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Abstract

Default dependency structure is crucial in pricing multi-name credit derivatives as well as
in credit risk management. In this paper, we extend the first passage model for one name
with stochastic volatility (Fouque-Sircar-Sølna, Applied Mathematical Finance 2006) to the
multi-name case. Correlation of defaults is generated by correlation between the Brownian
motions driving the individual names as well as through common stochastic volatility factors.
A numerical example for the loss distribution of a portfolio of defaultable bonds is examined
after stochastic volatility is incorporated.

1 Introduction

Default dependency structure is a crucial issue in pricing multi-name credit derivatives as well as
in credit risk management. For a multi-name credit derivative, the default dependency structure
among the underlying portfolio of reference entities is as important as, and in many cases even
more important than, the individual term structures of default probabilities.

On the other hand, it is well documented in the finance literature that stock returns exhibit
stochastic volatility. It has been shown in Fouque, Papanicolaou and Sircar (2000) that asymptotic
methods are very efficient in capturing the effects of stochastic volatility in simple robust corrections
to the constant volatility formulas. Recently, by incorporating stochastic volatility to the first
passage model developed by Black and Cox (1976) in modeling defaultable bonds, Fouque, Sircar
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and Sølna (2006) obtained much higher yield spreads for short maturity bonds than those under
constant volatility. In fact those low yield spreads at short maturities is exactly what the original
first passage model — in fact all firm’s value models — have been criticized for. By using models
incorporating fast and slow stochastic volatility factors, and a combination of singular and regular
perturbations techniques they obtain reasonable fits to defaultable bonds data.

In this paper, we extend the first passage model to model default dependency in two directions:
by extending to multi-dimension and by incorporating stochastic volatility. We derive approxima-
tions for the joint survival probabilities and subsequently for the distribution of number of defaults
in a basket of names. Since we are not considering in this paper particular structured products
such as CDOs, we do not specify all the features of the defaultable bonds except that an individual
bond defaults at the first time that the underlying firm’s value goes to or below some exogenously
prespecified level — the default threshold. Also, since we are mainly interested in the number
of defaults before maturity, recovery does not play a role. If we were pricing derivatives, such as
tranches of CDOs, which is outside the scope of the paper, we would have to incorporate recovery.
This can be done following the remark in Fouque et al. (2006) (Section 2) by considering more
general boundary value conditions.

The rest of this paper is organized as follows. We first set up in Section 2 the class of models that
we consider. We study first the case where the Brownian motions driving the names are independent
so that the correlation of defaults is only due to the common factors of stochastic volatility. Then in
Section 3, using combined regular and singular perturbation techniques, as in Fouque et al. (2003)
for a single name, we obtain approximations for the joint survival probabilities. Specifically, we give
a formula for the leading order term and we characterize the corrections terms as solutions of partial
differential equations. The derivation of these equations is presented in Appendix A and explicit
formulas are given in Appendix B. In Section 4, we examine the loss distribution for a portfolio of
defaultable bonds. The general case is examined briefly, and then a special case — homogeneous
portfolio case — is examined in detail. Following this, some numerical results illustrating the effect
of stochastic volatility are presented for the homogeneous portfolio case. Finally in Section 5 we
generalize our model to the case where the Brownian motions driving the names are correlated. We
show that an expansion around the independent case can be performed and gives a tractable way to
combine this source of default correlation with the one coming from stochastic volatility. Our result
shows that for a given maturity the dependency generated by correlating the Brownian motions
driving the names is of the same nature as the one generated by stochastic volatility. However they
differ across maturities and therefore we conclude that both sources of default correlation should
be taken into account when pricing CDO’s tranches for instance.

2 Model Setup

We consider a pool of n defaultable bonds whose underlying firms’ value processes
{

X
(i)
t

}n

i=1
exhibit

the following multi-factor stochastic volatility dynamics under the physical probability measure P

— the real world probability measure:

dX
(1)
t = µ1X

(1)
t dt+ f1(Yt, Zt)X

(1)
t dW

(1)
t ,

dX
(2)
t = µ2X

(2)
t dt+ f2(Yt, Zt)X

(2)
t dW

(2)
t ,

2



· · · · · · · · · · · · · · · · · · · · · · · ·
dX

(n)
t = µnX

(n)
t dt+ fn(Yt, Zt)X

(n)
t dW

(n)
t ,

dYt =
1

ǫ
(mY − Yt)dt+

νY

√
2√
ǫ

dW
(Y )
t ,

dZt = δ(mZ − Zt)dt+ νZ

√
2δdW

(Z)
t ,

where W
(i)
t ’s are standard Brownian motions and we consider first the uncorrelated case corre-

sponding to d〈W (i),W (j)〉t ≡ ρijdt = 0 for i 6= j. The stochastic volatility correlation structure is
given by:

d〈W (Y ),W (i)〉t = ρiY dt, d〈W (Z),W (i)〉t = ρiZdt, d〈W (Y ),W (Z)〉t = ρY Zdt,

with all ρ’s being constant numbers between −1 and 1. Note that
∑n

i=1 ρ
2
iY ≤ 1 and

∑n
i=1 ρ

2
iZ ≤ 1

must be satisfied if the Brownian motions W
(i)
t ’s are to be independent. Also µi, ǫ, δ,mY , νY ,mZ , νZ

are all constant numbers with ǫ > 0 and δ > 0 both being small so that stochastic volatilities are
driven by two Ornstein-Uhlenbeck (OU) processes, Yt being fast mean-reverting with rate of mean-
reversion 1/ǫ and the invariant distribution N (mY , ν

2
Y ), and Zt being slowly mean-reveting with

rate of mean-reversion δ and the invariant distribution N (mZ , ν
2
Z). The function fi’s are positive

functions, smooth with respect to the slow variable z, and are assumed here, for instance, to be
bounded above and below away from zero. If the stochastic volatility is turned off by choosing
fi = 0, i = 1, . . . , n, then the defaults become independent and the default of a given firm follows
the model developed by Black and Cox (1976).

Remark. We start by assuming independence among the Brownian motions W
(i)
t ’s for

i = 1, 2, . . . , n basically for two reasons. Firstly, we try to avoid the intractability caused by the
interdependence, as can be seen in Zhou (2001) where results on the joint distribution of two hitting
times are derived. This dependency will be restored in Section 5 and made tractable by using a
perturbation argument around the uncorrelated case. Secondly, we argue that the dependence
among the defaultable names introduced through stochastic volatilities is as important as the
dependence generated by the interdependence among the Brownian motions driving them. This
important issue will be discussed further in Section 5.

Under the risk-neutral probability measure P̃, chosen by the market through derivatives trading,
the dynamics becomes

dX
(1)
t = rX

(1)
t dt+ f1(Yt, Zt)X

(1)
t dW̃

(1)
t ,

dX
(2)
t = rX

(2)
t dt+ f2(Yt, Zt)X

(2)
t dW̃

(2)
t ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
dX

(n)
t = rX

(n)
t dt+ fn(Yt, Zt)X

(n)
t dW̃

(n)
t ,

dYt =

[

1

ǫ
(mY − Yt) −

νY

√
2√
ǫ

Λ1(Yt, Zt)

]

dt+
νY

√
2√
ǫ

dW̃
(Y )
t ,

dZt =
[

δ(mZ − Zt) − νZ

√
2δΛ2(Yt, Zt)

]

dt+ νZ

√
2δdW̃

(Z)
t ,

where r is the riskfree interest rate (assumed constant here), W̃
(i)
t ’s are standard Brownian motions

with d〈W̃ (i), W̃ (j)〉t = 0 for i 6= j, and

d〈W̃ (Y ), W̃ (i)〉t = ρiY dt, d〈W̃ (Z), W̃ (i)〉t = ρiZdt, d〈W̃ (Y ), W̃ (Z)〉t = ρY Zdt.
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The quantity of interest are the joint survival probabilities of n given firms since they are the
building blocks when one wants to compute the probability distribution of the number of defaults
as explained in Section 4.

For fixed time T > 0, our objective is to find the joint (risk-neutral) survival probability

uǫ,δ(t,x, y, z) ≡ P̃

{

τ
(1)
t > T, . . . , τ

(n)
t > T | Xt = x, Yt = y, Zt = z

}

, (1)

where t < T , Xt ≡ (X
(1)
t , . . . ,X

(n)
t ), x ≡ (x1, . . . , xn), and τ

(i)
t is the default time of firm i, defined

as follows,

τ
(i)
t = inf

{

s ≥ t, X(i)
s ≤ Bi(s)

}

,

where Bi(t) is the exogenously pre-specified default threshold at time t for firm i. Here we follow
Black and Cox (1976) and we assume that

Bi(t) = Kie
ηit,

with Ki > 0 and ηi ≥ 0, all being constant numbers. It is very common that credit derivatives
have long maturities. Therefore it is more realistic to assume time varying default thresholds
(exponentially growing in our case) than constant ones. Observe that uǫ,δ is zero whenever xi ≤
Bi(t) for some i and therefore we only need to focus on the case where xi > Bi(t) for all i =
1, 2, . . . , n.

3 Approximated Joint Survival Probabilities

We derive in this section an approximation for the joint survival probability uǫ,δ defined in (1).
We first write a PDE representation for it and we then perform singular and regular perturbations
with respect to the small parameters ǫ and δ.

3.1 PDE Representation

In terms of partial differential equations (PDE), uǫ,δ is the solution to the following boundary value
problem:

Lǫ,δuǫ,δ = 0, xi > Bi(t), for all i, t < T,

uǫ,δ(t, x1, x2, . . . , xn, y, z) = 0, ∃i ∈ {1, · · · , n}, xi = Bi(t), t ≤ T,

uǫ,δ(T, x1, x2, . . . , xn, y, z) = 1, xi > Bi(t), for all i,

where the operator Lǫ,δ has the following decomposition in terms of powers of
√
ǫ and

√
δ:

Lǫ,δ =
1

ǫ
L0 +

1√
ǫ
L1 + L2 +

√
δM1 + δM2 +

√

δ

ǫ
M3, (2)
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with the notations

L0 = (mY − y)
∂

∂y
+ ν2

Y

∂2

∂y2
,

L1 = νY

√
2

[

n
∑

i=1

ρiY fi(y, z)xi
∂2

∂xi∂y
− Λ1(y, z)

∂

∂y

]

,

L2 =
∂

∂t
+

n
∑

i=1

(

1

2
f2

i (y, z)x2
i

∂2

∂x2
i

+ rxi
∂

∂xi

)

, (3)

M1 = νZ

√
2

[

n
∑

i=1

ρiZfi(y, z)xi
∂2

∂xi∂z
− Λ2(y, z)

∂

∂z

]

,

M2 = (mZ − z)
∂

∂z
+ ν2

Z

∂2

∂z2
,

M3 = 2ρY ZνY νZ
∂2

∂y∂z
.

