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Modeling Current-Programmed Buck and Boost 
Regulators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract-A general small-signal model for current-programmed 

switching power stages is used for design-oriented analysis of a 150-W 

buck regulator and of a 280-W boost regulator. The model, into which 

the current-programming minor feedback loop is absorbed, exposes 

the desired tendency towards “constant” output current. The regula- 

tor voltage loop remains #he only explicit feedback loop, allowing the 

regulator closed-loop properties to be easily obtained from those of the 

open-loop current-programmed power stage. The design-oriented an- 

alytic results allow easy inference of the effects of element changes on 

the regulator performance functions. Results are obtained for the reg- 

ulator line-to-output transfer function (audio susceptibility) and out- 

put impedance. 

I. INTRODUCTION 

URRENT-PROGRAMMED switching power stages C’ are becoming widely used in the power supply field 
because of several advantages they exhibit over conven- 
tional duty ratio programmed power stages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 13, [2]. The 
design of switching regulators from the control loop as- 
pect is now well understood: small-signal models for the 
power stage, and their use in design of the feedback loop, 
have gradually become familiar tools for design engineers 
over the last 15 years. 

These well-known models and methods, however, are 
for duty ratio programmed power stages. Corresponding 
models for current-programmed power stages have ap- 
peared much more recently [3], [4] and have been the sub- 
ject of some controversy [5], [6]. 

The purpose of this paper is to apply a particular small- 
signal model [6] of a current-programmed power stage to 
the analysis and design of a 150-W buck regulator and of 
a 280-W boost regulator. This is intended as an illustra- 
tion of how the generalized model, established once and 
for all, can be applied not only to the analysis but also to 
the design of practical regulators. 
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Although the loop gain is of central importance, a reg- 
ulator is not specified directly by its loop gain, but by its 
performance functions such as output impedance and line- 
to-output transfer function (audiosusceptibility). There- 
fore, the objective of the analysis is to determine how the 
various component values affect these functions. Under- 
standing of the physical significance of each analytic step 
is essential in choosing the numerous trade-offs that have 
to be made. This process and its objective, of course, are 
applicable to any design, and are central to the approach 
described as design-oriented analysis. 

Most of the numbers in the example regulators are the 
same as those chosen by Schoneman and Mitchell [7]. 
This was done so that the performance functions deter- 
mined here could be compared with those derived by 
Schoneman and Mitchell, who used an entirely different 
approach to the analysis. When all the numbers are the 
same, the performance functions obtained by the two ap- 
proaches are, of course, also the same. In the examples 
discussed here, however, one parameter is chosen differ- 
ently (the gain of the error amplifier) to illustrate its effect 
on the results. 

The reasons leading to the choice of modeling approach 
are discussed in Section I1 and result in adoption of a ca- 
nonical model that absorbs the current-programming mi- 
nor feedback loop. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111, this y-parameter canon- 
ical model is modified and simplified to apply specifically 
to the buck power stage of the example regulator. From 
this model, the power-stage control-to-output and line-to- 
output transfer functions and output impedance are im- 
mediately written down. 

In Section IV, the regulator voltage loop, which is now 
the only explicit feedback loop, is closed, and the loop 
gain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT and feedback factor 1 + T are determined. The 
familiar properties of single-loop feedback systems are 
then employed to find the regulator closed-loop output 
impedance Zof and line-to-output transfer function Ad from 
their respective open-loop values. Also in Section IV, the 
results for the regulator closed-loop properties are evalu- 
ated. 

In Sections V and VI, similar analyses and interpreta- 
tions are conducted for the boost regulator example. Dis- 
cussion of the results, of the effectiveness of the current- 
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programming function, and of the significance of the de- 
sign-oriented analysis approach is presented in Section 
VI1 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0005R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0000R v=15v - - v * 

40t lH I 1. 1 
1 ’  I 

r .  - I I  )O.OlR . -  O.Ol2ff& 

11. MODELING APPROACH 

The circuit of the regulator with a current-programmed 
buck power stage is shown in Fig. 1, and that of the reg- 
ulator with a current-programmed boost power stage is 
shown in Fig. 2. The numbers, supplied to the author by 
private communication, are those used in examples by 
Schoneman and Mitchell [7]. 

