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Modeling, Control and Design Optimization for a

Fully-actuated Hexarotor Aerial Vehicle with Tilted Propellers

Sujit Rajappa1, Markus Ryll3, Heinrich H. Bülthoff1,2 and Antonio Franchi3,4

Abstract— Mobility of a hexarotor UAV in its standard
configuration is limited, since all the propeller force vectors are
parallel and they achieve only 4–DoF actuation, similar, e.g., to
quadrotors. As a consequence, the hexarotor pose cannot track
an arbitrary trajectory while the center of mass is tracking
a position trajectory. In this paper, we consider a different
hexarotor architecture where propellers are tilted, without the
need of any additional hardware. In this way, the hexarotor
gains a 6–DoF actuation which allows to independently reach
positions and orientations in free space and to be able to
exert forces on the environment to resist any wrench for aerial
manipulation tasks. After deriving the dynamical model of
the proposed hexarotor, we discuss the controllability and the
tilt angle optimization to reduce the control effort for the
specific task. An exact feedback linearization and decoupling
control law is proposed based on the input-output mapping,
considering the Jacobian and task acceleration, for non-linear
trajectory tracking. The capabilities of our approach are shown
by simulation results.

I. INTRODUCTION

Research in the field and applications related to unmanned

aerial vehicles (UAVs) has been very popular in recent

times, see e.g., [1] and references therein. The application

possibility to use the UAV for various tasks such as search

and rescue operation, exploration, surveillance, cooperative

swarm tasks or transportation are all increasing and has

been the main research subject with growing interest in the

last decade with many industrial collaborations. Lately, the

mobile manipulation tasks by aerial vehicles and physical

interaction with the environment for various applications has

been growing ground within the UAV community. The inter-

action can be done by direct contact [2]–[5], by considering

simple grasping/manipulation tasks [6], [7] and has moved

forward to multiple collaborative interactive UAVs [8].

Among the many challenges faced by typical UAVs, such

as little flight time, limited payload capacity, uncertainties in

outside environment etc., an important one is the underac-

tuation, i.e., the inability to exert forces in some directions

of the body frame. Quadrotors have been used as the main

platform for applications as well as research, though they are

also underactuated, i.e., they cannot exert any force parallel

to the plane perpendicular to their vertical direction in body
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frame. This is why a quadrotor needs to roll and pitch to

accelerate in any direction different from a pure vertical one.

But when it comes to physical interaction, underactuation

might become a serious problem for the capabilities and

overall stabilization of the aerial vehicle. As the applica-

tion complexity is going higher, major breakthroughs and

advancements in innovative mechanical designs, actuation

concepts, micro-electro mechanical systems, sensor tech-

nology and power capacity is always envisioned. Several

possibilities have been proposed in the past literature span-

ning different concepts: ducted-fan designs [9], tilt-wing

mechanisms [10], or tilt-rotor actuations [11], [12]. The

concept of tilt-rotor architecture has been much explored

to increase flight time [13] but not for the improvement of

the underactuation problem. In [14] the underactuation was

addressed by four additional rotors at the end of each frame

in lateral position. But the position of the rotor increased the

complexity of controllability because of the air flow between

the vertical and the lateral rotors, resulting in non-linear

dynamics along with the increase in payload.

Our own in-lab investigation led to the novel quadrotor

design [15] with tilted propellers by 4 additional actuators

included for the tilting thereby creating the possibility to

regulate independently the 6 DoFs of the platform. Though

underactuation problem was solved by this design, the need

of tilting the propellers in order to resist to any external

wrench makes it tough for the aerial manipulation task,

where forces shall be exerted instantaneously to resist to

unexpected external wrenches. Additionally, the use of ser-

vomotors for tilting the propellers makes the overall model

challenging to control in real scenarios involving physical

interaction.

In [16], a hexarotor with the propellers rotated by the same

angle-magnitude about one axis was suggested. Our approach

constitutes a generalization of [16], as we present a more

general tilt design. Furthermore, w.r.t. [16] we present a new

control law for 6 DoFs trajectory tracking, a methodology to

optimize the fixed tilting angles for each propeller depending

on the task in exam and an improved mechanical design

where all the propellers lie in the same plane.