As in Fouque et al. (2003), we expand uǫ,δ in terms of powers of
√
ǫ and

√
δ:

uǫ,δ = u0 +
√
ǫ u1,0 +

√
δ u0,1 + ǫ u2,0 +

√
ǫδ u1,1 + δ u0,2 + · · · , (4)

and retain

ũ ≡ u0 +
√
ǫ u1,0 +

√
δ u0,1 (5)

as our approximation for uǫ,δ. In the Appendix A we present the formal expansion argument leading
to the characterization of the leading order term u0 and the two correction terms

√
ǫ u1,0 and

√
δ u0,1.

In the following sections we compute these terms in the context of our multidimensional boundary
value problem.

3.2 Leading Order Term u0

Following Fouque et al. (2003) as explained in the Appendix A, the leading order term u0 is
independent of y and is determined by the following PDE system with respect to the variables
(t, x), the variable z being simply a parameter:

〈L2〉u0 = 0, xi > Bi(t), for all i, t < T, (6)

u0(t, x1, x2, . . . , xn) = 0, ∃i ∈ {1, · · · , n}, xi = Bi(t), t ≤ T,

u0(T, x1, x2, . . . , xn) = 1, xi > Bi(t), for all i,

where, from the definition (3) of L2, we have

〈L2〉 =
∂

∂t
+

n
∑

i=1

(

1

2
〈f2

i (·, z)〉x2
i

∂2

∂x2
i

+ rxi
∂

∂xi

)

. (7)
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The variable z appears only as a parameter in the averaged diffusion coefficients 〈f2
i (·, z)〉 with

respect to the invariant distribution N (mY , ν
2
Y ) of the process Yt under the real world measure P,

i.e.,

〈f2
i (·, z)〉 =

∫

f2
i (y, z)

1

νY

√
2π

exp

(

−(y −mY )2

2ν2
Y

)

dy.

Proposition 1 The leading order term u0 in the approximation (5) is given by:

u0 =
n
∏

i=1

Qi ≡
n
∏

i=1

[

N
(

d+
2(i)

)

−
(

xi

Bi(t)

)pi

N
(

d−2(i)

)

]

, (8)

where N(·) is the standard cumulative normal distribution function, and

d±2(i) ≡
± ln xi

Bi(t)
+
(

r − ηi − σ2
i (z)
2

)

(T − t)

σi(z)
√
T − t

,

σi(z) ≡
√

〈f2
i (·, z)〉, (effective volatility of firm i)

pi ≡ 1 − 2(r − ηi)

σ2
i (z)

.

Proof From (6) and (7), u0 admits the probabilistic representation:

u0 = Ē

{

n
∏

i=1

1n

inft≤s≤T X̄
(i)
s /Bi(s) >1

o | X̄s = x

}

,

where, under the probability measure P̄, we have

dX̄
(1)
t = rX̄

(1)
t dt+ σ1(z)X̄

(1)
t dW̄

(1)
t ,

dX̄
(2)
t = rX̄

(2)
t dt+ σ2(z)X̄

(2)
t dW̄

(2)
t ,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
dX̄

(n)
t = rX̄

(n)
t dt+ σn(z)X̄

(n)
t dW̄

(n)
t ,

with W̄ (i)’s being independent standard Brownian motions. In other words,
{

X̄
(i)
t

}

, i = 1, 2, . . . , n,

are independent Geometric Brownian motions and it follows that

u0 =

n
∏

i=1

P̄

{

inf
t≤s≤T

X̄(i)
s /Bi(s) > 1 | X̄(i)

t = xi

}

.

By doing change of variables to make the corresponding boundary constant (instead of exponentially
growing) and then using the appropriate formula in Borodin and Salminen (2002) obtained by the
method of images or equivalently the reflection principle in one dimension, one can reach the
conclusion in the proposition.

6



3.3 Correction Term
√

ǫ u1,0

From Appendix A the term u1,0 is determined by the following PDE system:

〈L2〉u1,0 = Au0, xi > Bi(t), for all i, t < T, (9)

u1,0(t, x1, x2, . . . , xn) = 0, ∃i ∈ {1, · · · , n}, xi = Bi(t), t ≤ T,

u1,0(T, x1, x2, . . . , xn) = 0, xi > Bi(t), for all i,

where the operator A is given by

A ≡ 〈L1L−1
0 (L2 − 〈L2〉)〉

=
νY√

2





n
∑

i=1

n
∑

j=1

ρiY

〈

fi
∂φj

∂y

〉

xi
∂

∂xi

(

x2
j

∂2

∂x2
j

)

−
n
∑

j=1

〈

Λ1
∂φj

∂y

〉

x2
j

∂2

∂x2
j





= − νY√
2

n
∑

i=1

〈

Λ1
∂φi

∂y

〉

x2
i

∂2

∂x2
i

+
νY√

2

n
∑

i=1

ρiY

〈

fi
∂φi

∂y

〉

xi
∂

∂xi

(

x2
i

∂2

∂x2
i

)

+
νY√

2

n
∑

i,j=1
i6=j

ρiY

〈

fi
∂φj

∂y

〉

xi
∂

∂xi

(

x2
j

∂2

∂x2
j

)

. (10)

Here φi(y, z), for i = 1, 2, . . . , n, denote solutions of reasonable growth at infinity to the following
Poisson equations with respect to the variable y:

L0φi(y, z) = f2
i (y, z) − 〈f2

i (·, z)〉, (11)

and 〈·〉 denotes the average with respect to the invariant distribution N (mY , ν
2
Y ) of Y .

The following result shows that the multi-dimensional problem (9) can be reduced to many
uncoupled one- and two-dimensional problems.

Proposition 2 The correction term
√
ǫ u1,0 is given by

√
ǫ u1,0 =

n
∑

i=1

R
(2)
i w

(2)
i

n
∏

j=1
j 6=i

Qj +
n
∑

i=1

R
(3)
i w

(3)
i

n
∏

j=1
j 6=i

Qj +
n
∑

i,j=1
i6=j

R
(3)
ij w

(3)
ij

n
∏

k=1
k 6=i,j

Qk, (12)

where the coefficients R
(2)
i , R

(3)
i , R

(3)
ij depend on the parameter z and are given by

R
(2)
i = −νY

√
ǫ√

2

〈

Λ1(·, z)
∂φi

∂y
(·, z)

〉

(13)

R
(3)
i =

νY
√
ǫ√

2
ρiY

〈

fi(·, z)
∂φi

∂y
(·, z)

〉

(14)

R
(3)
ij =

νY
√
ǫ√

2
ρiY

〈

fi(·, z)
∂φj

∂y
(·, z)

〉

, i 6= j, (15)
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with φi’s given by (11) and Qi’s given in Proposition 1, and where the functions w
(2)
i (t, xi), w

(3)
i (t, xi)

and w
(3)
ij (t, xi, xj) depend on the parameter z and are given by the following problems:

[

∂

∂t
+

1

2
σ2

i (z)x
2
i

∂2

∂x2
i

+ rxi
∂

∂xi

]

w
(2)
i = x2

i

∂2Qi

∂x2
i

, xi > Bi(t), t < T, (16)

w
(2)
i (t, Bi(t)) = 0, t ≤ T,

w
(2)
i (T, xi) = 0, xi > Bi(t),

[

∂

∂t
+

1

2
σ2

i (z)x
2
i

∂2

∂x2
i

+ rxi
∂

∂xi

]

w
(3)
i = xi

∂

∂xi

(

x2
i

∂2Qi

∂x2
i

)

, xi > Bi(t), t < T, (17)

w
(3)
i (t, Bi(t)) = 0, t ≤ T,

w
(3)
i (T, xi) = 0, xi > Bi(t),

[

∂

∂t
+

1

2
σ2

i (z)x
2
i

∂2

∂x2
i

+
1

2
σ2

j (z)x
2
j

∂2

∂x2
j

+ rxi
∂

∂xi
+ rxj

∂

∂xj

]

w
(3)
ij =

(

xi
∂Qi

∂xi

)

(

x2
j

∂2Qj

∂x2
j

)

,(18)

xi > Bi(t), xj > Bj(t), t < T,

w
(3)
ij (t, xi, xj) = 0, if xi = Bi(t) or xj = Bj(t), t ≤ T,

w
(3)
ij (T, xi, xj) = 0, xi > Bi(t), xj > Bj(t),

with σi(z) given in Proposition 1.

Proof Note that with the form (10) of A and the definitions (13, 14, 15) we have:

√
ǫA =

n
∑

i=1

R
(2)
i x2

i

∂2

∂x2
i

+

n
∑

i=1

R
(3)
i xi

∂

∂xi

(

x2
i

∂2

∂x2
i

)

+

n
∑

i,j=1
i6=j

R
(3)
ij xi

∂

∂xi

(

x2
j

∂2

∂x2
j

)

.

By linearity of (9), it is enough to check that

〈L2〉



w
(2)
i

n
∏

j=1,j 6=i

Qj



 = x2
i

∂2u0

∂x2
i

, (19)

〈L2〉



w
(3)
i

n
∏

j=1,j 6=i

Qj



 = xi
∂

∂xi

(

x2
i

∂2u0

∂x2
i

)

, (20)

〈L2〉



w
(3)
ij

n
∏

k=1,k 6=i,j

Qk



 = xi
∂

∂xi

(

x2
j

∂2u0

∂x2
j

)

. (21)

Using the form (7) of 〈L2〉 and u0 =
∏n

i=1Qi one can easily check that (19), (20), and (21) are
satisfied. The boundary and terminal conditions for the correction

√
ǫ u1,0 are directly inherited

from the boundary and terminal conditions for the functions w
(2)
i ’s, w

(3)
i ’s, w

(3)
ij ’s, and Qi’s.

