAMM ! generalized additive mixed model; GAM ! generalized additive model.
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of the smooth term). Once again using Clip 9 and Clip 12, we
can illustrate this by creating separate male and female smooths
over time. Table 5 shows the statistics from varying-coefficient
GAMMs and GAMs fitted to the Clip 9 and Clip 12 data. We
can see in the GAMM for Clip 9 that again there is no differ-
ence due to sex, a non-significant estimate of a valence level of
–1.39, this time a little lower for males than females and closer
to the equivalent parameter estimate for the GAM and linear
models in Table 4. However with a standard error of 5.25, this
is of little consequence. There is a slight increase in the R2

associated with this model, but it comes at a price of increased
degrees of freedom to accommodate the two smooths, and a
log-likelihood ratio test between the two models favors the
more parsimonious explanation of leaving the interaction out in
this case. As there is no significant effect due to sex, it should
not really be included in the model, and it would depend on the
goals of the experimenter if there was value in creating this
model. Similarly, in the GAMM for Clip 12, again we see a
strong difference due to sex. The GAM versions of these
models provide similar coefficient estimates but once again
suffer from an underestimation of the standard error. Figure 4
shows the separate smooths for male and females for the Clip 9
and Clip 12. It is obvious that there is almost no difference
between the male and female smooths for Clip 9; the lines fall
within the variability bands of each smooth indicating there is
no significant difference. In Clip 12, however, we can see a
difference in the smooths between males and females, and there
is no overlap in the variability bands at the peaks and troughs of
the lines. As the overall pattern is largely the same we may
conclude that the males do not interpret the emotionality they
are observing to be as extreme as the females decoders.

Continuous interactions. Although in depth exploration of
interactions with continuous variables is beyond the scope of the
current article, the R package mgcv does permit using tensor
product smooths, or using tensor product spline bases (for further
details on this method, see Wood, 2006a, pp. 162–167). This, in
essence, permits two smooths to be combined to produce a surface
capturing the interaction between the two continuous variables,
one of which is the change in the response variable over time. One
problem here is the use of different units of measurement in two
covariates. However, the use of tensor product bases allows the
smooths to be invariant to linear rescaling of covariates making it

possible to display the smooth interaction relationship between
two variables where the measured quantities are in different units
(Wood, 2006a, 2006b). Figure 5 displays two smooths for data
taken from decoders of emotion looking at a video clip with a male
exhibiting fear. Figure 5a shows a straightforward GAMM smooth
for all the participants, whereas Figure 5b shows a plot of a smooth
derived from a model that includes the continuous variable agree-
ableness in a bivariate interaction with the continuous variable
time. This has the effect of displaying the changes in the time
smooth as a result of its interaction with the level of the personality
characteristic agreeableness in the decoders. We can see consid-
erable agreement in the overall pattern with a sharp rise followed
by a trough followed by a further one or two gentle peaks.
However, the interaction highlights differences: For high levels of
agreeableness, movements after the initial peak are somewhat
muted; for medium levels of agreeableness, movements after the
initial peak exhibit a more obvious “two gentle peaks” structure as
in the simple smooth Figure 5a; finally, for low levels of agree-
ableness, movement after the initial peak is more intense, and the
gentle two peak structure has given way to a stronger single peak
structure. This interaction smooth surface then shows considerable
agreement for the first peak and more ambiguity dependent on
agreeableness in the structures that come after.