Taking inspiration from all the related work, we propose

a novel hexarotor with tilted propeller design, where each

rotor is fixedly mounted in a configuration that is rotated

about two possible axes. The main objective of this work

is full controllability of the UAV’s position and orientation

by means of tilted propellers, thereby making it completely

actuated. The full actuation comes with the acceptable cost

of a slightly more complex mechanical design.
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Symbols Definitions

m total mass of the hexarotor

g gravity constant

OB Center of hexarotor or Center of Mass (CoM)

OPi
Center of the each propeller group

p position of OB (the CoM) in FW

λi angular orientation of OB ,OPi
on the XBY B plane

Lxi distance between OPi
and OB

FW inertial world frame

FB hexarotor body frame

FPi
i-th propeller frame

WRB rotation matrix from FB to FW
BRPi

rotation matrix from FPi
to FB

IB inertia of the hexarotor frame

kf propeller thrust coefficient

km propeller drag coefficient

αi i-th propeller tilt angle about OPi
OB

βi i-th propeller tilt angle about Y Pi

ω̄i i-th propeller spinning velocity about ZPi

ωB angular velocity of FB w.r.t. FW expressed in FB

τ ext external disturbance torque acting on the hexarotor

T thrusti i-th propeller thrust along ZPi

T dragi
drag due to the i-th propeller along ZPi

TABLE I: Main symbols used in the paper

The focus and structure of this paper is therefore: (i)
to discuss in detail and derive the dynamic model for the

proposed hexarotor in Sec. II, (ii) to devise and develop

the closed-loop controller for the hexarotor which is able

to asymptotically track an arbitrary desired trajectory for

the position and orientation in 3-dimensional free space in

Sec. III, (iii) to optimize the propeller tilt angles depending

on the application/trajectory to reduce the overall control

effort in the Sec. IV-B, (iv) to start the design of a novel

and feasible hexarotor architecture with tilted propellers in

Sec. IV, and finally (v) to test the hexarotor model and

its theoretical concepts in simulation, presented in Sec. V.

Conclusions and future perspectives are given in Sec. VI.

II. DESIGN AND MODELING

A standard hexarotor possesses six propellers that are all

rotating about six parallel axes. Even though this choice

increases redundancy and payload, such configuration has

an underactuated dynamics similar to a standard quadrotor.

In fact, the six propellers create an input force that is always

parallel to that axis, no matter the values of the six rotational

speeds. In this case a change of the direction of the input

force in world frame can only be obtained by reorienting

the whole vehicle. As a consequence, the output trajectory

can only be defined by a 4-dimensional output, namely the

center of mass (CoM) 3D position plus the yaw angle, despite

the presence of 6 control inputs. In fact in [17] it has been

proven that such kind of systems are exactly linearizable with

a dynamic feedback using as linearizing output, i.e. the CoM

position and the yaw angle. Feedback linearizability also

implies differential flatness of the system taking as flat output

the linearizing one [18]. The remaining two configuration

variables, i.e., the roll and pitch angles, cannot be chosen at

will, since they are being determined by the desired trajectory

of the CoM, the yaw angle, and their derivatives.

Fig. 1: Schematic representation of the hexarotor described in this
paper.

On the converse, the goal of the hexarotor modeling

approach presented here is to exploit at best the six available

inputs, thus resulting in a system that is fully actuated, i.e.,

linear and angular accelerations can be set independently

acting on the six inputs. In order to obtain full actuation,

we remove the constraint for the propellers to rotate about

six parallel axes, so that a force in any direction can be

generated regardless of the vehicle orientation. Thanks to

full actuation, this hexarotor can track 6-DoFs trajectories

comprising both the CoM position and, independently, the

vehicle orientation described, e.g., by roll, pitch, and yaw,

or by a rotation matrix.

Even though a reallocation and reorientation of the six

propellers allows for more design flexibility it also increases

the number of design parameters thus increasing the design

complexity. In order to find a good compromise between full

actuation and low number of model parameters, we decide

to add the following constraint on the parameters:

• the CoM and the six propeller centers are coplanar, like

in a standard hexarotor;

This design choice simplify the design complexity while still

allowing a full spectrum of actuation capabilities, as it will

be shown in the paper.