The problems (16), (17) and (18) are boundary value problems with sources. In Appendix B
we show how to transform them into boundary value problems without source leading to explicit
formulas (up to Gaussian integrals).
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3.4 Correction Term
√

δ u0,1

From Appendix A the term u0,1 is determined by the following PDE system:

〈L2〉u0,1 = −〈M1〉u0, xi > Bi(t), for all i, t < T, (22)

u0,1(t, x1, x2, . . . , xn) = 0, ∃i ∈ {1, · · · , n}, xi = Bi(t), t ≤ T,

u0,1(T, x1, x2, . . . , xn) = 0, xi > Bi(t), for all i.

where the operator 〈M1〉 is given by:

〈M1〉 = νZ

√
2

[

n
∑

i=1

ρiZ〈fi(·, z)〉xi
∂2

∂xi∂z
− 〈Λ2(·, z)〉

∂

∂z

]

.

The following result shows that, as for u1,0, the multi-dimensional problem (22) for u0,1 can be
reduced to many uncoupled one- and two-dimensional problems.

Proposition 3 The correction term
√
δ u0,1 is given by

√
δ u0,1 =

n
∑

i=1

R
(0)
i w

(0)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i=1

R
(1)
i w

(1)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i,j=1
i6=j

R
(1)
ij w

(1)
ij

n
∏

k=1
k 6=i,j

Qk, (23)

where the coefficients R
(0)
i , R

(1)
i , R

(1)
ij depend on the parameter z and are given by

R
(0)
i = −νZ

√
2δ 〈Λ2(·, z)〉σ′i(z) (24)

R
(1)
i = νZ

√
2δ ρiZ〈fi(·, z)〉σ′i(z) (25)

R
(1)
ij = νZ

√
2δ ρiZ〈fi(·, z)〉σ′j(z), i 6= j, (26)

σi(z)’s and Qi’s given in Proposition 1, σ′i = dσi/dz, and where the functions w
(0)
i (t, xi; z), w

(1)
i (t, xi; z)

and w
(1)
ij (t, xi, xj ; z) depend on the parameter z and are given by the following problems:

[

∂

∂t
+

1

2
σ2

i (z)x
2
i

∂2

∂x2
i

+ rxi
∂

∂xi

]

w
(0)
i = −∂Qi

∂σi
, xi > Bi(t), t < T, (27)

w
(0)
i (t, Bi(t)) = 0, t ≤ T,

w
(0)
i (T, xi) = 0, xi > Bi(t),

[

∂

∂t
+

1

2
σ2

i (z)x
2
i

∂2

∂x2
i

+ rxi
∂

∂xi

]

w
(1)
i = −xi

∂

∂xi

(

∂Qi

∂σi

)

, xi > Bi(t), t < T, (28)

w
(1)
i (t, Bi(t)) = 0, t ≤ T,

w
(1)
i (T, xi) = 0, xi > Bi(t),

9



[

∂

∂t
+

1

2
σ2

i (z)x
2
i

∂2

∂x2
i

+
1

2
σ2

j (z)x
2
j

∂2

∂x2
j

+ rxi
∂

∂xi
+ rxj

∂

∂xj

]

w
(1)
ij = −

(

xi
∂Qi

∂xi

)(

∂Qj

∂σj

)

, (29)

xi > Bi(t), xj > Bj(t), t < T,

w
(1)
ij (t, xi, xj) = 0, if xi = Bi(t) or xj = Bj(t), t ≤ T,

w
(1)
ij (T, xi, xj) = 0, xi > Bi(t), xj > Bj(t).

Proof The proof is very similar to that of Proposition 2. Since u0 depends on z only through
σi(z)’s, we have

∂u0

∂z
=

n
∑

j=1

σ′j(z)
∂u0

∂σj
,

and therefore

√
δ〈M1〉u0 = νZ

√
2δ





n
∑

i=1

ρiZ〈fi(·, z)〉xi
∂

∂xi





n
∑

j=1

σ′j(z)
∂u0

∂σj



− 〈Λ2(·, z)〉
n
∑

j=1

σ′j(z)
∂u0

∂σj





= νZ

√
2δ





n
∑

i=1

n
∑

j=1

ρiZ〈fi(·, z)〉σ′j(z)xi
∂

∂xi

(

∂u0

∂σj

)

− 〈Λ2(·, z)〉
n
∑

i=1

σ′i(z)
∂u0

∂σi





=
n
∑

i=1

R
(0)
i

∂u0

∂σi
+

n
∑

i=1

R
(1)
i xi

∂

∂xi

(

∂u0

∂σi

)

+
n
∑

i,j=1
i6=j

R
(1)
ij xi

∂

∂xi

(

∂u0

∂σj

)

,

where we have used the definitions (24, 25, 26) of (R
(0)
i , R

(1)
i , R

(1)
ij ). By linearity of (22), it is enough

to check that

〈L2〉



w
(1)
i

n
∏

j=1,j 6=i

Qj



 = −∂u0

∂σi
, (30)

〈L2〉



w
(1)
i

n
∏

j=1,j 6=i

Qj



 = −xi
∂

∂xi

(

∂u0

∂σi

)

, (31)

〈L2〉



w
(1)
ij

n
∏

k=1,k 6=i,j

Qk



 = −xi
∂

∂xi

(

∂u0

∂σj

)

. (32)

Using the form (7) of 〈L2〉 and u0 =
∏n

i=1Qi one can easily check that (30), (31), and (32) are
satisfied. The boundary and terminal conditions for the correction

√
δ u0,1 are directly inherited

from the boundary and terminal conditions for the functions w
(0)
i ’s, w

(1)
i ’s, w

(1)
ij ’s, and Qi’s.

As for (16), (17) and (18) we show in Appendix B that the boundary value problems with sources

(27), (28), and (29) for w
(0)
i ’s, w

(1)
i ’s, w

(1)
ij ’s can be transformed into boundary value problems

without source leading to explicit formulas (up to Gaussian integrals).
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3.5 Summary of the Approximation

Combining the results of Propositions 1, 2 and 3 we get that the approximation ũ in (5) is given
by

ũ =

n
∏

i=1

Qi +

n
∑

i=1

R
(2)
i w

(2)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i=1

R
(3)
i w

(3)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i,j=1
i6=j

R
(3)
ij w

(3)
ij

n
∏

k=1
k 6=i,j

Qk

+
n
∑

i=1

R
(0)
i w

(0)
i

n
∏

j=1
j 6=i

Qj +
n
∑

i=1

R
(1)
i w

(1)
i

n
∏

j=1
j 6=i

Qj +
n
∑

i,j=1
i6=j

R
(1)
ij w

(1)
ij

n
∏

k=1
k 6=i,j

Qk, (33)

where (R
(2)
i , R

(3)
i , R

(3)
ij ) are small of order

√
ǫ, (R

(0)
i , R

(1)
i , R

(1)
ij ) are small of order

√
δ, and they all

depend on the parameter z. The functions Qi, w
(2)
i , w

(3)
i , w

(0)
i , w

(1)
i depend on the variable xi, the

functions w
(3)
ij , w

(1)
ij depend on the variables (xi, xj), and they all depend on the parameter z.

The accuracy of approximation (33) is given at the end of Appendix A.

Remark The (approximated) survival probability of a single bond/firm (treated in Fouque et
al. (2006)) is a particular case of the result (33). It can be obtained by fixing an index and
eliminating all those terms that involve any one of the other indices, which includes all the two-
index cross-terms. For example, the (approximated) survival probability of bond 1 only involves

Q1, w
(0)
1 , w

(1)
1 , w

(2)
1 and w

(3)
1 .

3.6 Numerical Illustration of the Accuracy of Approximation

In order to illustrate the quality of the approximation of the joint survival probability given by
(33) we have conducted the following numerical experiments. For n = 10 names (Table 1), and
for n = 25 names (Table 2), we compute the zero-order approximation u0 given by (8), and the
first order approximation ũ given by (33) with the explicit formulas derived in Appendix B. We
present the results for four sets of values of the small parameters ǫ and δ. Since there is no explicit
formulas for the true value, we obtain it by Monte Carlo simulations with a very large number of
realizations (105) and using an Euler scheme with a very small time-step (10−4) in order to ensure
accuracy of the true value proxy denoted by uMC. The absolute and relative errors are shown in
the last columns. In all cases we have used the following parameter values:

X
(i)
0 = 20, r = 5%, ηi = 6%,Ki = 10,

ρij = 0, ρiY = ρiZ = 1/(2
√
n), ρY Z = 0,

mY = mZ = 30%, νY = νZ = 10%, Y0 = Z0 = 30%, Λ1 = Λ2 = 0,

fi(y, z) = 30% exp(y + z)/ exp(mY +mZ + ν2
Y + ν2

Z), T = 1.

As expected the first order approximation ũ converges to the (simulated) true value uMC as
(ǫ, δ) goes to (0, 0). In fact, as often observed in homogenization, the approximation remains very

11



ǫ δ u0 ũ uMC Absolute (relative) error

1/100 1/50 0.740389 0.75079 0.7502 0.0006 (0.08%)
1/50 1/20 0.740389 0.756015 0.7529 0.003 (0.4%)
1/20 1/10 0.740389 0.763647 0.7567 0.007 (0.9%)

1 1 0.740389 0.82833 .7653 0.063 (8.2%)

Table 1: Joint survival probability for ten firms (n = 10).

ǫ δ u0 ũ uMC Absolute (relative) error

1/100 1/50 0.471683 0.481506 0.4789 0.003 (0.5%)
1/50 1/20 0.471683 0.486892 0.4803 0.006 (1.4%)
1/20 1/20 0.471683 0.488478 0.4854 0.003 (0.6%)
1/20 1/10 0.471683 0.493648 0.4843 0.009 (1.9%)

Table 2: Joint survival probability for twenty five firms (n = 25).

accurate even in regimes where these parameters are not so small. We also observe that, in the
present case with ρij = 0, the volatility-name correlations ρiY , ρiZ are small (since

∑n
i=1 ρ

2
iY ≤ 1

and
∑n

i=1 ρ
2
iZ ≤ 1), and the effect of the correction due to stochastic volatility is also relatively

small (u0 is already close to uMC). This will not be the case with name-name correlations ρij 6= 0
as shown in Section 5.

