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Abstract: Asa result of theCOVID-19worldwidepandemic, theUnitedStates institutedvariousnon-pharmaceutical
interventions (NPIs) in an effort to slow the spread of the disease. Although necessary for public safety, these
NPIs can also have deleterious effects on the economy of a nation. State and federal leaders need tools that
provide insight into which combination of NPIs will have the greatest impact on slowing the disease and at
what point in time it is reasonably safe to start li�ing these restrictions to everyday life. In the present work,
we outline a modeling process that incorporates the parameters of the disease, the effects of NPIs, and the
characteristics of individual communities to offer insight into when and to what degree certain NPIs should
be instituted or li�ed based on the progression of a given outbreak of COVID-19. We apply the model to the 24
county-equivalents of Maryland and illustrate that different NPI strategies can be employed in different parts of
the state. Our objective is to outline a modeling process that combines the critical disease factors and factors
relevant to decision-makers whomust balance the health of the population with the health of the economy.
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Introduction

1.1 In December of 2019, a cluster of pneumonia cases of unknown origin were identified in Wuhan, China. An
investigation into the cases commenced in early January 2020 that led to the discovery of a novel coronavirus
now designated SARS-CoV-2. The virus causes an infectious disease now known as Coronavirus Disease 2019 or
COVID-19. Common symptoms of COVID-19 include shortness of breath, fever, dry cough, fatigue, and respiratory
distress. On March 11th, 2020, the World Health Organization declared a global pandemic. As of this writing,
global deaths exceed 2.3 million according to Johns Hopkins University (Johns Hopkins University 2020) and
COVID-19 cases have been confirmed in 192 countries and regions around the world.

1.2 Prior to November 2020, there was no approved vaccine effective against COVID-19 (Rothan & Byrareddy 2020).
Treatment involves addressing the symptoms as the virus runs its course. Therefore, most countries have
implemented NPIs in an effort to prevent the spread of COVID-19. These interventions usually involve restricting
the movements of the population. The U.S. has employed school closures, shelter-in-place orders, business
closures, limits on or banning of public gatherings, closing public spaces such as parks, and social distancing
orders that require people to stay at least six feet from each other. In addition, a combination of testing and
tracing anyone who came in contact with a positive case – referred to as contact tracing – and requiring them to
self-quarantine for approximately 14 days is another tactic for limiting the spread.

1.3 The restrictions to daily life have driven the world into one of the largest recessions in history (Gopinath 2020).
The Bureau of Economic Analysis reported that U.S. real Gross Domestic Product (GDP) contracted 31.4% in the
second quarter and the U.S. unemployment rate rose from 3.6% in January 2020 to 14.7% in April 2020 (Bureau
of Economic Analysis 2020; Bureau of Labor & Statistics 2020). The economic recession creates an urgency to li�
the NPIs and population restrictions that is in direct conflict with the desire to stop the spread of disease and
keep the population healthy. State and federal leaders therefore need tools that can provide insight into the risk
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to populations of li�ing NPIs before the disease is completely wiped out or a vaccine is developed. In response to
this need and in keeping with the call to action from Squazzoni et al. (2020), we present an agent-based, social
contact network driven approach to modeling how NPIs will impact the pandemic in a given region.

1.4 The dynamics of a pandemic are a function of the biological characteristics of the disease, the biologic response
of those infected, and the behaviors of those in the region affected by the disease. In this way a pandemic is
an emergent phenomenon of the social systems within which it is embedded (Epstein 2006; Galea et al. 2010).
Emergent phenomena are a characteristic of complex systems (Cowan 1999; Mitchell 2009), and an efficient way
to discover their future state is to simulate the dynamics (Buss et al. 1990) with an agent-based model (ABM)
(Axtell 2000; Wilensky & Rand 2015). In these types of systems the interactions among agents are as important to
the overall dynamics as the characteristics of the agents themselves. Indeed, empirical studies have shown that
the same disease can exhibit heterogeneous transmission characteristics as it spreads to different communities
(Meyers et al. 2005). This fact led researchers to look for ways to more realistically model the contact structure of
a given population (Bansal et al. 2007). Bansal et al. conclude that homogeneous mixing is an over-simplified
assumption and that some degree of heterogeneity in the contact network is necessary to accurately model
the spread of a disease. However, community structure itself is dynamic and changes naturally or forcibly over
time, such as in response to changing environmental conditions. Thus, incorporating heterogeneous mixing by
modeling a contact network is still a simplified assumption if that network remains static within the model.

1.5 NPIs are designed to deliberately reduce physical contact among the population, thereby changing the contact
structure. A strict reductionist approach to this problem will only provide partial insights into the system
dynamics. Further, as pointed out by Manzo (2020), other features of the social contact network can impact
the spread of disease. He notes specifically the relationships between the degree distribution, the clustering of
ego-centered networks, and the high reachability of global networks impact the probability of contact between
members of otherwise distant social circles. These features not only contribute to the spread of diseases, but
they can also inform targeted interventions that more effectively deter widespread pandemics. Other authors,
notably, Block et al. (2020) andNishi et al. (2020), have noted that intervention strategies should take the network
structure into account. Manzo & van de Rijt (2020) show specifically that targeting hubs in the contact network
can improve containment of disease.