The main symbols used in the paper are shown in Table I,

A. Static System Description

We denote the world inertial frame with FW : {OW −
XWY WZW } and with FB : {OB−XBY BZB} the body

frame attached to the hexarotor frame, where OB coincides

with the hexarotor CoM. Let the frame associated with the

i-th propeller be defined as FPi
: {OPi

− XPi
Y Pi

ZPi
},

where i = 1 . . . 6. The origin OPi
coincides with the center

of spinning and the CoM of the i-th propeller, the axes XPi

and Y Pi
define the rotation plane of the propeller, and ZPi

is the axis about which the propeller spins and coincides

with the direction of the generated thrust force. The propeller

frame FPi
is rigidly attached to the hexarotor frame, rather

than to the propeller, which spins about ZPi
. In fact, only

the direction of the force and torque exerted by the propeller

are relevant to our problem. The actual spinning angle of

each propeller is not important for the motion, as it will be

explained in Sec. II-B.

We shall denote simply by p ∈ R
3 the position of OB

in FW , and by Bpi ∈ R
3 the position of OPi

in FB , with
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(a) (b) (c)

Fig. 2: (a): terminal part of the i-th hexarotor arm showing the body frame FPi and the generated thrust Tthrusti and drag Tdragi
; (b) and

(c): Visualization of the possible reorientation of the propeller around XPi (case (b)) and YPi (case (c)). The angle of reorientation is
denoted with αi in (b) and βi in (c)

i = 1 . . . 6. In order to have the 6 propellers centers lying

on the XBY B plane we set:

Bpi = RZ(λi)





Lxi

0
0



 , ∀i = 1 . . . 6 (1)

where RZ(·) is the canonical rotation matrix about a Z-axis,

Lxi
> 0 is the distance between OPi

and OB , and λi is the

angular direction of the segment OBOPi
on the XBY B

plane.

The parameters λi and Lxi
should be chosen depending

on the strength and length of propellers, size and shape of

the hexarotor, payload needs, etc.. For example in Sec. V we

shall choose Lxi
= 0.4 m and λi = (i− 1)

π

3
.

Let the rotation matrix WRB ∈ SO(3) represent the ori-

entation of FB w.r.t. FW and BRPi
∈ SO(3) represent the

orientation of FPi
w.r.t. FB , for i = 1 . . . 6. In order to obtain

a minimal parameterization of the propeller orientation we

decompose each BRPi
in three consecutive rotations

BRPi
= RZ(λi)RX(αi)RY (βi), ∀i = 1 . . . 6 (2)

where the angular parameters αi and βi represent the tilt

angles that uniquely define the rotation plane of the i-th
propeller, XPi

Y Pi
or, equivalently, the direction of ZPi

in FB . The angles αi and βi have a clear geometrical

interpretation, in fact the i-th propeller plane XPi
Y Pi

is

obtained from XBY B by first applying a rotation of αi

about the line OBOPi
and then a rotation of βi about Y Pi

,

which lies on XBY B and is perpendicular to OBOPi
. The

αi and βi rotation is pictorially represented in Fig. 2.

For convenience, we group the following parameters

into four 6-tuples: α = (α1, α2, α3, α4, α5, α6), β =
(β1, β2, β3, β4, β5, β6), λ = (λ1, λ2, λ3, λ4, λ5, λ6) and

Lx = (Lx1
, Lx2

, Lx3
, Lx4

, Lx5
, Lx6

).
In this paper we consider the case in which λi, Lxi

, αi, βi,
for i = 1 . . . 6, are constant during flight. Nevertheless, we

allow αi, βi to be changed during a pre-flight setup, in order,

e.g., to minimize the sum of the overall control effort for a

specific task, as shown in Sec. IV-B.

B. Equations of Motion

Utilizing the standard Newton-Euler approach for dynamic

systems, it is possible to derive the complete dynamic

equations of the hexarotor by considering the forces and

torques that are generated by each propeller rotation together

with the significant gyroscopic and inertial effects. In the

following we recap the standard1 assumptions that we are

considering here:

• OB coincides with the CoM of the hexarotor;

• OPi
coincides with the CoM of the i-th propeller;

• the motors actuating the six propellers implement a fast

high-gain local controller which is able to impose a

desired spinning speed with negligible transient, thus

allowing to consider the spinning rates as (virtual)

control inputs in place of the motor torques;

• gyroscopic and inertial effects due to the propellers and

the motors are considered as second-order disturbances

to be rejected by the feedback nature of the controller;

• the tilted propellers might cause additional turbulences

due to the possible intersection of the airflows. These

turbulences are considered as negligible as the possible

intersection of the airflows happens not close to the

propellers. In fact, tilt configurations have been already

proven to be feasible in reality [19].