4 Loss Distribution

We consider now a portfolio consisting of N defaultable bonds and we denote by ai the number of
bond i in this portfolio. Assuming zero recovery rate from default for each bond, the loss at time
t of this portfolio is given by the random variable

L(t) ≡
N
∑

i=1

aiχi(t),

where χi(t) takes on 1 if bond i defaults before t and 0 otherwise. Our objective is to study the
distribution of L(T ) for a maturity T smaller than all the bond maturities.

4.1 General Case

Since the portfolio consists only of a finite number of bonds, L must have a discrete distribution
function. It hence suffices to find the probability value that a subset of names in the portfolio
default. It turns out that this can be done recursively. For example,

P∗{only bond 1 defaults in the portfolio before time T}
= P∗{τ1 ≤ T, τ2 > T, · · · , τN > T}
= P∗{τ2 > T, · · · , τN > T} − P∗{τ1 > T, τ2 > T, · · · , τN > T},
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while τi is the default time of bond i. Both terms on the right hand side of the last equality are
known (approximately) by formula (33). In general, if we denote

I ≡ {i1, i2, . . . , in} ⊂ J ≡ {j1, j2, . . . , jm} ⊂ N̄ ≡ {1, 2, . . . , N},
D

|I|
|J |(I;J) ≡ P∗{(bond i defaults, i ∈ I) ∩ (bond j survives, j ∈ J\I)},

then

Dn
m ({i1, . . . , in};J) = P∗ {(τi ≤ T, i ∈ {i1, . . . , in−1, in}) ∩ (τj > T, j ∈ J\I)}

= P∗ {(τi ≤ T, i ∈ {i1, . . . , in−1}) ∩ (τj > T, j ∈ J\I)}
−P∗ {(τi ≤ T, i ∈ {i1, . . . , in−1}) ∩ (τj > T, j ∈ J\{i1, . . . , in−1})} .

Therefore,

Dn
m ({i1, . . . , in}; {j1, . . . , jm}) = Dn−1

m−1 ({i1, . . . , in−1}; {j1, . . . , jm}\{in})
−Dn−1

m ({i1, . . . , in−1}; {j1, . . . , jm}) . (34)

Formula (34) is recursive and by implementing it once, one can reduce by one the superscript n
(= the number of defaults) on D. This can be done repeatedly until one reduces the superscript
to zero, implying a total survival of an appropriate subset of names in the portfolio. Finally the
probability of total survival is (approximately) ũ given by (33), with names/indices {1, 2, . . . , n}
replaced by the appropriate set of indices/names.

It can be shown that in order to compute Dn
m(·, ·), one has to evaluate ũ-like forms 2n times.

This may be computationally expensive for a portfolio of big size, say 50 names or more. For a
smaller size portfolio, say N = 20, however, the computational cost is acceptable to find for instance
the probability of 50% loss, namely D10

20(·, ·). To be more precise, the computation of D10
20(·, ·) would

require to compute 210 = 1024 of ũ-like forms given by (33). However, every item in equation (33)
is in closed-form (or up to double integrals), and therefore can be computed fairly fast when an
appropriate programming language is chosen (say, C/C++). This can be done within 0.05 to 0.5
seconds on a 2GHz CPU with 2GB RAM PC. Therefore the whole computation of D10

20(·, ·) can be
done within 51.2 to 512 seconds, which is what we mean by acceptable.

4.2 Special Case: Homogeneous Portfolio

We now consider a fully homogeneous portfolio, that is

fi(y, z) = f(y, z), ρiY = ρY , ρiZ = ρZ , ai = a, X
(i)
0 = xi = x, (35)

for all i = 1, · · · , N . We first recall a classical result.

Lemma 1 Let τi be the default time of bond i, and suppose that under a probability P

P(τi > T, i ∈ {i1, i2, . . . , im}) = P(τj > T, j ∈ {j1, j2, . . . , jm}),

for any two equal-size sets of indices {i1, i2, . . . , im} and {j1, j2, . . . , jm} chosen from {1, 2, . . . , N}
with 1 ≤ m ≤ N . Define

Sm ≡ P(τi > T, i ∈ {1, 2, . . . ,m}), 1 ≤ m ≤ N. (36)
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Then, for 0 ≤ k < N , the probability that exactly k bonds, among the N bonds, default before T is
given by

F
(N)
k ≡ P

(

N
∑

i=1

χi(T ) = k

)

=

(

N

k

) k
∑

j=0

(

k

j

)

(−1)jSN+j−k. (37)

Proof We provide here a short proof which consists in computing the moment generating function
of the number of survivals. Denote by χ′

i ≡ 1 − χi the event “firm i survives after T”.
On one hand we have

Φ(z) ≡ E

(

z(
PN

i=1 χ′
i)
)

= E

(

z(N−
PN

i=1 χi)
)

=

N
∑

k=0

z(N−k)F
(N)
k =

N
∑

k=0

zkF
(N)
N−k. (38)

On the other hand we have

Φ(z) = E

(

N
∏

i=1

zχ′
i

)

= E

(

N
∏

i=1

(

1 + (z − 1)χ′
i

)

)

= E





∑

(i1,···,in),n=0,···,N

(z − 1)nχ′
i1 · · ·χ′

in





=

N
∑

n=0

(z − 1)n
∑

(i1,···,in)

P(τi > T, i ∈ {i1, i2, . . . , in}) =

N
∑

n=0

(z − 1)n
(

N
n

)

Sn

=

N
∑

n=0

(

n
∑

k=0

(−1)n−k

(

n
k

)

zk

)

(

N
n

)

Sn

=

N
∑

k=0

zk

(

N
∑

n=k

(−1)n−k

(

n
k

)(

N
n

)

Sn

)

. (39)

The function Φ(z) being the polynomial in z given by (38) and (39) we deduce that

F
(N)
N−k =

N
∑

n=k

(−1)n−k

(

n
k

)(

N
n

)

Sn =

(

N
N − k

) N
∑

n=k

(−1)n−k

(

N − k
n− k

)

Sn.

We finally obtain (37):

F
(N)
k =

(

N
k

) N
∑

n=N−k

(−1)n−N+k

(

k
n−N + k

)

Sn

=

(

N
k

) k
∑

j=0

(−1)j
(

k
j

)

SN−k+j,

by setting j = n−N + k.

With the homogeneity assumption, we set q ≡ Q1(t, x) for the survival probability after t of
one given bond, and we obtain from the results in Section 3 that

u0 =

n
∏

i=1

Qi = qn,
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√
ǫ u1,0 =

n
∑

i=1

R
(2)
i w

(2)
i

n
∏

j=1
j 6=i

Qj +
n
∑

i=1

R
(3)
i w

(3)
i

n
∏

j=1
j 6=i

Qj +
n
∑

i,j=1
i6=j

R
(3)
ij w

(3)
ij

n
∏

k=1
k 6=i,j

Qk

= nR
(2)
1 w

(2)
1 (t, x)qn−1 + nR

(3)
1 w1(t, x)

(3)qn−1 + n(n− 1)R
(3)
12 w

(3)
12 (t, x, x)qn−2,

√
δ u0,1 =

n
∑

i=1

R
(0)
i w

(0)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i=1

R
(1)
i w

(1)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i,j=1
i6=j

R
(1)
ij w

(1)
ij

n
∏

k=1
k 6=i,j

Qk

= nR
(0)
1 w

(0)
1 (t, x)qn−1 + nR

(1)
1 w

(1)
1 (t, x)qn−1 + n(n− 1)R

(1)
12 w

(1)
12 (t, x, x)qn−2,

where we have used the fact that the R’s and w’s do not depend on a particular choice of names
(i, j).
We define the quantities

A ≡
3
∑

k=0

R
(k)
1 w

(k)
1 (t, x), (40)

B ≡ R
(1)
12 w

(1)
12 (t, x, x) +R

(3)
12 w

(3)
12 (t, x, x), (41)

which also depend on the parameter z, and we rewrite the joint survival probabilities (36) as

Sn ≈ ũ ≡ u0 +
√
ǫ u1,0 +

√
δ u0,1 = qn +Anqn−1 +Bn(n− 1)qn−2, n ≥ 2.

Note that S1 = q+A, and hence the previous formula for Sn is actually valid for all n ≥ 1, as well
as for n = 0 with S0 ≡ 1.

The approximated loss distribution is now given by

P∗(L = k) =

(

N

k

) k
∑

j=0

(

k

j

)

(−1)jSN+j−k =

(

N

k

) k
∑

i=0

(

k

i

)

(−1)k−iSN−i

≈
(

N

k

) k
∑

i=0

(

k

i

)

(−1)k−i
[

qN−i +A(N − i)qN−i−1 +B(N − i)(N − i− 1)qN−i−2
]

=

(

N

k

) k
∑

i=0

(

k

i

)

(−1)k−iqN−i +A

(

N

k

) k
∑

i=0

(

k

i

)

(−1)k−i(N − i)qN−i−1

+B

(

N

k

) k
∑

i=0

(

k

i

)

(−1)k−i(N − i)(N − i− 1)qN−i−2

≡ I0 +AI1 +BI2,

where I0, I1, and I2 are obtained by straightforward calculation:

I0 =

(

N

k

) k
∑

i=0

(

k

i

)

(−1)k−iqN−i =

(

N

k

)

(1 − q)kqN−k, (42)

I1 =

(

N

k

)

[

k
∑

i=0

(

k

i

)

(−1)k−isN−i

]′

s=q

=

(

N

k

)

[

sN−k(1 − s)k
]′

s=q

=

(

N

k

)

[

(N − k)qN−k−1(1 − q)k − kqN−k(1 − q)k−1
]
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=

[

N − k

q
− k

1 − q

]

I0, (43)

I2 =

(

N

k

)

[

k
∑

i=0

(

k

i

)

(−1)k−isN−i

]′′

s=q

=

(

N

k

)

[

sN−k(1 − s)k
]′′

s=q

=

(

N

k

)

[

(N − k)(N − k − 1)qN−k−2(1 − q)k − 2k(N − k)qN−k−1(1 − q)k−1

+k(k − 1)qN−k(1 − q)k−2
]

=

[

(N − k)(N − k − 1)

q2
− 2k(N − k)

q(1 − q)
+
k(k − 1)

(1 − q)2

]

I0. (44)

To summarize, for 0 ≤ k < N ,

P∗(L = k) ≈ I0 +AI1 +BI2, (45)

where I0, I1 and I2 are explicitly given by (42, 43, 44), and A and B defined in (40, 41) are small
of order max{√ǫ,

√
δ}.