1.6 The challenge for decision-makers faced with a deadly pandemic is therefore to estimate the initial contact
structure of their community and then determine how that structure might change when different NPIs are
implemented. In the current work, we establish a procedure for inferring the degree distribution of a given
county in the U.S. from Census data (Census 2020). This provides a pre-pandemic community structure. We then
constructedanagent-basedmodel (ABM) that incorporates thedaily behavior of individuals in a given community,
along with the constraints to that behavior imposed by NPIs. The ABM ingests the pre-pandemic community
network inferred from Census data to drive heterogeneous social contact when no NPIs are implemented. The
post-pandemic contact structure emerges as a function of compliance with NPIs and we are able to assess
differences in the spread of disease as a function of both contact network degree distribution and the impact that
a given set of NPIs has on the network structure. When NPIs are imposed on the agent population the underlying
contact network is disrupted. The severity of the disruption is a function of which specific NPIs are used, the
compliance of the agents, and the outcome of the random variables incorporated into the model logic.

1.7 To illustrate the utility of our approach wemodel the 24 county-equivalents of Maryland. We show that different
strategies can have the same impact on disease progression depending on the contact structure of each county.
The ABM combined with the inferred contact network structure allows decision-makers to determine which
factors are most important in classifying the risk of large outbreaks in different regions and facilitates the
customization of NPI strategies. In the sections that follow, we describe the algorithm for inferring contact
structure and outline the architecture of the ABM. We then describe the design of experiments that addresses
our hypothesis about NPI strategies. Finally, we present the key outcomes from the simulation experiment and
we close with a brief discussion.

Materials and Methods

Inferring network structure

2.1 Newman (2002) showed that the degree distribution of the contact network of a society, alongwith the character-
istics of the disease, determines the size of an outbreak in a given community. Meyers et al. (2005) demonstrated
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this result for the SARS outbreak of 2003, noting that outbreaks of SARS occurring nearly simultaneously in
different parts of Canada had vastly different progressions. In order to have a practically useful model of disease
progression, we must therefore estimate the degree distribution of the contact network of each community.
Fortunately, the U.S. Census conducts an extensive annual survey known as the American Community Survey
(ACS) (Census 2020). The ACS provides county level information on characteristics of the population such as
households, household size, school enrollment, occupation, and age distribution. Meyers et al. (2005) outlined a
process for taking comparable data (their study focused on Vancouver, Canada) and inferring a network struc-
ture based on a few simplifying assumptions. Here we design a similar algorithm using the ACS data to create
county-level social contact networks that are likely to be representative of human-to-human contact before the
outbreak of COVID-19 and the associated NPIs.

2.2 Meyers et al. (2005) assumed that individuals living in the same household would have physical contact with
probability ph = 1.0. That is, every vertex in a household has an edge with every other vertex in the same
household. Once the household subgraphs are created, the population is then assigned to schools based on
their age group and school enrollment data, and workplaces based on occupation data. Individuals who attend
the same school have a physical contact with probability ps = 0.3 and those who work together have contact
with probability po = 0.03. Finally, people have friends, go to restaurants and stores, and otherwise interact
socially. These public contacts occur with probability pp = 0.003 and can involve any two individuals in the
community. These parameters were also taken from Meyers et al. (2005) and we found empirically that they
work well for the counties we studied. The full algorithmic statement is shown in Figure 1, but the basic premise
is straightforward. Using the necessary values from the ACS, the contact network for each county-equivalent is
built incrementally as follows:

1. Create a vector of vertices distributed according to the ACS age brackets
2. Group the vertices into households according to the ACS data
3. Assign edges betweenmembers of a household with probability ph
4. For each school level, assign edges between pairs of appropriate vertices with probability ps
5. For each occupation assign edges between pairs of appropriate vertices with probability po
6. For all vertices assign edges between pairs with probability pp
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Input: Data values taken from American Census Survey 2020
Repeat for each county-equivalent:

a = {0− 5, 5− 9, . . . , 80− 84, 85+} defines the age brackets
a

>65 = the number of people over 65 living alone
a18−65 = the number of people 18 to 65 living alone
NaNaNa = vector of vertices distributed by age
H = the total number of households
HS = average household size
mc = the number of married couples
mc18 = the number of married couples with 1 or more children under 18
sg18 = the number of single adults with 1 or more children under 18
SSS = school enrollment by level {Nursery, Elementary, High, College}
OOO = occupation numbers by industry sector
ph = probability of contact between 2 people in same household
ps = probability of contact between 2 people in same school level
po = probability of contact between 2 people in same occupation
pp = probability of contact between 2 randomly chosen people in public
VVV =NaNaNa the set of vertices
EEE = ∅ the set of edges
Output:

GGG = {VVV ,EEE} the social contact network
1 Create Households:
2 A

>65A
>65A
>65 ← random selection of a

>65 vertices from Na>65Na>65Na>65

3 A18−65A18−65A18−65 ← random selection of a18−65 vertices from Na18−65
Na18−65
Na18−65

4 NaNaNa ← (NaNaNa −A
>65A
>65A
>65 −A18−65A18−65A18−65)

5 M1M1M1 ← random selection of mc vertices from Na>18Na>18Na>18

6 M2M2M2 ← random selection of mc vertices from Na>18Na>18Na>18 −M1M1M1

7 for i ∈ 1 to mc do

8 u← random draw from uniform random variable U(0, 1)
9 if u ≤ ph then

10 EEE ← {(m1,i,m2,i), . . .} where m1,i ∈M1M1M1 and m2,i ∈M2M2M2

11 NaNaNa ← (NaNaNa −M1M1M1 −M2M2M2)
12 C

<18C
<18C
<18 ← random selection of mc18 vertices from Na<18Na<18Na<18

13 foreach c ∈ C
<18C
<18C
<18 do

14 u← random draw from uniform random variable U(0, 1)
15 if u ≤ ph then

16 eee← random edge eee = (e1, e2) selected from EEE

17 EEE ← (e1, c)
18 EEE ← (e2, c)

19 NaNaNa ← (NaNaNa −C
<18C
<18C
<18)

20 Sg
<18Sg
<18Sg
<18 ← all remaining vertices from Na<18Na<18Na<18

21 PsPsPs ← random selection of sg18 vertices from Na>18Na>18Na>18

22 foreach s ∈ Sg
<18Sg
<18Sg
<18 do

23 u← random draw from uniform random variable U(0, 1)
24 if u ≤ ph then

25 EEE ← (p, s) where p ∈ PsPsPs and every p is used at least once

26 NaNaNa ← (NaNaNa −Sg
<18Sg
<18Sg
<18 −PsPsPs)

27 rH ← H − a
>65 − a18−65 −mc−mc18 − sg18 (the remaining households)

28 D1 ← AverageDegree(EEE)
29 D2 ← 2HS −D1

30 for n← 1 to rH do

31 u1 ← random draw from uniform random variable U(0, 1)
32 if u1 ≤ ph then

33 u2 ← random draw from uniform random variable U(1, (2D2 − 1))
34 y ← single selection at random from NaNaNa

35 xxx(u2)← random selection of size ⌊u2⌋ from NaNaNa excluding y

36 EEE ← (y, xi) for each xi ∈ xxx(u2)

37 Create School Contacts:
38 foreach s ∈ SSS do

39 S1S1S1 ← ⌊
(

s

2

)

ps⌋ random selection of vertices from the age group for s

40 S1S1S1 ← ⌊
(

s

2

)

ps⌋ random selection of vertices from the age group for s

41 EEE ← {(s1,i, s2,i), . . .} where i = {1, . . . , ⌊
(

s

2

)

ps⌋} and s1,i ∈ S1S1S1 and
s2,i ∈ S2S2S2

42 Create Occupation Contacts:
43 foreach o ∈ OOO do

44 O1O1O1 ← ⌊
(

o

2

)

po⌋ random selection of vertices from Va>16Va>16Va>16

45 O1O1O1 ← ⌊
(

o

2

)

po⌋ random selection of vertices from Va>16Va>16Va>16

46 EEE ← {(o1,i, o2,i), . . .} where i = {1, . . . , ⌊
(

o

2

)

po⌋} and o1,i ∈ O1O1O1 and
o2,i ∈ O2O2O2

47 Create Public Contacts:
48 N ← |VVV |

49 N1N1N1 ← ⌊
(

N

2

)

pp⌋ random selection of vertices from VVV

50 N1N1N1 ← ⌊
(

n

2

)

pp⌋ random selection of vertices from VVV

51 EEE ← {(n1,i, n2,i), . . .} where i = {1, . . . , ⌊
(

n

2

)

pp⌋} and n1,i ∈N1N1N1 and
n2,i ∈N2N2N2

Figure 1: Algorithm for inferring initial contact network
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The Agent-basedmodel

2.3 The ABM was built in the NetLogo multi-agent programmable modeling environment version 6.1.1 (Wilensky
1999). The basic model components are:

• the disease progression model

• the population of agents and their social contact structure

• the environment consisting of schools, homes, hospitals, workplaces, and public venues, and

• the logic of NPIs, testing, and contact tracing.

2.4 The disease progression model was designed to follow the dynamics of COVID-19 as they were understood as of
March of 2020. Based on the classic Susceptible, Exposed, Infected, Recovered (SEIR) model, the agents move
through discrete states as the virus runs its course. The disease states include Susceptible, Exposed, Mild, Severe,
Critical, Deceased, and Recovered. When the model is initiated, most agents are instantiated as Susceptible
except for a small number of user-specified number of agents who are initiated as Exposed in order to generate
the outbreak. These few exposed agents progress to either Mild or Severe a�er the parameterized time duration
of the Exposed state, at which point they can infect other agents with whom they come into contact.

Figure 2: The COVID-19 progression model

2.5 The duration of each disease state is a parameter that can be overridden by the user, which facilitates flexibility
and response to changes driven by emerging research in COVID-19 disease progression. The default dynamics are
outlined in Table 1 (Lauer et al. 2020; Huang et al. 2020; CDC COVID-19 Response Team et al. 2020; Sanche et al.
2020; Eubank et al. 2020; Wang et al. 2020a; Wu & McGoogan 2020; Wang et al. 2020b). We used a combination
of published studies and pre-publication data on MedRxiv to establish the disease transmission parameters, but
it should be noted that studies of COVID-19 are ongoing and these parameters should be updated at the time the
model is being used for decision-making. For our purposes, these parameters worked well when fitting to the
empirical data available at the time of our study.

Table 1: COVID-19 progression parameters

Time Period Duration Transition Probabilities Value

Exposed Period 5 days From Exposed to Severe 0.12
Mild Period 6 days From Exposed to Mild 0.88
Severe Period 4 days FromMild to Severe 0.40

Critical Period (hospitalized) 10 days From Severe to Critical 0.40
Critical Period (at home) 3 days From Critical to Deceased 0.60 or 1.0 at home
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2.6 The dynamics of COVID-19 progression are both time-based and stochastic. That is, different states of the disease
have well-documented time frames, but the chance of an agent progressing through amild or severe case is
stochastic. When agents are co-located, there is some chance that the disease will be transferred from one agent
to another. At each time step agents that are contagious (those in the Mild, Severe, or Critical states) will look
for another agent on the same patch (small piece of the environment). If there is at least one other agent on
the patch contagious agents will attempt to pass the virus to one other agent. Successful passing of the virus is
a function of a user-specified probability of successfully getting the virus on the other agent, a user-specified
mitigation probability, and the health status of the target agent (if they are already sick, they will not get sicker).
The first two probability parameters allow the user to simulate situations such as wearing masks, maintaining
social-distance, and hand-washing.