Ambiguity

These techniques permit an assessment of the level of ambiguity
present in emotion and non-verbal signals. There are certain areas
within each of the clips that contain greater or lesser degrees of
shared response, and if we assume that decoders act upon the
information that is present in the clips we can draw the conclusion
that where there is less agreement there is less useful information.
To quantify this, we can take advantage of the variability bands
derived from the standard error estimates of the GAMMs. Where
there is a greater level of agreement between decoders, the signals
in that section of clip are less ambiguous and conversely; where
there is a lesser level of agreement between decoders, the signals
are more ambiguous. This information may be used to help isolate
areas within a stimulus clip that may be of particular interest, areas
that show strong agreement and that therefore warrant more de-
tailed study and areas in which there are enduring periods of
ambiguity. Figure 6 shows three plots derived from GAMMs, and
the curves reveal that, in periods of strong movement, the vari-
ability bands are often close, suggesting more agreement between
the decoders. This is not surprising, as such movement is usually
due to the presence of strong emotional signals in the data such as
a smile or a strong look of disgust. In areas where the traces
plateau, again we have less agreement and greater ambiguity due
to low level or ambiguous signals. However, we do occasionally
see ambiguous rises such as the first upward slope observed in
Figure 6a, where the rise is pronounced, but there is a greater
ambiguity than in the second sharper rise that immediately
follows.

Some Issues

As GAMs are generalizations of linear regression, most of the
standard linear regression diagnostic techniques have an equiva-
lent that is suitable for GAMs (some can be obtained using the

Table 5
Linear Differences in Sex Using Categorical Interaction
GAMMs and GAMs With Separate Male and Female Smooths
for Clips 9 and 12

Measure

Clip 9 Clip 12

GAMM GAM GAMM GAM

R2 0.65 0.65 0.48 0.48
Intercept 28.18 30.45 "8.35 "9.85
$ male "1.39 "1.32 22.33 22.32
SE 5.25 0.41 5.94 0.57
t "0.27 "3.21 3.76 39.48
p .79 ,.01 ,.001 ,.001

Note. GAMM ! generalized additive mixed model; GAM ! generalized
additive model.
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gam.check command in the R package mgcv). The presence of
concurvity in the data can be an issue. This is the nonparametric
equivalent of multicollinearity, in which the function of a covariate
can be approximated by a linear combination of the functions of
other covariates. Where concurvity is present in the data, variance
estimates can be biased and standard errors underestimated. This is
less of a problem in the penalized splines approach (used in the R
package mgcv) compared to backfitting algorithms used in other
software (Figueiras, Roca-Pardiñas, & Cadarso-Suárez, 2005; ad-
ditionally, the concurvity command can be used in the R
package mgcv to assess the extent of the problem).

Throughout this article, we have largely concentrated on
additive models or additive mixed models but have referred to
them in their generalized sense. Generalized additive models
are to additive models as generalized linear models are to linear
models. In the generalized form, assumptions of the normal
distribution of the response variable are relaxed and models can

be fitted to response variables with any distribution from the
exponential family (e.g., normal, Poisson, binomial, gamma).
This means that more types of data can be accounted for using
these techniques, such as binary and multinomial categorical
data. We have not addressed these types of data but wished to
highlight that these techniques may open the possibility of
creating models that are useful in the analysis of categorical
time series data that are also prevalent in the emotion percep-
tion literature.

Finally, there is a known source of error that is not addressed in
these models. This is due to the response lag in the decoder’s
manipulation of the mouse—the time that it takes an encoder to
respond to emotional signals on an encoder’s face or body. This
will differ across individuals and lead to some individuals having
peaks and troughs that are unaligned. Resolution of this issue is
beyond the scope of the current article, but there are possibilities
using dynamic time-warping (Giorgino, 2009)—a technique used
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Figure 4. Categorical interactions with separate smooths for male and female decoders.
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in word recognition studies or similar techniques that may be used
to bring such response lags into alignment. Additionally, there are
promising techniques for peak and trough alignment using dy-
namic probabilistic canonical correlation analysis (Nicolaou, Pav-
lovic, & Pantic, 2012).