Note that I0 corresponds to the case where all the underlying assets are mutually indepen-
dent, which gives rise to the classic binomial distribution. Since the method used in this paper is
perturbation, we call (45) the perturbed binomial formula.

4.3 Numerical Illustration

In the homogeneous-portfolio case discussed above, we implemented some numerical computation
to illustrate the effect of introducing stochastic volatilities. We compute the approximated loss
distribution given by (45) where only four parameters (N, q,A,B) are needed. The purpose of this
computation is to show stylized features of the loss distribution generated by the correlation of
defaults due to the presence of stochastic volatility.

The parameters used in Figure 1 are as follows:

N = 100, q = 0.9, A = 0.00, B = 0.0006.

The upper graph presents the probability mass function and the lower one presents the cumulative
distribution function for the loss. Note that in order to make comparison between our result and
the classic binomial distribution, we chose A = 0 because a non-zero A would make single name
survival probabilities distinct under these two scenarios. By choosing A = 0, the single name
survival probability is q = 0.9 = 90%. Note also that B is chosen very small to ensure that the
approximation is in its range of validity.

It can be observed from Figure 1 that:

• the probability, with stochastic volatilities, that the total portfolio loss is less than 3% is
bigger than that from the classic binomial distribution;
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Figure 1: Perturbed Binomial Loss Distribution

• the probability, with stochastic volatilities, that the total portfolio loss is bigger than 15% is
bigger than that from the classic binomial distribution.

In terms of CDO tranches (we refer to Duffie and Singleton (2003) for an introduction), this
implies that the expected loss and hence the fair spread of the equity tranche become less, while
the expected loss and hence the fair spread of the senior tranche become bigger, than in the classic
binomial case. This phenomenon is consistent with what has been documented so far in CDO
literature if one increases the default correlation between the underlying bonds and keeps other
things unchanged. For example, see Duffie and Garleanu (2001). Note that a positive number
B indicates positive correlation between the underlying bonds. Here we assume that the equity
tranche absorbs 0-3% loss and the senior absorbs 15%-100% loss.

Furthermore, the binomial probability mass function achieves its maximum 0.1319 at k = 11,
while the probability mass function with stochastic volatilities achieves its maximum 0.1047 at
k = 8.

5 Models with Name-Name Correlation

We now consider the correlated case, namely where the Brownian motions W̃ (i)’s driving the names
are correlated. Using the notation of Section 2, this means taking d〈W̃ (i), W̃ (j)〉t = ρijdt for i 6= j
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under the risk-neutral probability measure P̃ with |ρij | < 1. Observe that for non-zero ρij ’s the
conditions

∑n
i=1 ρ

2
iY ≤ 1 and

∑n
i=1 ρ

2
iZ ≤ 1 are no longer needed. We denote by uǫ,δ,ρ the joint

survival probability defined by

uǫ,δ,ρ(t,x, y, z) ≡ P̃

{

τ
(1)
t > T, . . . , τ

(n)
t > T | Xt = x, Yt = y, Zt = z

}

. (46)

In terms of PDEs, uǫ,δ,ρ is the solution to the boundary value problem

Lǫ,δ,ρuǫ,δ,ρ = 0, xi > Bi(t), for all i, t < T,

uǫ,δ,ρ(t, x1, x2, . . . , xn, y, z) = 0, ∃i ∈ {1, · · · , n}, xi = Bi(t), t ≤ T,

uǫ,δ,ρ(T, x1, x2, . . . , xn, y, z) = 1, xi > Bi(t), for all i,

where the operator Lǫ,δ,ρ can be written as

Lǫ,δ,ρ = Lǫ,δ +
n
∑

i<j

ρijL(ij)
ρ , (47)

where we have used ρij = ρji, the definition (2) of the operator Lǫ,δ, and the notation

L(ij)
ρ = fi(y, z)fj(y, z)xixj

∂2

∂xi∂xj
. (48)

The leading order term in the small ǫ and small δ expansion carried out in the previous sections
would correspond to the correlated multi-name case with constant volatility. As explained in the
introduction this is not a tractable model because of the lack of simple formulas for the joint distri-
bution of hitting times. This leads us to perform an additional expansion around the independent
case where the ρij’s are zero. We therefore consider the case where the ρij ’s are small and of the
same order.

Expanding uǫ,δ,ρ in powers of
√
ǫ,

√
δ, and ρij we get:

uǫ,δ,ρ = uǫ,δ +

n
∑

i<j

ρij

(

u
(ij)
0,0,1 +

√
ǫu

(ij)
1,0,1 +

√
δu

(ij)
0,1,1 + · · ·

)

+ · · · , (49)

and retain the lowest order terms,

ũ ≡ u0 +
√
ǫ u1,0 +

√
δ u0,1 +

n
∑

i<j

ρij u
(ij)
0,0,1, (50)

as our approximation for uǫ,δ,ρ where the first three terms have been computed in Section 3.

5.1 Correction Terms ρij u
(ij)
0,0,1

From Appendix A the term u
(ij)
0,0,1 is determined by the following PDE system:

〈L2〉u(ij)
0,0,1 = −〈L(ij)

ρ 〉u0, xl > Bl(t), for all l, t < T, (51)

u
(ij)
0,0,1(t, x1, x2, . . . , xn) = 0, ∃l ∈ {1, · · · , n}, xl = Bl(t), t ≤ T,

u
(ij)
0,0,1(T, x1, x2, . . . , xn) = 0, xl > Bl(t), for all l,
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where the operator 〈L(ij)
ρ 〉 is given by

〈L(ij)
ρ 〉 = 〈fi(·, z)fj(·, z)〉xixj

∂2

∂xi∂xj
.

The following result shows that each u
(ij)
0,0,1 corresponds to a single two-dimensional problem.

Proposition 4 The correction term ρij u
(ij)
0,0,1 is given by

ρij u
(ij)
0,0,1 = R

(4)
ij w

(4)
ij

n
∏

k=1
k 6=i,j

Qk, (52)

where the coefficient R
(4)
ij depends on the parameter z and is given by

R
(4)
ij = ρij〈fi(·, z)fj(·, z)〉, i 6= j, (53)

and where the function w
(4)
ij (t, xi, xj) depends on the parameter z and is given by the following

problem:
[

∂

∂t
+

1

2
σ2

i (z)x
2
i

∂2

∂x2
i

+
1

2
σ2

j (z)x
2
j

∂2

∂x2
j

+ rxi
∂

∂xi
+ rxj

∂

∂xj

]

w
(4)
ij = −

(

xi
∂Qi

∂xi

)(

xj
∂Qj

∂xj

)

,(54)

xi > Bi(t), xj > Bj(t), t < T,

w
(4)
ij (t, xi, xj) = 0, if xi = Bi(t) or xj = Bj(t), t ≤ T,

w
(4)
ij (T, xi, xj) = 0, xi > Bi(t), xj > Bj(t),

with σi(z) given in Proposition 1.

Proof The proof is very similar to that of Proposition 2. With the definition (53) of R
(4)
ij , we

have

ρij〈L(ij)
ρ 〉u0 = R

(4)
ij xi

∂

∂xi

(

xj
∂u0

∂xj

)

. (55)

It is therefore enough to check that

〈L2〉



w
(4)
ij

n
∏

k=1,k 6=i,j

Qk



 = −xi
∂

∂xi

(

xj
∂u0

∂xj

)

. (56)

Using the form (7) of 〈L2〉 and u0 =
∏n

i=1Qi one can easily check that (56) is satisfied.

The boundary and terminal conditions for the correction ρij u
(ij)
0,0,1 are directly inherited from the

boundary and terminal conditions for the functions w
(4)
ij ’s, and Qi’s.

As for (18) we show in Appendix B that the boundary value problem with source (54) for w
(4)
ij

can be transformed into boundary value problems without source leading to explicit formulas (up
to Gaussian integrals).
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5.2 Summary of Approximation with Name-Name Correlation

Combining the results of Propositions (1)–(4), we get that the approximation ũ in (50) is given by

ũ =

n
∏

i=1

Qi +

n
∑

i=1

R
(2)
i w

(2)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i=1

R
(3)
i w

(3)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i,j=1
i6=j

R
(3)
ij w

(3)
ij

n
∏

k=1
k 6=i,j

Qk

+

n
∑

i=1

R
(0)
i w

(0)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i=1

R
(1)
i w

(1)
i

n
∏

j=1
j 6=i

Qj +

n
∑

i,j=1
i6=j

R
(1)
ij w

(1)
ij

n
∏

k=1
k 6=i,j

Qk

+
n
∑

i<j

R
(4)
ij w

(4)
ij

n
∏

k=1
k 6=i,j

Qk, (57)

where R
(4)
ij are small of order ρij and depend on the parameter z, and the functions w

(4)
ij depend

on the variables (xi, xj) and the parameter z.

5.3 Loss Distribution (Homogeneous Portfolio)

For simplicity we only consider the homogeneous portfolio case. In addition to the homogeneity
conditions (35) we also assume that ρij = ρ for all (i, j) and |ρ| ≪ 1.

Using the same notation as in Section 4, the name-name correction term becomes:

n
∑

i<j

ρiju
(ij)
0,0,1 =

n
∑

i<j

R
(4)
ij w

(4)
ij

n
∏

k=1
k 6=i,j

Qk

=
1

2
n(n− 1)R

(4)
12 w

(4)
12 (t, x, x)qn−2,

where from (53), R
(4)
12 = ρσ2(z).

In particular this implies that the approximation for the loss distribution given by (45) still
holds if we replace the quantity B in (41) by B +Bρ where

Bρ ≡ 1

2
R

(4)
12 w

(4)
12 (t, x, x), (58)

so that (45) becomes

P∗(L = k) ≈ I0 +AI1 + (B +Bρ)I2. (59)

Note that for a single maturity T the correlations generated by stochastic volatility and name-
name correlation are of the same form to leading order. However if one looks at the term structure
of correlation across several maturities, an important aspect of CDO tranches, then the shape of

the function w
(4)
12 is different from the shapes of w

(1)
12 and w

(3)
12 and therefore the nature of the

correlation plays a role.
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5.4 Numerical Illustration

In order to illustrate the quality of the approximation of the joint survival probability given by (57)
we have conducted the following numerical experiments. For n = 25 names (Table 3), we compute
the zero-order approximation u0 given by (8), and the first order approximation ũ given by (57)
and the explicit formulas derived in Appendix B. We present the results for ǫ = 0.02, δ = 0.5,
and five cases of ρij = ρ. The true value proxy uMC is obtained by Monte Carlo simulations with
105 realizations and using an Euler scheme with time-step of 10−4 as in Section 3.6. The other
parameters are as in Section 3.6.