2.7 Once an agent becomes Exposed a�er five days they will move to either the Mild state (0.88 chance) or Severe
state (0.12 chance). If the agent transitions to the Severe state, then a�er four days they will transition to either
the Critical state (0.40 chance) or the Recovered state (0.60 chance). If on the other hand, the agent transitions
to the Mild state from the Exposed state, a�er six days they will either transition to Severe state (0.40 chance) or
the Recovered state (.60 chance). Once in the Recovered state agents are no longer able to contract the disease.
Agents in the Critical state are assumed to need breathing assistance and significant medical support; therefore,
if the agent is unable to go to the hospital within three days of becoming critical they will die with probability
1.0. Agents are contagious when they are in the Mild, Severe, or Critical states. The Mild state includes both
symptomatic and asymptomatic agents and each agent has an attribute indicating which category they are
in. It is assumed that agents in the Exposed state are not contagious. That is, the Exposed state represents an
incubation period where the viral load in the agent is too low to infect others. This state is not the same as an
asymptomatic state. Once agents progress to the Mild state they may be asymptomatic or symptomatic.

2.8 The next component of the ABM is the environment, which includes both physical spaces and the initial social
contact structure of the population. The model is instantiated with the inferred contact network of a U.S. county
scaled to be approximately 10,000 agents. These contact structures are generated using U.S. Census data and the
algorithmdescribed in the previous section. The size of the ABMenvironment is then adjusted to approximate the
population density of the county in question. The physical space is created from the aforementioned networks.
Agents are assigned to a school, work, public venue, and homes. The locations are then placed in the modeling
environment. They can bemixed, as onemight see in an urban area where individuals live, work, shop, and learn
in close proximity or home locations can bemore separated as onemight see in rural or suburban counties.

2.9 The NPI component of the ABM is integrated into these physical locations and the agent behaviors. As the
simulation runs, each agent spends one 12-hour time step at home and the next 12-hour time step at work,
school, or a public venue as long as going to that venue is not prohibited by an NPI. The available NPIs include
closing schools, closing work places, closing public venues, imposing social distancing requirements (i.e., stay
home orders), and isolating individuals. Individual mitigation steps can also be modeled using the probabilities
associated with disease transmission, as mentioned earlier.

2.10 The final model component is the logic of testing and contact tracing. There are two alternative testing strategies
incorporated into the ABM; random selection of everyone not in the hospital, or targeted testing of a specific
percentage of symptomatic and asymptomatic agents. For the first alternative, a user-specified number of agents
are randomly chosen with replacement to be tested whenever testing takes place. For the second alternative, at
a given point in time a number of tests are made available. This number is divided between symptomatic and
asymptomatic agents. A set of agents equal to or less than the number of allocated tests is then randomly chosen
and tested. Testing accuracy includes a user-defined false negative rate, but false-positives are not modeled.
Thus an agent who received a positive test has COVID-19, but an agent receiving a negative test result is not
guaranteed to be free of the disease. Symptomatic agents are defined as those with Mild, Severe, or Critical
disease states. Agents in states Susceptible, Exposed, or Recovered are considered asymptomatic. All agents who
are tested are placed in isolation for the duration of the testing period, which is a user-defined time parameter.
Those who test positive are placed in isolation for 14 days and, if applicable, contact tracing is performed.

2.11 When agents are initialized they ‘decide’ to participate in contact tracing (opt-in) or not. This is done via a random
draw against a user-specified parameter. Contact tracing can be triggered in two basic ways. The first is when a
symptomatic individual arrives at the hospital and the second is through testing. If an agent who has opted-in
tests positive, then contact tracing from that agent will commence.

2.12 Each agent collects data on the other agents it comes into contact with. The model assumes that agents co-
located on a patch that is 0.1 km on a side are likely enough to be in significant contact with each other as to
warrant being considered in the contract trace. At the beginning of each time step, agents update their health
status and then collect contact data in a first-in-first-out queue that is 28 elements long (14 days). Agents from
the contact list deemed to have been in contact with an infected agent are told to isolate for 14 days.
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Verification and validation

2.13 Verification and Validation (V&V) is an important aspect of using simulations for decision-making. The two
concepts are o�en conflated, so we based our verification and validation efforts on the established literature.
Sargent (2013) defined verification as “ensuring that the computer program of the computerized model and its
implementation are correct.” That is, did the modelers build the model correctly? Sargent defined validation
as “substantiation that a model within its domain of applicability possesses a satisfactory range of accuracy
consistent with the intended application of the model.” Stated another way, is themodel useful for decision-
making in the given domain? In order to determine if the model is built correctly we establish expectations for
how themodel will behave as it runs. But those expectations are driven by the domain being modeled. In this
section we show a selection of results from our V&V experiments.