Conclusions
The overwhelming majority of previous research on the percep-

tion of the facial expression of emotion has relied on a recognition

paradigm and on stimuli consisting of posed static photographs of
faces (Tcherkassof et al., 2007). It has been suggested (Wehrle et
al., 2000) that implicit acceptance of this limitation may be based
on a “basic emotions” (Ekman, 1992) theoretical position that
views emotional expressions as innate prototypical patterns that
unfold in a set sequence and for which subtle dynamic changes are
of little importance. However, recently there have been an increas-
ing number of pleas for research on perception of the emotion
expressed in faces to be based on dynamic and spontaneous stimuli
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(e.g., Ambadar, Schooler, & Cohn, 2005; Biele & Grabowska,
2006; Edwards, 1998; Kamachi et al., 2001; Naab & Russell,
2007; Sneddon et al., 2011; Tcherkassof et al., 2007).

In this article, we suggest that generalized additive models
and generalized additive mixed models provide a solution to
this particular problem in emotion perception research. They
provide a route that allows the emotion perception field to
assess more than just the standard static image stimuli, and
enable a move to examining stimuli containing dynamic
changes in emotion expression over time. Using SiZer methods,
inferences can be drawn concerning features of dynamic per-
ception ratings and also standard modeling methods permit
inferences concerning differences in other variables included in
the models. While these models have been explored with a
focus on time related data within an emotion perception do-
main, they are broadly applicable to any research situation in
which time is a factor or indeed in which it is likely that the
relationships between variables are not linear, a possibility that
is too often overlooked in psychology. Time related data are
already commonly used in areas of psychology that collect
functional data, however, and such data are likely to become
increasingly common if, as Miller (2012) suggests, smartphones
represent the next important research technology in psychology.
Although not dealt with in this article, generalized additive
models are also very useful in accounting for spatial data and
combinations of spatio-temporal data, a type of data that has not
been extensively used in psychology but that is also likely to
become increasingly important as the use of smartphones as
research tools increases. Generalized additive mixed models
provide a solution to the specific problem of analyzing emotion
perception and may result in the ability to address unanswered
problems in a broader range of psychological domains. They
offer statistical analysis solutions within a framework that is
very similar to the widely used linear regression techniques and
which should provide a transition for most researchers in prac-
tical terms.

With regard to emotion perception research, this technique
opens up the possibility of comparing dynamic patterns of behav-
ior, and this, for the first time, should allow emotion researchers to
compare perceptions of spontaneous sequences of facial expres-
sions and expressions of emotion. This in turn may allow us to
look beyond the recognition paradigm and to break our reliance on
posed static photographs when seeking to understand real-life
expression of emotion.
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Appendix A

Generalized Additive Model (GAM) Software

There are currently many software options that support GAMs. Here,
we provide a list of options available to fit GAMs, generalized additive
mixed models (GAMMS), and semiparametric regression models in the
R environment—these are available as R packages on the Comprehen-
sive R Archive Network (CRAN; R Development Core Team, 2010).
The earliest R package to offer GAMs was gam (Hastie, 2011); however,
it is limited to generalized additive models and does not support gener-
alized additive mixed models. One of the oldest most mature packages is
mgcv (Wood, 2006a; Wood & Augustin, 2002); it supports generalized
additive mixed models and is the software used in this article. An

extension of mgcv is gamm4 (Wood, 2012), which uses the mixed
modeling package lme4 (Bates, Maechler, & Bolker, 2012) as the basis
for fitting GAMMs rather than the nmle package used in mgcv. The
SemiPar package (Ruppert, Wand, & Carroll, 2003) is useful but is less
well maintained than the mgcv package. The refund package offers
GAMM functionality (Crainiceanu et al., 2012). The package RLRsim
provides relevant restricted likelihood ratio tests for a restricted set of
cases (Scheipl, Greven, & Kuechenhoff, 2008). Finally, gammSlice is the
most recent addition, and it supports Markov chain Monte Carlo
(MCMC)-based inference for GAMM analyses (Pham & Wand, 2012).
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Appendix B

R Code for Implementation of the Generalized Additive Model (GAM) and the Generalized Additive Mixed
Model (GAMM)

The data should be arranged in long form; for example, the output of a head (Clip1) R command should produce output similar
to Table B1, and the output of a tail (Clip1) R command should produce output similar to Table B2.