ǫ δ ρij u0 ũ uMC Absolute (relative) error

1/50 1/20 0 0.471683 0.486892 0.4803 0.006 (1.4%)
1/50 1/20 0.05 0.471683 0.518151 0.5119 0.006 (1.2%)
1/50 1/20 0.1 0.471683 0.549409 0.5426 0.007 (1.3%)
1/50 1/20 0.2 0.471683 0.611926 0.5986 0.013 (2.2%)
1/50 1/20 0.4 0.471683 0.736961 0.6937 0.043 (6.2%)

Table 3: Joint survival probability for twenty five firms (n = 25) with stochastic volatility and
name-name correlations.

The presence of a small name-name correlation ρ enhances the importance of the correction
(ũ− u0) derived in this paper, as can be seen by comparing u0 and uMC in Table 2 and in Table 3.

Table 4 gives a loss distribution generated with stochastic volatility and name-name correlation,
as computed by (59). The results are plotted in Figure 2. The parameters are taken from Section
3.6, with n = 100, ǫ = 1/50, δ = 1/20, ρij = 1/10. With these parameters, the coefficients in (59)
are: A = 6.607 × 10−4, B = −0.014 × 10−4, and Bρ = 2.08 × 10−4. The binomial distribution
plotted in Figure 2 is obtained by setting A = B = Bρ = 0 in (59).

0 1 2 3 4
0.16 0.26 0.17 0.062 0.047

5 6 7 8 9
0.078 0.086 0.065 0.037 0.017

10 11 12 13 14
6.5 × 10−3 2.2 × 10−3 6.2 × 10−4 1.6 × 10−4 3.7 × 10−5

Table 4: Loss distribution for 100 firms (n = 100) with stochastic volatility and name-name corre-
lations. All omitted probabilities are less than 10−5. The expected number of defaults is 2.88 when
stochastic volatility is present, while it is 2.96 in the independent constant volatility case.

The loss distribution shown in Figure 2 clearly has a bimodal structure. With the given pa-
rameters, one can see that the event of having 2–5 defaults is significantly less likely than if the
stocks were independent.
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Figure 2: Plot of the loss distribution (◦) given in Table 4. The mass function of the corresponding
binomial distribution (×) is superimposed for comparison.

A Formal Expansion

Following Fouque et al. (2003), we present the formal expansion used in Section 3, and we discuss
its accuracy. We compute Lǫ,δuǫ,δ where the operator Lǫ,δ is given by (2), and the function uǫ,δ is
first expanded in powers of

√
δ corresponding to a regular perturbation:

uǫ,δ = uǫ
0 +

√
δ uǫ

1 + δ uǫ
2 + · · · (60)

In order to cancel the terms of order zero in δ and the terms of order
√
δ in Lǫ,δuǫ,δ = 0 , we get

(

1

ǫ
L0 +

1√
ǫ
L1 + L2

)

uǫ
0 = 0 (61)

(

1

ǫ
L0 +

1√
ǫ
L1 + L2

)

uǫ
1 + M1u

ǫ
0 +

1√
ǫ
M3u

ǫ
0 = 0, (62)

with zero boundary value conditions at xi = Bi(t) and a terminal condition one (resp. zero) at t = T
for uǫ

0 (resp. uǫ
1). We now expand uǫ

0 in powers of
√
ǫ corresponding to a singular perturbation:

uǫ = u0 +
√
ǫ u1,0 + ǫ u2,0 + ǫ

√
ǫ u3,0 · · ·

so that (61) becomes:

1

ǫ
L0u0 +

1√
ǫ

(L0u1,0 + L1u0) + (L0u2,0 + L1u1,0 + L2u0)

+
√
ǫ (L0u3,0 + L1u2,0 + L2u1,0) + · · · = 0

By choosing u0 and u1,0 independent of the variable y the terms in 1/ǫ and 1/
√
ǫ cancel. The

operator L1 taking derivatives with respect to y, the next term becomes

L0u2,0 + L2u0 = 0,
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which is a Poisson equation in u2,0 with respect to the variable y, leading to the solvability condition

〈L2〉u0 = 0,

and the problem (6) characterizing u0. Subsequently u2,0 is given by −L−1
0 (L2 − 〈L2〉) u0, and

the terms of order
√
ǫ, as a Poisson equation in u3,0 with respect to the variable y, lead to the

solvability condition

〈L2〉u1,0 = 〈L1L−1
0 (L2 − 〈L2〉)〉u0,

and the problem (9) characterizing u1,0.

In order to obtain u0,1 needed in the approximation (5), we only need the leading order term in
uǫ

1 = u0,1 +
√
ǫ u1,1 + · · · since uǫ

1 is multiplied by
√
δ in (60). By choosing u0,1 and u1,1 independent

of the variable y, and using the fact that M3 takes derivatives with respect to y, to leading order
equation (62) becomes:

L0u2,1 + L2u0,1 + M1u0 = 0,

which is again a Poisson equation in u2,1 with respect to y. Its solvability condition

〈L2〉u0,1 = −〈M1〉u0

leads to the problem (22) characterizing u0,1.

The accuracy of the the approximation (5) is the same as obtained in Fouque et al. (2006),
that is O(ǫ2/3 log |ǫ| + δ).

The computation of Lǫ,δ,ρuǫ,δ,ρ, used in Section 5, proceeds along the same lines. The operator
Lǫ,δ,ρ is given by (47), and the function uǫ,δ,ρ is first expanded in powers of ρij corresponding to a
regular perturbation:

uǫ,δ,ρ = uǫ,δ
0 +

n
∑

i<j

ρij u
ǫ,δ,(ij)
1 +

n
∑

i<j

n
∑

k<l

ρijρkl u
ǫ,δ,(ij;kl)
2 + · · · (63)

Canceling the terms of order zero in ρij and the terms of order ρij in Lǫ,δ,ρuǫ,δ,ρ = 0, we get

Lǫ,δuǫ,δ
0 = 0 (64)

Lǫ,δuǫ,δ
1 = −L(ij)

ρ uǫ,δ
0 , (65)

with zero boundary conditions at xi = Bi(t) and a terminal condition one (resp. zero) at t = T for

uǫ,δ
0 (resp. uǫ,δ

1 ) where L(ij)
ρ is given by (48). Equation (64) has been discussed above. Equation

(65) has a source which is of order zero in ǫ and in δ, so that after expanding first in
√
δ and then

in
√
ǫ, u

(ij)
0,0,1 and u

(ij)
1,0,1 can be chosen independent of y to make the terms in 1/ǫ and 1/

√
ǫ cancel.

After dropping terms which differentiate u
(ij)
0,0,1 or u

(ij)
1,0,1 with respect to y, to leading order equation

(65) becomes

L0u
(ij)
2,0,1 + L2u

(ij)
0,0,1 = −L(ij)

ρ u0,0,0.

This Poisson equation has the solvability condition

〈L2〉u(ij)
0,0,1 = −〈L(ij)

ρ 〉u0,0,0,

which is the problem (51) characterizing u
(ij)
0,0,1.

23



B Explicit Formulas

In order to implement the main formulas (33) and (58) for the approximation ũ, one needs to

compute the functions w
(l)
i for each i ∈ {1, 2, · · · , n}, l ∈ {0, 1, 2, 3}, and w

(l)
ij for each pair (i, j) ∈

{1, 2, · · · , n} × {1, 2, · · · , n} with i 6= j, and l ∈ {1, 3, 4}, defined in (16, 17, 18, 27, 28, 29, 54).
We present in this Appendix an efficient method for computing these quantities. The formulas are
given below in Lemmas 2 and 3.

Lemma 2 For each i ∈ {1, 2, · · · , n}:

a) w
(2)
i is given by

w
(2)
i (t, xi) = ŵ

(2)
i (t, xi) − (T − t)F

(2)
i (t, xi),

where

F
(2)
i (t, xi) ≡ x2

i

∂2Qi

∂x2
i

= N′
(

d+
2(i)

)

[

−
d+
2(i)

σ2
i (T − t)

− 1

σi

√
T − t

]

− N
(

d−2(i)

)

pi(pi − 1)

(

xi

Bi(t)

)pi

+N′
(

d−2(i)

)

[

d−2(i)

σ2
i (T − t)

+
2pi − 1

σi

√
T − t

]

(

xi

Bi(t)

)pi

,

ŵ
(2)
i (t, xi) =

∫ T

t
g
(2)
i (s)hi(s, xi)ds,

g
(2)
i (t) ≡ (T − t) lim

xi↓Bi(t)
F

(2)
i (t, xi)

= N′(di)
2(pi − 1)

σi

√
T − t− N(di)pi(pi − 1)(T − t),

hi(s, xi) =
ln xi

Ki
− ηit

σi

√

2π(s − t)3
exp











−

[

ln xi

Ki
− ηit− piσ2

i

2 (s− t)
]2

2σ2
i (s− t)











,

di =
(r − ηi − σ2

i /2)(T − t)

σi

√
T − t

= −piσi

2

√
T − t,

with N′(·) being the standard normal density function, and σi ≡ σi(z) when no possible confusion
is caused.

b) w
(3)
i is given by

w
(3)
i (t, xi) = ŵ

(3)
i (t, xi) − (T − t)F

(3)
i (t, xi),

where

F
(3)
i (t, xi) ≡ xi

∂

∂xi

(

x2
i

∂2Qi

∂x2
i

)
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= N′
(

d+
2(i)

)







(

d+
2(i)

)2
− 1

σ3
i (T − t)3/2

+
d+
2(i)

σ2
i (T − t)






+ N

(

d−2(i)

)

p2
i (1 − pi)

(

xi

Bi(t)

)pi

+N′
(

d−2(i)

)







(

d−2(i)

)2
− 1

σ3
i (T − t)3/2

+
d−
2(i)

(3pi − 1)

σ2
i (T − t)

+
pi(3pi − 2)

σi

√
T − t







(

xi

Bi(t)