2.14 In the context of the ABM and COVID-19, the original form of the model is an extension of the canonical SEIR
model where the assumptions of continuity are relaxed in favor of discrete agents and the concepts of behavioral
changes induced by NPIs are incorporated. The final form of the model is a NetLogo representation of that logic.
Verification begins with ensuring that logic was written correctly for the intended results. Beyond reviewing the
code for errors, much of the verification process involves running themodel under extreme settings to ensure the
logic responds appropriately. For example, if no agents are initially set to the Exposed state, then no outbreak
will ever occur and all the agents should remain in the Susceptible state for the duration of that run. Additionally,
when we runmultiple replications with different random number seeds we would expect the average of the time
series from each disease state to become smoother with increased replications. Thus the averaged curves would
behave similar to the standard SEIRmodels that are dominated by the decline in the Susceptible population and
the increase in the Recovered and Deceased populations. Each curve from a single replication would bemore
rugged than one would expect from the canonical SEIR models due to the heterogeneous mixing facilitated by
the contact network. When we sum the Mild, Severe, and Critical states to make a single Infected curve, this
familiar set of smooth curves is indeed reproduced qualitatively by the ABM as illustrated in Figure 3. Note the
dark lines in the figure represent the mean of 30 simulation replications and the shaded areas represent one
standard deviation above and below that mean.

Figure 3: An example of a verification experiment with NPIs turned off for Baltimore County, MD. The dark lines
represent the mean of 30 replications and the shaded areas represent one standard deviation above and below
the mean.

2.15 For the run generating Figure 4 we incorporate the NPIs of social distancing, testing, and tracing during the
model run and note that the peak is lower than the baseline no-NPI run and the curve is rougher due to themore
heterogeneous nature of social contact, which is what social distancing is designed to induce.
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Figure 4: Comparison of ABM output with and without NPIs for Baltimore County, MD

2.16 Proceeding in this manner we constructed a verification experiment to ensure each logical component of the
model – such as testing and contact tracing – behave as intended. The heatmap shown in Figure 5 shows the
interaction of different levels of testing and contact tracing for a representative dense county. As expected the
two tactics interact to progressively reduce the peak number of infections and deaths.

Figure 5: Results of a parameter sweep across testing and contact tracing design points. The x-axis represents
percentage of the population tested and the y-axis represents the percentage of the population opting in to
contact tracing. The colors represent the percent reduction in peak infections and deaths from baseline where
there is no testing or contact tracing.

2.17 Finally, we compared results from the simulation with the actual case counts reported in Maryland. This is a
good exercise for ensuring model results are realistic, but it should be noted that precise statistical matches are
not expected. There is uncertainty due to testing, the timing of NPIs, the actual adherence to NPIs, and relative
scale of our 10,000 person simulations and the actual populations of a given county. Nevertheless the results
shown in Figure 6 indicate that our model results reasonably represent the counties they are intended to model.
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Figure 6: Comparison of simulation output (mean± 1 standard deviation) to actual cases reported in Baltimore
City and Worcester County, MD

2.18 As currently implemented the model contains a number of parameters. Most of the parameters are used to
define the population and its structure. There are also a number of other parameters associated with the use of
NPIs and a number of parameters directly associated with the spread of the disease.

2.19 In our validation exercise the simulation demonstrated sensitivities one would expect to find in a model of this
type. Disease spread was highly correlated to transmission probability andmitigation probability. Furthermore,
testing made a significant difference when it was coupled with a population that complied with isolation orders.
No unexpected sensitivities were uncovered, but it is important to note that SARS-Cov-2 is a novel virus and
studies are producing new insights on a near daily basis. Parameterizing the model should thus remain an
evolving exercise.

Experiment Design

3.1 To illustrate the utility of our modeling approach, we chose to model the 24 counties of Maryland, including the
independent city Baltimore. The experiment is designed to answer the question: what is the impact of a given
percent of the population being tested and a given level of participation in contact tracing if NPIs are li�ed 70 days

a�er the onset of the pandemic? This is approximately the time frame that Maryland followed when li�ing NPIs in
reality.

3.2 Maryland includes amix of rural and urban counties. Baltimore and the suburbs ofWashington, D.C. are themost
populated areas with over 3 Million people, while Kent County has only around 19,434 inhabitants (Census 2020).
Using the U.S. Census ACS data and the algorithm described earlier, we constructed the 24 contact structure
graphs to represent the pre-NPIs state for initializing each simulation. The parameters used in constructing the
graphs are shown in Table 2. We chose the number of agents for computational efficiency and the probabilities
were taken fromMeyers et al. (2005). These graphs were ingested into the ABM as the initial contact structure.

Table 2: Parameters for social contact structure

Parameter Value

Total agents 104

P (contact|household) 1.0
P (contact|school) 3x10−3

P (contact|work) 3x10−4

P (contact|public) 3x10−6

3.3 The degree distributions of each county graph are summarized by the means and standard deviations listed in
Table 3 and the kernel distribution plots show in Figure 7.
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Table 3: Degree distributions of social contact structures by county

County Mean St. Dev County Mean St. Dev

Allegany County 2.49 2.02 Howard County 2.97 2.21
Anne Arundel County 2.72 2.09 Kent County 2.44 2.23
Baltimore County 2.67 2.1 Montgomery County 2.8 2.11
Calvert County 2.91 2.41 Prince Georges County 2.97 2.9
Caroline County 2.75 2.53 Queen Annes County 2.58 2.05
Carroll County 2.72 2.1 St. Marys County 2.96 2.28
Cecil County 2.74 2.24 Somerset County 3.1 4.48
Charles County 2.95 2.6 Talbot County 2.05 1.75
Dorchester County 2.4 2.13 Washington County 2.58 2.15
Frederick County 2.83 2.14 Wicomico County 3.14 2.82
Garrett County 2.23 1.85 Worcester County 2.1 1.86
Harford County 2.67 2.05 Baltimore city 2.71 2.5

Figure 7: Distributions of the initial social contact networks for the 24 county-equivalents of Maryland