The R code for creating models such as those in Figure 1. The most basic command using defaults for the GAMs would be as follows:

gamMod1 ,- gam(valence-s(time), data!Clip1)
gamMod2 ,- gam(valence-s(time), data!Clip2)
gamMod3 ,- gam(valence-s(time), data!Clip3)
gamMod4 ,- gam(valence-s(time), data!Clip4)
gamMod5 ,- gam(valence-s(time), data!Clip5)
gamMod6 ,- gam(valence-s(time), data!Clip6)

Summary information for GAMs can be printed using the summary command (gamMod1).
The most basic command using defaults for the GAMMs would be as follows:

gammMod1 ,- gamm(valence - s(time), data!Clip1, random!list (PartNo!-1),
correlation!corAR1())

gammMod2 ,- gamm(valence - s(time), data!Clip2, random!list (PartNo!-1),
correlation!corAR1())

gammMod3 ,- gamm(valence - s(time), data!Clip3, random!list (PartNo!-1),
correlation!corAR1())

gammMod4 ,- gamm(valence - s(time), data!Clip4, random!list (PartNo!-1),
correlation!corAR1())

gammMod5 ,- gamm(valence - s(time), data!Clip5, random!list (PartNo!-1),
correlation!corAR1())

gammMod6 ,- gamm(valence - s(time), data!Clip6, random!list (PartNo!-1),
correlation!corAR1())

Table B1
The First Six Lines of the R Data Frame for Data Set 1 Clip 1

Row Part no. Clip Sex Time Valence

1 1 F03b Female 0.1 0.256
2 2 F03b Female 0.1 0.767
3 3 F03b Female 0.1 1.278
4 4 F03b Female 0.1 0.767
5 5 F03b Female 0.1 0.000
6 6 F03b Female 0.1 0.000

Table B2
The Last Six Lines of the R Data Frame for Data Set 1 Clip 1

Row Part no. Clip Sex Time Valence

47995 155 F03b Male 30 "58.745
47996 156 F03b Male 30 "28.885
47997 157 F03b Male 30 "87.167
47998 158 F03b Male 30 "100.000
47999 159 F03b Male 30 "61.854
48000 160 F03b Male 30 "56.492
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Retrieving summary information for GAMMs can be printed using the summary command; however, $gam or $lme must be
appended to specify which part of the model you require.

summary(gammMod1$gam)
summary(gammMod1$lme)

The smooth formula is the part with the s(time); this can be altered to place an upper limit on the number of knots by changing the
parameter k (the basis dimension for the smooth):

gamMod7 ,- gam(valence-s(time, k!15), data!Clip7)
gammMod7 ,- gamm(valence - s(time, k!15), data!Clip7, random!list(PartNo!-1),

correlation ! corAR1())

Similarly, you can alter the type of smoother using the bs command in the smooth formula:

"cr"—A penalized cubic regression spline;
"ps"—Eilers and Marx style P-splines;
"ad"—Adaptive smoothers based on “ps”;
"tp"—Optimal low rank approximation to thin plate spline.

For example,

gamMod8 ,- gam(valence-s (time, bs!"ps"), data!Clip8)
gammMod8 ,- gamm(valence - s (time, bs!"cr"), data!Clip8, random!

list (PartNo!-1), correlation ! corAR1())

Varying coefficient models are achieved by including a by command within the smooth term:

gamMod12 ,- gam(valence-s (time, by!Sex), data!Clip12), random!list (PartNo!-1),
gammMod12 ,- gamm(valence - s (time, by!Sex), data!Clip12,

correlation ! corAR1())

Plots like the ones in Figures 1 and 4 can be obtained using

plot (gamMod1, shade!TRUE, shade.col!"rosybrown2", rug!FALSE, se!T, xlab!"Time",
ylab!"Valence", main!"Disgust Female Encoder")

plot (gammMod1$gam, shade!TRUE, shade.col!"rosybrown2", rug!FALSE, se!T, xlab!"Time",
ylab!"Valence", main!"Amusement Female Encoder")
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