)pi

,

ŵ
(3)
i (t, xi) =

∫ T

t
g
(3)
i (s)hi(s, xi)ds,

g
(3)
i (t) ≡ (T − t) lim

xi↓Bi(t)
F

(3)
i (t, xi)

= −N′(di)
1

σ3
i

(

2√
T − t

+ 4pir
√
T − t

)

+ N(di)p
2
i (1 − pi)(T − t).

c) w
(0)
i is given by

w
(0)
i (t, xi) = ŵ

(0)
i (t, xi) + (T − t)F

(0)
i (t, xi) −

1

2
(T − t)2σiF

(2)
i (t, xi),

where

F
(0)
i (t, xi) ≡ ∂Qi

∂σi

= N′
(

d+
2(i)

)

[

−
d+
2(i)

σi
−

√
T − t

]

+ N′
(

d−2(i)

)

[

d−2(i)

σi
+
√
T − t

]

(

xi

Bi(t)

)pi

+N
(

d−2(i)

)

[

2

σi
(pi − 1) ln

(

xi

Bi(t)

)](

xi

Bi(t)

)pi

,

ŵ
(0)
i (t, xi) =

∫ T

t
g
(0)
i (s)hi(s, xi)ds,

g
(0)
i (t) ≡ −(T − t) lim

xi↓Bi(t)
F

(0)
i (t, xi) +

1

2
(T − t)2σi lim

xi↓Bi(t)
F

(2)
i (t, xi)

= N′(di)(pi − 1)(T − t)3/2 − N(di)
σi

2
pi(pi − 1)(T − t)2.

d) w
(1)
i is given by

w
(1)
i (t, xi) = ŵ

(1)
i (t, xi) + (T − t)F

(1)
i (t, xi) −

1

2
(T − t)2σiF

(3)
i (t, xi),

where

F
(1)
i (t, xi) ≡ xi

∂

∂xi

(

∂Qi

∂σi

)

= N′
(

d+
2(i)

)







(

d+
2(i)

)2
− 1

σ2
i

√
T − t

+
d+
2(i)

σi






+ N′

(

d−2(i)

)







(

d−2(i)

)2
− 1

σ2
i

√
T − t
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+(pi + 1)
d−2(i)

σi
+ pi

√
T − t+

2(1 − pi)

σ2
i

√
T − t

ln

(

xi

Bi(t)

)

]

(

xi

Bi(t)

)pi

+N
(

d−2(i)

)

[

2

σi
(pi − 1)

(

1 + pi ln

(

xi

Bi(t)

))](

xi

Bi(t)

)pi

,

ŵ
(1)
i (t, xi) =

∫ T

t
g
(1)
i (s)hi(s, xi)ds,

g
(1)
i (t) ≡ −(T − t) lim

xi↓Bi(t)
F

(1)
i (t, xi) +

1

2
(T − t)2σi lim

xi↓Bi(t)
F

(3)
i (t, xi)

= N′(di)
1

σ2
i

[√
T − t− 2pir(T − t)3/2

]

−N(di)

[

2

σi
(pi − 1)(T − t) +

σi

2
p2

i (pi − 1)(T − t)2
]

.

Proof We use the same technique as in Fouque, Sircar and Solna (2005), but here we need to deal
with the time varying hitting boundary Bi(t), whereas they considered a constant hitting boundary.

a) If we define

L(i)
2 ≡ ∂

∂t
+

1

2
f2

i (y, z)x2
i

∂2

∂x2
i

+ rxi
∂

∂xi
,

then 〈L(i)
2 〉xk

i
∂kQi

∂xk
i

= 0 for k ≥ 1, where we used the fact that 〈L(i)
2 〉 commutes with xk

i
∂k

∂xk
i

and the

fact that 〈L(i)
2 〉Qi = 0. Now we define

ŵ
(2)
i ≡ w

(2)
i + (T − t)x2

i

∂2Qi

∂x2
i

,

which satisfies

〈L(i)
2 〉ŵ(2)

i (t, xi) = 0, xi > Bi(t), t < T,

ŵ
(2)
i (t, Bi(t)) = (T − t) lim

xi↓Bi(t)
x2

i

∂2Qi

∂x2
i

≡ g
(2)
i (t), t ≤ T,

ŵ
(2)
i (T, xi) = 0, xi > Bi(t).

Change of variables: define

ξi ≡
1

σi
ln

xi

Bi(t)
, µ̄i =

r − ηi − σ2
i /2

σi
= −piσi

2
, w̄

(2)
i (t, ξi) ≡ ŵ

(2)
i (t, xi).

Then w̄
(2)
i (t, ξi) satisfies

∂w̄
(2)
i

∂t
+

1

2

∂2w̄
(2)
i

∂ξ2i
+ µ̄i

∂w̄
(2)
i

∂ξi
= 0, ξi > 0, t < T,

w̄
(2)
i (t, 0) = g

(2)
i (t), t ≤ T,

w̄
(2)
i (T, ξi) = 0, ξi > 0.
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It follows that, see, for example, Karatzas and Shreve (1991), w̄
(2)
i admits the probabilistic repre-

sentation:

w̄
(2)
i (t, ξi) = EQ

[

g
(2)
i (τ∗)1{τ∗≤T}

∣

∣

∣ ξ
(i)
t = ξi

]

,

where ξ(i) is a Brownian motion with drift µ̄i under probability measure Q, and τ∗ is the first time
that ξ(i) hits 0. By plugging in the distribution of τ∗, which is well known and can be found, for
example, in Borodin and Salminen (2002), we obtain

w̄
(2)
i (t, ξi) =

∫ T

t
g
(2)
i (s)

ξi
√

2π(s − t)3
exp

{

− [ξi + µ̄i(s − t)]2

2(s − t)

}

ds

=

∫ T

t
g
(2)
i (s)hi(s)ds.

So in summary,

w
(2)
i = ŵ

(2)
i − (T − t)x2

i

∂2Qi

∂x2
i

= ŵ
(2)
i − (T − t)F

(2)
i (t, xi).

b) The same as that for part a).

c) Note that

〈L(i)
2 〉∂Qi

∂σi
= −σix

2
i

∂2Qi

∂x2
i

,

which can be obtained by taking derivative with respect to σi on equation 〈L(i)
2 〉Qi = 0. Now define

ŵ
(0)
i = w

(0)
i − (T − t)

∂Qi

∂σi
+

1

2
(T − t)2σix

2
i

∂2Qi

∂x2
i

,

then ŵ
(0)
i (t, xi) satisfies

〈L(i)
2 〉ŵ(0)

i (t, xi) = 0, xi > Bi(t), t < T,

ŵ
(0)
i (t, Bi(t)) = g

(0)
i (t), t ≤ T,

ŵ
(0)
i (T, xi) = 0, xi > Bi(t).

The rest of the proof is as in part a).

d) The same as that for part c), using the fact that

〈L(i)
2 〉xi

∂

∂xi

(

∂Qi

∂σi

)

= −σixi
∂

∂xi

(

x2
i

∂2Qi

∂x2
i

)

.

All the calculations of the formulas within this lemma are straightforward. The proof is com-
plete.
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Lemma 3 For each pair (i, j) ∈ {1, 2, · · · , n} × {1, 2, · · · , n} with i 6= j:

a) w
(3)
ij is given by

w
(3)
ij (t, xi, xj) = ŵ

(3)
ij (t, xi, xj) − (T − t)F

(3)
ij (t, xi, xj),

where

F
(3)
ij (t, xi, xj) ≡

(

xi
∂Qi

∂xi

)

(

x2
j

∂2Qj

∂x2
j

)

= F
(2)
j (t, xj)

[

N′
(

d+
2(i)

) 1

σi

√
T − t

+N′
(

d−2(i)

) 1

σi

√
T − t

(

xi

Bi(t)

)pi

− N
(

d−2(i)

)

pi

(

xi

Bi(t)

)pi
]

,

ŵ
(3)
ij (t, xi, xj) =

∫ T

t

∫ ∞

0
Ḡ

(j)
ij (s, ξ)ψj(s, ξ, xj)hij(s, xi, xj)dξds

+

∫ T

t

∫ ∞

0
Ḡ

(i)
ij (s, ξ)ψi(s, ξ, xi)hji(s, xj , xi)dξds,

ψj(s, ξ, xj) =
2

√

2π(s − t)
sinh

[

ξ ln
xj

Bj(t)

σj(s− t)

]

exp

{

− ξ2

2(s − t)
− pjσj

2
ξ

}

,

hij(s, xi, xj) = hi(s, xi) exp



















−

[

ln
xj

Kj
− ηjt−

pjσ2
j

2 (s− t)

]2

2σ2
j (s− t)



















,

Ḡ
(j)
ij (t, ξ) ≡ (T − t)F

(3)
ij

(

t, Bi(t), Bj(t)e
σjξ
)

=

[

N′(di)
2

σi

√
T − t− N(di)pi(T − t)

]

×
{

N′
(

d̄+
2(j)

)

[

−
d̄+
2(j)

σ2
j (T − t)

− 1

σj

√
T − t

]

− N
(

d̄−2(j)

)

pj(pj − 1)epjσjξ

+N′
(

d̄−2(j)

)

[

d̄−2(j)

σ2
j (T − t)

+
2pj − 1

σj

√
T − t

]

epjσjξ

}

,

Ḡ
(i)
ij (t, ξ) ≡ (T − t)F

(3)
ij

(

t, Bi(t)e
σiξ, Bj(t)

)

=

[

N′(dj)
2(pj − 1)

σj

√
T − t− N(dj)pj(pj − 1)(T − t)

]

×
[

N′
(

d̄+
2(i)

) 1

σi

√
T − t

+ N′
(

d̄−2(i)

) epiσiξ

σi

√
T − t

− N
(

d̄−2(i)

)

pie
piσiξ

]

,

d̄±2(i) = ±ξ − piσi

2

√
T − t.

b) w
(1)
ij is given by

w
(1)
ij (t, xi, xj) = ŵ

(1)
ij (t, xi, xj) + (T − t)F

(1)
ij (t, xi, xj) −

1

2
(T − t)2σjF

(3)
ij (t, xi, xj),
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where

F
(1)
ij (t, xi, xj) ≡

(

xi
∂Qi

∂xi

)(

∂Qj

∂σj

)

= F
(0)
j (t, xj)

[

N′
(

d+
2(i)