3.4 The full experiment consisted of three sets of simulation runs. The first was a baseline run of 30 replications
for each county with no NPIs or interventions. This scenario essentially represents the baseline course of the
pandemic if no action were taken to slow the spread of disease. The second scenario instituted multiple NPIs 10
days a�er the start of each run and then partially li�ed those NPIs 70 days a�er the start of each run. The NPIs
were the closing of school and workplace venues, but not public venues. Social distancing was also enforced
starting on day 10 at 95% and then reduced to 50% a�er 70 days. When the NPIs were li�ed a strategy of testing
and contact tracing was instituted. For this particular set of experiments we employed one-step contact tracing.
That is, agents who came in direct contact with an infectious agent and were participating in the programwere
traced. But agents who came in contact with an agent who was traced were not in turn traced. In this scenario
only symptomatic people were tested and contact tracing commenced for those participating cases that tested

JASSS, 24(2) 9, 2021 http://jasss.soc.surrey.ac.uk/24/2/9.html Doi: 10.18564/jasss.4585



positive. Five levels of testing and five levels of agreeing to isolate a�er contact tracing were used for a full design
of experiment consisting of 25 settings and 30 replications per county. The third scenario uses the same NPIs
and timing as the second scenario, but employs a random testing strategy, which includes agents that are in
the Susceptible, Exposed, Mild, or Recovered states. The same five levels of contact tracing participation were
used, but the percent tested was varied across a set of higher testing levels. In our exploratory experimentation
we found that higher percentages of random testing are required to achieve similar impact because the same
quantity of tests uncovers fewer positive cases. This is because the symptomatic agents in the ABM only have
COVID-19. Testing symptomatic cases is therefore the same as testing agents with the disease. Table 4 outlines
the parameter settings for each of the three scenarios. Note that by setting social distancing to a high percentage
but leaving venues open, we simulate theminimal interaction that occurs at essential businesses such as grocery
stores.

Table 4: Parameter settings for the three scenarios

Parameter Baseline Symptomatic Testing Random Testing

venuesClosed False False False
schoolsClosedOn never step 20 (day 10) step 20 (day 10)
schoolsClosedOff always step 140 (day 70) step 140 (day 70)
workClosedOn never step 20 (day 10) step 20 (day 10)
workClosedOff always step 140 (day 70) step 140 (day 70)
socialDistanceOn never step 20 (day 10) step 20 (day 10)
socialDistanceOff always never never
socialDistanceProb 0.0 [0, 0.95, 0.5] [0, 0.95, 0.5]
symptomaticTest False True False
randomTest False False True
percentTest 0.0 [0.002, 0.004, 0.006, 0.008, 0.01] [0.002, 0.004, 0.006, 0.008, 0.01]
optInRate 0.0 [0.0, 0.25, 0.5, 0.75, 1.0] [0.0, 0.25, 0.5, 0.75, 1.0]
Total Design Points 1x24 = 24 5x5x24 = 600 5x5x24 = 600
Number of Replications 30 30 30

Results

4.1 In this section we review and compare the results of the different scenarios. It is important to note that these
results do not represent a forecast of case counts or death rates. The purpose of this modeling approach is to
provide insight into the relative impact that different NPI, testing, and tracing strategies will have when applied
to areas of a particular state that have considerably different social contact structures.

4.2 Figure 8 and Table 5 show the impact of population density and social contact structure. Each box-whisker
plot represents the distribution of the maximum number of infections across the 30 replications of the baseline
scenario for a given county. Recall that the disease parameters are the same for each county and the populations
are normalized to 104. The two variables that change from county-to-county are only the social contact structure
driven by the U.S. Census data, and the population density controlled by the size of the environment the agents
have to move around in. The key insight is that any strategy the state of Maryland adopts will need to treat 7
of the 24 counties differently. It is interesting to note that Harford County has roughly 75% fewer people than
Montgomery County and Montgomery County is roughly 70% less dense than Baltimore City. Yet all three of
these locations have an averagemaximum infected that is approximately four times larger than 17 of the counties
in rest of the state.
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Figure 8: Distributions of peak infections across 30 replications of the baseline scenario by county

Table 5: Mean and standard deviation of peak infections over 30 replications of the baseline scenario by
county

County Mean St. Dev County Mean St. Dev

Garrett County 340.53 132.95 Carroll County 491.13 103.52
Worcester County 358.87 161.21 Caroline County 495.7 70.16
Talbot County 416.03 81.62 St.Marys County 521.13 113.18
Cecil County 438.67 80.37 Wicomico County 543.43 152.65
QueenAnnes County 452.93 116.42 Somerset County 656.43 63.85
Dorchester County 457.27 104.55 Montgomery County 1928.6 82.93
Washington County 459.23 100.17 Baltimore County 1935.57 75.13
Calvert County 464.5 138.09 Howard County 1938.33 77.1
Kent County 472.03 112.4 Harford County 1943.83 60.88
Allegany County 473.87 105.74 AnneArundel County 1949.47 84.8
Frederick County 484.6 144.63 PrinceGeorges County 1953.5 67.57
Charles County 490.43 57.57 Baltimore City County 2120.77 60.77

4.3 Next we analyzed the impact of a 50-day NPI strategy followed by a regime of symptomatic testing and contact
tracing. From a broad perspective we can see in Figure 9 that the NPIs and testing and tracing combine to reduce
the total cumulative cases considerably. Here we can see that if each county has the ability to test 1% of its
population daily then the overall number of cases can be drastically reduced. Also note that, for this level of
testing and contact tracing, the dynamics in Baltimore City separate from the other counties, most likely due
to its extremely high density. There is still a difference from one county to the next due to the differences in
density and contact structure. We selected three of the counties to look at in greater detail that are notionally
representative of high, medium, and low density locations.
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Figure 9: Cumulative cases for the baseline and symptomatic testing scenario (0.01 test, 1.0 optInRate)