We will test in simulation (see Section V) the practicability of

these assumptions with the proposed controller on a dynamic

model which includes the aforementioned unmodeled effects.

For ease of presentation, in the following we shall express

the translational dynamics in FW where as the rotational

dynamics is expressed in FB .

1) Rotational dynamics: Denote with ωB ∈ R
3 the

angular velocity of FB , with respect to FW , expressed in

FB . Then the rotational dynamics is

IBω̇B = −ωB × IBωB + τ + τ ext, (3)

where IB is the hexarotor body inertia matrix, τ ext accounts

for external disturbances and unmodeled effects, and τ is the

input torque, which is decomposed in

τ = τ thrust + τ drag, (4)

where τ thrust is produced by the six propeller thrusts and

τ drag is due to the six propeller drags. The two individual

components of (4) are discussed in detail below.

a) Torque due to thrusts (τ thrust): The i-th propeller

creates a force vector applied at OPi
and directed along ZPi

,

which is expressed in FPi
by

T thrusti =
[

0 0 kf ω̄
2
i

]T
(5)

1Similar assumptions have been used, e.g., in [13]–[15]
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where kf > 0 is a constant thrust coefficient and ω̄i is the

spinning velocity of the i-th propeller. The thrust torque,

expressed in FB is then

τ thrust =

6
∑

i=1

(

Bpi ×
BRPi

T thrusti

)

. (6)

b) Torque due to drag (τ drag): The drag moment gen-

erated by the i-th propeller acts in the opposite direction of

the propeller angular velocity and is expressed in FPi
by

T dragi
=

[

0 0 (−1)ikmω̄
2
i

]T
, (7)

where km > 0 is the propeller drag coefficient. The factor

(−1)i is used since half of the propellers rotate clockwise

and the other half rotates counter-clockwise. This is done

in order to have an automatic counterbalance of the drag

torques at hovering. The drag torque due to the six propellers

expressed in FB is then

τ drag =
6

∑

i=1

BRPi
T dragi

. (8)

Putting together (8) and (6) in (4) we can write

τ = H(α,β,λ,Lx)u, (9)

where H(α,β,λ,Lx) ∈ R
3×6 is the matrix that relates the

input torque τ to the control input

u = [ω̄2
1 ω̄2

2 ω̄2
3 ω̄2

4 ω̄2
5 ω̄2

6 ]
T ∈ R

6×1, (10)

i.e., the squares of the rotational speeds of each propeller.

2) Translational dynamics: Thanks to the assumption on

the location of the hexarotor and propeller centers of mass,

we can express the translational dynamics in FW , using the

standard Newton-Euler formulation, as

mp̈ = m





0
0
−g



+ WRBF (α,β,λ)u+ f ext (11)

where f ext represents external disturbances and unmodeled

effects, and F (α,β,λ) ∈ R
3×6 is the matrix that relates u

with the total force produced by the propellers (expressed in

body frame), i.e.,

F (α,β,λ)u =

6
∑

i=1

BRPi
T thrusti . (12)

Notice that in a standard hexarotor αi = βi = 0, for all

i = 1 . . . 6. This implies that F (α,β,λ) has rank equal to

one (the total force is always directed on the ZB axis).

III. CONTROL DESIGN

The control problem considered here is an output tracking

problem. In particular, the hexarotor is tasked to track, simul-

taneously, a desired trajectory pd(t) with the CoM position

p and a given orientation Rd(t) with the body orientation
WRB . The available control inputs are the squares of the six

spinning rates of the propellers u defined in (10).