) 1

σi

√
T − t

+N′
(

d−2(i)

) 1

σi

√
T − t

(

xi

Bi(t)

)pi

− N
(

d−2(i)

)

pi

(

xi

Bi(t)

)pi
]

,

ŵ
(1)
ij (t, xi, xj) =

∫ T

t

∫ ∞

0
H̄

(j)
ij (s, ξ)ψj(s, ξ, xj)hij(s, xi, xj)dξds

+

∫ T

t

∫ ∞

0
H̄

(i)
ij (s, ξ)ψi(s, ξ, xi)hji(s, xj, xi)dξds,

H̄
(j)
ij (t, ξ) ≡ −(T − t)F

(1)
ij

(

t, Bi(t), Bje
σjξ
)

+
1

2
(T − t)2σjF

(3)
ij

(

t, Bi(t), Bje
σjξ
)

=

[

N′(di)
2

σi

√
T − t− N(di)pi(T − t)

]

×
{

N′
(

d̄+
2(j)

)

[

d+
2(j)

2σj
+

1

2

√
T − t

]

+ N′
(

d̄−2(j)

)

[

−
d̄−2(j)

2σj
+ (pj −

3

2
)
√
T − t

]

epjσjξ

−N
(

d̄−2(j)

)

(pj − 1)
[

2ξ +
pjσj

2
(T − t)

]

epjσjξ

}

,

H̄
(i)
ij (t, ξ) ≡ −(T − t)F

(1)
ij

(

t, Bi(t)e
σiξ, Bj(t)

)

+
1

2
(T − t)2σjF

(3)
ij

(

t, Bi(t)e
σiξ, Bj(t)

)

=
[

N′(dj)(pj − 1)(T − t)3/2 − N(dj)
pjσj

2
(pj − 1)(T − t)2

]

×
[

N′
(

d̄+
2(i)

) 1

σi

√
T − t

+ N′
(

d̄−2(i)

) epiσiξ

σi

√
T − t

− N
(

d̄−2(i)

)

pie
piσiξ

]

.

c) w
(4)
ij is given by

w
(4)
ij (t, xi, xj) = ŵ

(4)
ij (t, xi, xj) − (T − t)F

(4)
ij (t, xi, xj),

where

F
(4)
ij (t, xi, xj) = −

(

xi
∂Qi

∂xi

)(

xj
∂Qj

∂xj

)

= −
[

N′
(

d+
2(i)

) 1

σi

√
T − t

+ N′
(

d−2(i)

) 1

σi

√
T − t

(

xi

Bi(t)

)pi

−N
(

d−
2(i)

)

pi

(

xi

Bi(t)

)pi
] [

−N
(

d−
2(j)

)

pj

(

xj

Bj(t)

)pj

+N′
(

d+
2(j)

) 1

σj

√
T − t

+ N′
(

d−2(j)

) 1

σj

√
T − t

(

xj

Bj(t)

)pj
]

,

ŵ
(4)
ij (t, xi, xj) =

∫ T

t

∫ ∞

0
K̄

(j)
ij (s, ξ)ψj(s, ξ, xj)hij(s, xi, xj)dξds

+

∫ T

t

∫ ∞

0
K̄

(i)
ij (s, ξ)ψi(s, ξ, xi)hji(s, xj , xi)dξds,
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K̄
(j)
ij (t, ξ) ≡ (T − t)F

(4)
ij

(

t, Bi(t), Bj(t)e
σjξ
)

,

K̄
(i)
ij (t, ξ) ≡ (T − t)F

(4)
ij

(

t, Bi(t)e
σiξ, Bj(t)

)

.

Proof

a) If we define

L(ij)
2 ≡ ∂

∂t
+

1

2
f2

i (y, z)x2
i

∂2

∂x2
i

+
1

2
f2

j (y, z)x2
j

∂2

∂x2
j

+ rxi
∂

∂xi
+ rxj

∂

∂xj
,

then 〈L(ij)
2 〉xk

i
∂kQi

∂xk
i

= 0 for k ≥ 1. Next we define

ŵ
(3)
ij ≡ w

(3)
ij + (T − t)

(

xi
∂Qi

∂xi

)

(

x2
j

∂2Qj

∂x2
j

)

,

which satisfies

〈L(ij)
2 〉ŵ(3)

ij (t, xi, xj) = 0, xi > Bi(t), xj > Bj(t), t < T,

ŵ
(3)
ij (t, Bi(t), xj) = (T − t)F

(3)
ij (t, Bi(t), xj) ≡ G

(j)
ij (t, xj), xj > Bj(t), t ≤ T,

ŵ
(3)
ij (t, xi, Bj(t)) = (T − t)F

(3)
ij (t, xi, Bj(t)) ≡ G

(i)
ij (t, xi), xi > Bi(t), t ≤ T,

ŵ
(3)
ij (T, xi, xj) = 0, xi > Bi(t), xj > Bj(t).

Change of variables: define

ξi ≡
1

σi
ln

xi

Bi(t)
, ξj ≡

1

σj
ln

xj

Bj(t)
,

µ̄i ≡
r − ηi − σ2

i /2

σi
= −piσi

2
, µ̄j ≡

r − ηj − σ2
j /2

σj
= −pjσj

2
,

and also

w̄
(3)
ij (t, ξi, ξj) ≡ ŵ

(3)
ij (t, xi, xj),

Ḡ
(j)
ij (t, ξj) ≡ G

(j)
ij (t, xj) = G

(j)
ij

(

t, Bj(t)e
σjξj

)

,

Ḡ
(i)
ij (t, ξi) ≡ G

(i)
ij (t, xi) = G

(i)
ij

(

t, Bi(t)e
σiξi

)

.

Then we have

∂w̄
(3)
ij

∂t
+

1

2

∂2w̄
(3)
ij

∂ξ2i
+

1

2

∂2w̄
(3)
ij

∂ξ2j
+ µ̄i

∂w̄
(3)
ij

∂ξi
+ µ̄j

∂w̄
(3)
ij

∂ξj
= 0, ξi > 0, ξj > 0, t < T,

w̄
(3)
ij (t, 0, ξj) = Ḡ

(j)
ij (t, ξj), ξj > 0, t ≤ T,

w̄
(3)
ij (t, ξi, 0) = Ḡ

(i)
ij (t, ξi), ξi > 0, t ≤ T,

w̄
(3)
ij (T, ξi, ξj) = 0, ξi > 0, ξj > 0, t < T.
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The function w̄
(3)
ij admits the probabilistic representation:

w̄
(3)
ij (t, ξi, ξj) = EQ

{

Ḡ
(j)
ij

(

τ̄ , ξ
(j)
τ̄

)

1{τ̄=τ̄i}1{τ̄≤T}

+Ḡ
(i)
ij

(

τ̄ , ξ
(i)
τ̄

)

1{τ̄=τ̄j}1{τ̄≤T}

∣

∣

∣ξ
(i)
t = ξi, ξ

(j)
t = ξj

}

,

where ξ(i) and ξ(j) are independent Brownian motions with drifts µ̄i and µ̄j, respectively, under
probability measure Q, τ̄i (τ̄j) is the first time that ξ(i) (ξ(j)) hits 0, and τ̄ = min{τ̄i, τ̄j}. From
Borodin and Salminen (2002), we have

h̄ij(s, ξ; ξi, ξj) ≡ Q

{

τ̄ ∈ ds, τ̄ = τ̄i, ξ
(j)
τ̄ ∈ dξ

∣

∣

∣ ξ
(i)
t = ξi, ξ

(j)
t = ξj

}

=
2

√

2π(s − t)
sinh

(

ξξj
s− t

)

exp

{

µ̄jξ −
ξ2

2(s− t)

}

exp

{

− [ξj + µ̄j(s− t)]2

2(s − t)

}

× ξi
√

2π(s − t)3
exp

{

− [ξi + µ̄i(s− t)]2

2(s− t)

}

dξds.

Therefore,

w̄
(3)
ij (t, ξi, ξj) =

∫ T

t

∫ ∞

0
Ḡ

(j)
ij (s, ξ)h̄ij(s, ξ; ξi, ξj)dξds

+

∫ T

t

∫ ∞

0
Ḡ

(i)
ij (s, ξ)h̄ji(s, ξ; ξj , ξi)dξds.

Now change (ξi, ξj) back to (xi, xj) to obtain the desired result.

b) Define

ŵ
(1)
ij ≡ w

(1)
ij − (T − t)

(

xi
∂Qi

∂xi

)(

∂Qj

∂σj

)

+
1

2
(T − t)2σj

(

xi
∂Qi

∂xi

)

(

x2
j

∂2Qj

∂x2
j

)

.

Then ŵ
(1)
ij satisfies

〈L(ij)
2 〉ŵ(1)

ij (t, xi, xj) = 0, xi > Bi(t), xj > Bj(t), t < T,

ŵ
(1)
ij (t, Bi(t), xj) = −(T − t)F

(1)
ij (t, Bi(t), xj) +

1

2
(T − t)2σjF

(3)
ij (t, Bi(t), xj),

xj > Bj(t), t ≤ T,

ŵ
(1)
ij (t, xi, Bj(t)) = −(T − t)F

(1)
ij (t, xi, Bj(t)) +

1

2
(T − t)2σjF

(3)
ij (t, xi, Bj(t)),

xi > Bi(t), t ≤ T,

ŵ
(1)
ij (T, xi, xj) = 0, xi > Bi(t), xj > Bj(t).

The rest of the proof is similar to that of part a).

c) Define

ŵ
(4)
ij ≡ w

(4)
ij − (T − t)

(

xi
∂Qi

∂xi

)(

xj
∂Qj

∂xj

)

.
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Then ŵ
(4)
ij satisfies

〈L(ij)
2 〉ŵ(4)

ij (t, xi, xj) = 0, xi > Bi(t), xj > Bj(t), t < T,

ŵ
(1)
ij (t, Bi(t), xj) = −(T − t)F

(4)
ij (t, Bi(t), xj),

xj > Bj(t), t ≤ T,

ŵ
(4)
ij (t, xi, Bj(t)) = −(T − t)F

(4)
ij (t, xi, Bj(t)),

xi > Bi(t), t ≤ T,

ŵ
(4)
ij (T, xi, xj) = 0, xi > Bi(t), xj > Bj(t).

The rest of the proof is similar to that of part a). The proof is complete.
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