4.4 Baltimore City has the highest population density out of the 24 locations. Harford is seventh out of 24 in terms of
density andWorcester is near the bottom. Figure 10 and Tables 6, 7, and 8 show themean peak infections for each
of the 25 design points of the symptomatic testing scenario, along with the baseline mean peak infections for
each of these counties. The combined impact of the NPIs, testing, and tracing is evident, but the variation in the
impact is greatly affected by the density and social contact structure of the county. It is less obvious from these
plots whether different levels of testing or contact tracing have a significant effect on the mean peak infections.
Indeed, using a two-sample Kolmogorov-Smirnov test with α = 0.05we can only reject the null hypotheses that
the mean peak infections are the same when testing the baseline against the COVID-19 testing level of 0.002 and
comparing that level of testing with any other level of testing for Baltimore and Harford Counties. In Worcester
County all levels of testing are distinguishable from the baseline, but not from each other.

Figure 10: Baltimore City, Harford County, and Worcester County scenario comparison

4.5 Interestingly, the story changes when we analyze deaths in these three counties within the 250 simulated days,
as seen in Figure 11. The differences between certain levels of testing becomesmore pronounced. Again, applying
a two-sample Kolmogorov-Smirnov test to the different pair-wise combinations of testing levels we can now
differentiate all pairs except the highest two levels in Baltimore andHarford County (α = 0.05). The levels remain
indistinguishable in Worcester County. These results are important for decision-makers trying to allocate scarce
resources, such as testing and contact tracing, across multiple regions of interest because the same results can
be obtained in some places with fewer resources than in others.
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Figure 11: Impact of symptomatic testing and tracing to deaths in Baltimore, Harford, and Worcester

Table 6:Mean and standard deviation of peak infections and deaths over 30 replications in Baltimore City
for different settings of testing and contact tracing

Baltimore City Results

Percent Test Opt-in Contact Trace Mean Peak Infections St Dev. Mean Deaths St Dev.
Baseline: 0 Baseline: 0 2120.77 60.77 1492.83 36.49

0.002

0 1616.33 143.57 1349.74 53.80
0.25 1631.67 143.15 1366.50 44.74
0.5 1663.03 152.83 1356.70 49.03
0.75 1673.00 162.70 1365.50 49.70
1 1604.03 301.80 1317.53 221.35

0.004

0 1292.07 324.28 1137.20 142.99
0.25 1372.37 309.37 1178.43 205.63
0.5 1131.10 428.04 1010.67 358.48
0.75 1245.00 315.94 1130.17 216.38
1 1279.97 375.51 1110.50 263.05

0.006

0 1120.60 298.90 921.50 248.62
0.25 1049.41 433.80 801.97 349.41
0.5 1069.27 283.91 874.07 246.01
0.75 1080.83 358.13 857.40 272.31
1 1091.87 315.94 900.67 239.07

0.008

0 1038.07 296.12 707.00 252.90
0.25 998.00 335.28 678.07 271.98
0.5 1012.43 298.68 698.57 241.05
0.75 985.18 408.01 663.61 301.20
1 1021.07 361.93 705.43 289.80

0.01

0 911.67 331.05 538.73 250.77
0.25 1011.33 326.72 614.87 247.88
0.5 1004.40 327.01 607.83 242.58
0.75 931.63 343.79 556.00 248.95
1 962.40 362.53 588.53 261.85
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Table 7:Meanand standarddeviationof peak infections anddeaths over 30 replications inHarfordCounty
for different settings of testing and contact tracing

Harford County Results

Percent Test Opt-in Contact Trace Mean Peak Infections St Dev. Mean Deaths St Dev.

Baseline: 0 Baseline: 0 1943.83 60.88 1481.00 38.47

0.002

0 1108.62 242.72 1220.90 227.12
0.25 1164.90 170.23 1260.07 68.15
0.50 1126.00 207.99 1236.43 195.26
0.75 1142.03 154.27 1266.37 62.09
1 1127.70 165.27 1262.40 64.90

0.004

0 628.00 272.13 610.93 326.14
0.25 702.10 205.18 721.07 279.82
0.5 644.47 185.69 658.50 259.65
0.75 593.17 209.00 613.13 296.7
1 649.13 247.78 661.27 301.84

0.006

0 536.83 183.92 354.80 175.41
0.25 552.13 175.49 364.33 181.76
0.5 614.83 207.24 429.27 205.70
0.75 598.23 182.03 416.57 198.25
1 594.23 224.83 408.93 213.61

0.008

0 586.93 189.63 333.83 141.39
0.25 564.17 218.69 324.10 170.46
0.5 656.67 219.15 392.37 181.30
0.75 519.63 176.15 288.53 121.61
1 606.67 165.20 349.00 129.28

0.01

0 485.67 174.02 250.80 112.98
0.25 563.13 190.68 296.20 131.20
0.5 532.45 150.00 264.79 103.51
0.75 592.03 221.39 314.79 151.94
1 535.59 170.79 271.17 117.81
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Table 8: Mean and standard deviation of peak infections and deaths over 30 replications in Worcester
County for different settings of testing and contact tracing

Worcester County Results

Percent Test Opt-in Contact Trace Mean Peak Infections St Dev. Mean Deaths St Dev.
Baseline: 0 Baseline: 0 358.87 161.21 503.67 290.13