Neglecting the external forces and torques (which are

handled by the feedback nature of the control) we rewrite

Feedback Linearization

Decoupling Control

Tilted Propeller

Hexarotor Dynamic Model

6 DOF Trajectory 

Generator
𝑝ௗ , 𝑝̇ௗ ̈, 𝑝ௗ𝑅ௗ , ̇ωௗ ̈, ωௗ , 𝑢 = ω௜ଶ,𝑖 =1…6

𝑝, 𝑝̇, 𝑅(φ, θ, ψ), ω̇(𝑝, 𝑞, 𝑟)
𝑝̈, ω̈

𝑝, 𝑝̇, 𝑝̈,𝑅, ω̇, ω̈
Fig. 3: Control scheme architecture

here the hexarotor dynamical model, that is used for the

control design

p̈ =
[

0 0 −g
]T

+
1

m
WRBF (α,β,λ)u (13)

ω̇B = −I−1
B (ωB × IBωB) + I−1

B H(α,β,λ,Lx)u
(14)

WṘB = WRB [ωB ]∧ (15)

with [·]∧ being the hat operator from R
3 to so(3).

A. Exact Feedback Linearization and Decoupling Control

In order to apply a feedback linearization technique we

rewrite (13)–(14) in a matricial form
[

p̈

ω̇B

]

= f + JR

[

J̄(α,β,λ,Lx)
]

u = f + J(α,β,λ,Lx)u

(16)

where f ∈ R
6 is the drift vector due to the gravity

and the rotational inertia, JR =

[

1

m
WRB 0

0 I
−1

B

]

∈ R
6×6,

J̄(α,β,λ,Lx) =

[

F (α,β,λ)

H(α,β,λ,Lx)

]

∈ R
6×6. The 6×6 matrix

J(α,β,λ,Lx) is called the decoupling matrix2.

If J(α,β,λ,Lx) is invertible we choose the control input

as

u = J−1(α,β,λ,Lx) (−f + v) (17)

where v is an additional input, thus obtaining
[

p̈

ω̇B

]

= v =

[

vp

vR

]

, (18)

i.e., the system is exactly linearized via a static feedback.

Fig. 3 shows the control scheme architecture.

In order to obtain an exponential convergence to 0 of the

position error p−pd = ep one can choose a linear controller

vp = p̈d −Kp1ėp −Kp2ep −Kp3

∫ t

t0

ep, (19)

where the diagonal positive definite gain matrixes Kp1
, Kp2

,

Kp3
define Hurwitz polynomials.

Now considering the orientation tracking, a popular used

parameterization is to resort to Euler angles. However it

is well known that they are prone to singularity problems.

Keeping this in mind, the controller for the rotational config-

uration is developed directly on SO(3) and thereby it avoids

any singularities that arise in local coordinates, such as Euler

2In standard hexarotor the decoupling matrix J(α,β,λ,Lx) has always
rank equal to four, similarly to a quadrotor.
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Fig. 4: CAD model of the preliminary prototype of the hexarotor
with tilted propellers. It is composed of: (1) Micro controller, (2)
Brushless controller, (3) Lander, (4) Propeller motor, (5) Tilting
set-up.

(a) (b)

Fig. 5: (a) and (b): Visualization of the possible reorientation of the
propeller around XPi (case (a)) and YPi (case (b)). The angle of
reorientation is denoted with αi in (a) and βi in (b)

angles. Now assuming that Rd(t) ∈ C̄3 and ωd = [RT
d Ṙd]∨,

where [·]∨ represents the inverse (vee) operator from so(3) to

R
3, the attitude tracking error eR ∈ R

3 is defined similarly

to [20] as

eR =
1

2
[RT

d
WRB − WRT

BRd]∨, (20)

and the tracking error of the angular velocity eω ∈ R
3 is

given by

eω = ωB − WRT
BRdωd. (21)

In order to obtain an asymptotic convergence to 0 of the

rotational error eR one can choose the following controller

vR = ω̇d −KR1
eω −KR2

eR −KR3

∫ t

t0

eR (22)

where the diagonal positive definite gain matrixes KR1
,

KR2
, KR3

define Hurwitz polynomials also in this case.

IV. A PRELIMINARY PROTOTYPE

In this section we present the design of a preliminary

prototype obtained instantiating the general model introduced

in Section II in a more particular case. A CAD of the

prototype is shown in Fig. 4.

First of all, to reduce the complexity and for the sake

of symmetry, we have chosen λi = (i − 1)π3 and Lxi
=

0.4 m ∀ i = 1 . . . 6. With this choice, the origin OPi
of

each propeller frame is equally spaced with 60◦ between

each other from the center of the body frame OB to have a

symmetric configuration in normal hovering position.

Furthermore, as shown in Fig. 5 each propeller is mounted

in an arc frame which is free to rotate in XPi
and Y Pi

, so

Fig. 6: Determinant value (z-axis) of J̄(α,β) of the presented
prototype

that the tilt angle of αi and βi can be fixed as desired. The

radius of the arc(Rarc) is designed equal to the length of

the motor (with the propeller attached), so that OPi
always

stays at the same location in the XBY B plane with only its

direction vector [XPi
Y Pi

ZPi
]T changing according to the

αi and βi orientation.

The arm in which each propeller set-up is suspended is

designed to have a curved architecture with the radius of

the curvature, more than the propeller radius (Rprop), so

that independently from the value of αi and βi in a certain

allowed interval, the propellers never come in contact with

the arm during flight.

Finally in this preliminary prototype we consider the

following constraints

α1 = ±α2 = ±α3 = ±α4 = ±α5 = ±α6 = α (23)

β1 = ±β2 = ±β3 = ±β4 = β5 = ±β6 = β. (24)

A. Discussion on the Invertibility of J(α, β)

In this prototype the decoupling matrix depends only on

the choice of α and β. Our control algorithm relies on the

invertibility of J(α, β). This implies ρJ = rank(J(α, β)) =
rank(JRJ̄(α, β)) ≡ rank(J̄(α, β)) = 6, ∀t > 0. Here JR

is a nonsingular square matrix as seen in (16) and therefore

does not affect rank(J(α, β)). Therefore J̄(α, β) is the only

rank affecting component.

Due to the high non linearity of J̄(α, β) sufficient con-

ditions for the invertibility are hard to find. Just to give an

example, Fig. 6 shows det(J̄(α, β)) for a particular choice

of the pluses and minuses in (23) and (24).

B. Optimization of α and β

The angles α and β can be adjusted during the pre-

flight setup. This gives the possibility to change the angles

depending on the needs of a particular trajectory. In this

section, we consider this capability to optimize α and β
depending on a predefined desired trajectory to reduce the

control effort. As a reminder, the main motive is the full

controllability in position and orientation. This comes with

the cost of a higher control effort. The objective of this

section is therefore to reduce this parasitic effect.

The predominant energy consuming parts of the hexaro-

tor are the propeller motors. Minimizing the control effort
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1.3e7 1.0e6 1.1e6 unfeasible unfeasible
solution solution

(a) (b) (c) (d) (e)

TABLE II: Stylized tested configuration and results. First row:
Different configuration presented. Outside the circle the sign of αi

is indicated, within the circle the sign of βi is indicated. Second
row: Value of the optimized

∫
||u||min. Configuration (b) is the

best configuration for the given trajectory. Configurations (d) and
(e) are not feasible configurations

through the norm of the control output ||u|| by optimizing

the particular α and β will as well reduce the energy

consumption in flight.

To reduce the complexity of the optimization, αi and βi
shall be changed in a coordinated way as explained before.

We decided to use the same α and β respectively for αi and

βi ∈ i = 1 . . . 6, but with different signs for the individual

joints (see (23) and (24)). An overview of the compared

configurations can be found in table II.

The coordinated variation of αi and βi offers two addi-

tional advantages: (i) no asymmetries in the hexarotor body

and (ii) none or a minimum change of the CoM.

Considering these constraints, the optimization problem

can be defined as:

min
α,β

∫ tf

0

||u||dt (25)

Subject to:

0 < α <
π

2
(26)

0 < β <
π

2
(27)

0 < ω̄i , for i ∈ 1..6 (28)

Here (26) and (27) are defining the lower and upper

bounds for αi and βi, while (28) ensures a positive rotation

speed ω̄i for all propellers. The presented minimization

problem is a multi-dimensional constrained nonlinear op-

timization problem and can be solved using the in-build

optimization capabilities of MATLAB by exploiting the

fmincon-function [21].