0.002

0 18.50 8.06 11.13 7.19
0.25 20.40 7.76 12.63 6.64
0.5 18.83 8.73 11.80 7.98
0.75 21.23 8.25 12.87 7.98
1 18.23 7.78 10.93 6.63

0.004

0 19.00 7.58 13.03 7.00
0.25 19.37 7.61 11.10 6.46
0.5 16.20 4.94 9.23 4.98
0.75 18.50 6.38 11.10 6.82
1 17.47 9.00 10.27 7.26

0.006

0 20.13 7.39 12.03 7.30
0.25 19.13 7.02 12.63 6.85
0.5 18.70 8.38 11.23 6.10
0.75 20.70 7.79 13.73 7.11
1 19.77 9.13 13.63 9.61

0.008

0 16.97 5.56 10.83 6.11
0.25 17.70 6.97 11.47 7.54
0.5 19.43 9.69 12.47 7.71
0.75 17.77 6.56 9.90 5.51
1 17.13 7.52 9.67 4.89

0.01

0 20.10 6.55 12.83 7.12
0.25 18.5 7.34 11.70 7.42
0.5 19.93 8.45 12.47 7.04
0.75 19.03 6.82 11.53 5.46
1 19.80 8.46 12.80 7.94
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4.6 If we focus on any one county, we can analyze the interaction effects of different levels of testing and contact
tracing, as well as if symptomatic or random testing produce different results. Recall that five of our design
points between symptomatic testing and random testing overlap. Specifically, for all five levels of optInRate,
the 1.0% testing level is included in both experiments. Holding the optInRate constant at 0.75, we can see
in Figure 12 that more than 5.0% random testing is required to achieve the same results at 1.0% symptomatic
testing. This result may seemmisleading at first because healthcare professionals agree that more testing and
random testing of asymptomatic people is highly recommended. It is important to note that all symptomatic
agents in the model are indeed infected with COVID-19. So 1.0% testing of symptomatic individuals is testing a
large percentage of the infectious population. Conversely, the random testing regime is forced to distribute the
tests across a mix of infectious and non-infectious people. Since the non-infectious population is larger when
NPIs are employed, the diluted number of true-positive tests makes the random regime appear less effective at
higher levels of testing. In actuality, this reinforces themessage of increased random testing. We know thatmany
COVID-19 cases o�en exhibit few symptoms even though the individuals are infectious. These individuals are less
likely to submit for testing because they might not even know they are sick. Increased levels of random testing
provides greater opportunity of finding and isolating those cases – as illustrated by the model results – but that
also means a greater level of testing is required to actually find those who are infected. It is also important to
note that random testing is required to estimate the prevalence of the disease.

Figure 12: Cumulative cases in Baltimore City under different testing strategies

Discussion

5.1 In the present work, we illustrated a modeling approach for assessing alternate strategies of implementing and
subsequently li�ing non-pharmaceutical interventions in response to the COVID-19 pandemic. We underscored
the previously-known result that social contact structure is a key factor in the size of an outbreak or pandemic
and we illustrated how estimates of social contact structure combined with an agent-based model can be used
to provide insight to decision-makers in the face of uncertainty. We summarized our findings in a limited design
of experiments that focused on the 24 counties and county-equivalents of the state of Maryland. We showed
that the different counties of Maryland fall into at least two distinct categories in terms of risk of large outbreaks
and illustrated how different levels of testing can be employed to the same effect if the social contact structure is
taken into account. It should be noted that the simulation is designed to enable the exploration of imposing and
relaxing NPI strategies in a dynamic setting. For clarity of exposition, this initial effort focused on the imposition
of NPIs to fully suppress the spread of the disease. A possible future effort could use the samemodel and input
parameters to explore the optimal duration of a given NPI strategy or any combination of NPIs and duration.

5.2 We believe our work contributes to the ongoing struggle to contain the pandemic in the following ways. First, it is
designed to be used by local governments with limited resources. This is critical for countries that delegated the
decision-making to local provinces or states. Second, it is designed to use readily-available data for any region
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that conducts a census. Third, it is designed to be easy to use to explore the use of NPIs and inform decision-
makers about how pandemic dynamics may change as a function of the timing of NPIs and the compliance of
the population.

5.3 It is important to note that no model or suite of models is a panacea. Ultimately decision-makers are forced
to make a choice under uncertainty to protect both the health and the economic well-being of the population.
The approach outlined here is designed to provide insight into the marginal impact of one NPI and testing
strategy versus another. This approach should be utilized by the decision-makers in conjunction with empirical
analysis of the current state of their county or region of interest. The model parameters or logic should be
constantly updated and themodels re-run with new information as it comes available. That is, this modeling
approach is designed for use in real-time alongside decision-makers at the time decisions are being formulated
and implemented. To that end, the analysis presented here should be taken as notional rather than indicative of
what might or might not happen in Maryland over the coming months.

5.4 During the writing of this report, unforeseen events extraneous to COVID-19 led to social unrest, protests, and
riots in many major cities across the United States. Most of these locations were still operating under some level
of restrictions to control the pandemic. Clearly, protests and riots bring people into close proximity andmay
ultimately prove to be super-spreading events. This sort of unpredictable event is not included in our model nor
have we seen them included in the models we reviewed. This serves to underscore the difficulty and challenges
of forecasting the progression of complex systems. Models and the insights they provide can help, but they
are ultimately limited by assumptions. Decision-makers therefore require a combination of reliable data from
their region of interest, rigorously designedmodels that make as few simplifying assumptions as possible, and
ultimately the fortitude to make a decision in the face of uncertainty.
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