To compare (minimal control effort) the different configu-

rations shown in table II, we used the presented optimization

technique to find the optimal values α⋆ and β⋆ and the

associated
∫

||ω||min. As trajectory, a typical flight regime

has been chosen, which is presented in Section V-A. The

minimum value of the objective function could be found in

configuration (b). Therefore all further experiments will be

performed by using this configuration: α = α1 = −α2 =
α3 = −α4 = α5 = −α6 and β = β1 = −β2 = β3 = −β4 =
β5 = −β6.

The optimal angles α⋆ and β⋆ are highly dependent on the

desired trajectory. To visualize the influence we conducted a

trajectory, where the hexarotor hovers in place but performs
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−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

θ,
φ
[r
a
d
]

time [s]

(a)

0

0.1

0.2

0.3

0.4

0.5

α⋆ β⋆

[r
ad

]

(b)

Fig. 7: (a): Desired sinusoidal trajectories for equal θ and φ. Their
amplitude is increased in six steps from 0◦ (0 rad) to 22.5◦ (≈
0.39 rad); all other values remain constant (= 0). (b): Optimal
values for α and β corresponding to the six trajectories presented
in (a)
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Fig. 8: Objective function for a given trajectory. Optimum is marked
with a red circle

a sinusoidal rotation around θ and φ at the same time (see

figure 7 (a)). The magnitude of the rotation is increased in

6 steps up to 22.5◦. α⋆ and β⋆ are increasing accordingly

from almost zero values to α⋆ = 0.49 rad and β⋆ = 0.33 rad

for the maximum amplitude.

Figure 8 shows the influence of the optimization itself. For

the considered sinusoidal trajectory, we calculated the value

of the objective function for a wide variety of α⋆ and β⋆.

The optimal value is marked by a red circle in Fig. 8.

V. SIMULATIONS AND RESULTS

Here, we intend to present two simulations performed

on the novel tilted propeller hexarotor. We aim to prove

two important features of the proposed platform: (i) the

ability of reorienting while hovering and reacting to external

force/torque disturbances, (ii) 6-DoF (position+orientation)

trajectory tracking. Given the chosen α and β, not all

trajectories might be feasible since the negative control

outputs ui might occur. This needs to be considered during

the pre-trajectory planning step.

A. Reorienting while hovering with external disturbance

In the first simulation, we tested a hovering trajectory in

which the hexarotor maintains a fixed position p but re-

orients itself changing at the same time the roll φ, pitch

θ and yaw ψ angles. This involves hexarotor orienting −12◦

w.r.t. XB , 12◦ w.r.t. Y B axis and 15◦ w.r.t. ZB while still

hovering in the position p = [0 0 0]T . Notice that orienting
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Fig. 9: Results of the hovering with external force/torque distur-
bance. 9(a): Desired (dashed line) and current (solid line) position
pd in x(red), y(green) and z(blue). 9(b): Desired (dashed line) and
current (solid line) orientation ηd in roll(red), pitch(green) and
yaw(blue). 9(c–d): external force(f ext) and torque(τ ext) applied to
the hexarotor

w.r.t. the 3 principal body axes {XB , Y B , ZB} while

holding the same position is not feasible in a standard (co-

planar) hexarotor UAV. The initial conditions were set to

p(t0) = 0, ṗ(t0) = 0, WRB(t0) = I3 and ωB(t0) =
0. The desired trajectory was chosen as pd(t) = 0 and

Rd(t) = RX(φ(t))RY (θ(t))RZ(ψ(t)) with φ(t), θ(t), ψ(t)
following a smooth profile having as maximum velocity

θ̇max = 5◦/s and maximum acceleration θ̈max = 2.5◦/s2.

The optimized value of α′ = 13.6◦ and β′ = 10.6◦ obtained

from Sec. IV-B has been used. The gains in Equations (19)

and (22) were set to Kp1
= KR1

= 10 I3, Kp2
= KR2

=
29 I3 and Kp3

= KR3
= 30 I3.

Figures 9(a–d) show the result of hovering with external

force/torque disturbance. As clearly seen in Fig. 9(c) a

constant external force disturbance (f ext = [4 2 1]TN) is

applied, along the 3 principal axis {XB , Y B , ZB}, from

t = 4 to 9 s. Fig. 9(a) shows the position (current (solid

line) and desired (dashed line)) brought under control while

f ext is applied thanks to the integral term in (19). Similarly

in Fig. 9(d) a constant external torque disturbance (τ ext =
[0.2 0.175 0.15]T Nm) is applied, about the 3 principal axes

{XB , Y B , ZB}, from t = 12 to 18 s. Fig. 9(b) shows the

orientation that gets disturbed by this external torque and

brought under control after a short transient, thanks to the

integral term in (22). The in-zoomed Fig. 9(a) shows that the

position tracking error is very minimal in powers of 10−9.

This simulation provides a first confirmation of the validity

of the robustness of the controller during hovering with

external disturbance and also the ability of reorienting the

hexarotor while maintaining a fixed position, thus showing

the 6–DoF capabilities of the hexarotor. This point will also

be addressed more thoroughly by the next simulation.
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Fig. 10: Results of the robust 6 DoFs trajectory tracking. 10(a):
Desired (dashed line) and current (solid line) position pd in x(red),
y(green) and z(blue). 10(b): Desired (dashed line) and current (solid
line) orientation ηd in roll(red), pitch(green) and yaw(blue). 10(c–
d): behavior of the position/orientation tracking errors (ep, eη).

B. 6 DoF trajectory tracking

In this simulation, we have addressed a more com-

plex trajectory following a square path with vertexes

{V1, V2, V3, V4, V5, V6, V7}. Each vertex was associated

with the following desired positions and orientations3

• V 1: pd = [0 0 0]T , ηd = [0◦ 0◦ 0◦]T

• V 2: pd = [2 0 0]T , ηd = [−18◦ 0◦ 0◦]T

• V 3: pd = [2 3 0]T , ηd = [−18◦ 12◦ 0◦]T

• V 4: pd = [2 3 1]T , ηd = [−18◦ 12◦ 9◦]T

• V 5: pd = [2 0 1]T , ηd = [−18◦ 12◦ 0◦]T

• V 6: pd = [2 0 0]T , ηd = [−18◦ 0◦ 0◦]T

• V 7: pd = [0 0 0]T , ηd = [0◦ 0◦ 0◦]T

which were traveled along with rest-to-rest motions with

maximum linear/angular velocities of 0.3m/s and 15◦ /s, and

maximum linear/angular accelerations of 0.2m/s2 and 5◦ /s.

Figures 10(a–d) show the desired trajectory (pd(t), ηd(t)),
and the tracking errors (ep(t), eR(t)). The same initial

condition as in Sec. V-A is considered. The optimized value

of α′ = 26.5◦ and β′ = 19◦ for this trajectory obtained

from Sec. IV-B has been used. Here it is clearly illustrated

that at the vertex V 4 the hexarotor exploits the 6 DoFs.

Note again how the tracking errors are kept to minimum (in

power of 10−5) despite the more complex motion involving

several reorientations of the propellers. This confirms again

the validity of the proposed controller.

The interested reader can refer to the video attached to the

paper for a more exhaustive illustration of the hovering and

6–DoF hexarotor motion capabilities.

3Here, for the sake of clarity, we represent orientations by means of the
classical roll/pitch/yaw Euler set η ∈ R

3.
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VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have overcome the underactuation issues

of a standard UAV with a tilted propeller hexarotor archi-

tecture where the propellers can be rotated both w.r.t. X-axis

and Y-axis. This concept allows to (i) gain full controllability

over the 6 DoFs hexarotor pose in free space, and (ii)
optimize the propeller tilt angle with respect to a minimum

control effort over a desired trajectory. Carefully analyzing

the controllability properties of the dynamic model, resulted

in the hexarotor design being combined with trajectory track-

ing controller based on feedback linearization techniques. A

clear validation of the controller’s robustness is proved by

means of extensive simulations.

Our future works are aimed at (i) realizing the prototype

of the proposed tilted propeller hexarotor in order to exper-

imentally validate the ideas discussed in this paper. Further

research is mandatory for feasibility of u. In addition, we are

also, (ii) proceeding in the direction of optimizing the tilt

angle to get a desired force (F x,F y,F z ∈ R
3) and desired

torque (T x,T y,T z ∈ R
3) along the 3 principal body axes

{XB , Y B , ZB}, which is a major objective for the aerial

physical interaction with the environment.
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