The power stages and the error amplifiers with gain 
controlled by local feedback are conventional. The ref- 
erence voltage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVR is such that the steady-state duty ratio 
for each regulator is D = 0.5, which results in an output 
voltage I/ = 15 V from a line voltage Vg = 30 V for the 
buck and V = 56 V for Vg = 28 V for the boost. In the 
buck, a load resistance RL = 1.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi2 gives an output current 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI = 10 A for an output power of 150 W, and for the 
boost RL = 11.2 i2 gives I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 A for an output power of 
280 W. The switching frequency ish = w,/27r = 25 kHz, 
for a switching period T, = 1 /A = 40 ps. 

Current-programming is implemented by R, , which 
senses the switch current in the “on” condition. The re- 
sulting sensed voltage is multiplied by N ,  and a stabilizing 
ramp of peak value 2.0 V for the buck and 0.25 V for the 
boost is added before comparison with the control signal 
from the error amplifier. The operation of the current-pro- 
gramming feature and the purpose of the stabilizing ramp 
have been well documented [ 11, [6]. 

A. Choice of Feedback Loops 

Current-programming establishes a local “minor” cur- 
rent feedback loop around the power stage, which is in- 
side the “major” voltage feedback loop via the error am- 
plifier. One may define and analyze any loops or 
combinations of loops one wishes, each of which has its 
own crossover frequency and phase margin [6]; the results 
for the regulator performance functions should of course 
be the same regardless of the loop definitions. 

One choice is to consider the current and voltage loops 
to be in parallel around the power stage [4], [5]; this has 
the advantage that the familiar state-space averaged ca- 
nonical model of the power stage under duty ratio pro- 
gramming [8] can be employed, but the disadvantage that 
the distinction between the current and voltage loops is 
lost. Since the two loops are employed for different pur- 
poses, loss of separation obscures the design criteria. An- 
other choice is to consider the current loop separately, and 
to find a canonical model that represents overall transfer 
functions of the current-programmed power stage around 
which the regulator voltage loop is closed. This approach, 
recommended in [6], has the advantage that design and 
optimization of the voltage loop proceeds in the same way 
as for a duty ratio programmed power stage; there is 
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Fig. 1 .  Current-programmed buck regulator. Values of R,, and CO are later 
chosen to be 270 k and 0.53 pF. 
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Fig. 2. Current-programmed boost regulator. Values of R,, and C, are later 
chosen to be 72.2 k and 0.23 pF. 

merely a different canonical model for the current-pro- 
grammed power stage, whose contrasting properties are 
already explicitly exposed in the model, just as there is a 
different canonical model for the duty ratio programmed 
power stage in discontinuous conduction. Another advan- 
tage of this approach is that the analysis of the current 
loop is done once and for all and is represented by its 
canonical model; thereafter, design of any regulator re- 
quires consideration only of the voltage loop. This is the 
approach that will be adopted here. 

The canonical small-signal model for current-pro- 
grammed pulsewidth modulated (PWM) converters op- 
erated in the continuous conduction mode is shown in Fig. 
3. This y-parameter model and a table of expressions for 
the element values for the buck, boost, and buck-boost 
converters, were presented in [6]. This becomes the start- 
ing point for the design-oriented analysis for the buck and 
boost regulators of Figs. 1 and 2. 
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Fig. 3. Generalized small-signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy parameter model for current-pro- 
grammed power stage. Current-programming minor feedback loop around 
power stage is absorbed in, and therefore is implicit in, model. There 
are two inputs, small-signal control voltage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, and line voltage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi;. 

B. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACurrent-Programmed Converter Canonical Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ments in the model of Fig. 3 are 

For the buck converter the expressions for the six ele- 
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The model of Fig. 3 and the above expressions represent 
the part of Fig. 1 or Fig. 2 designated the “power stage,” 
that is, excluding the load resistance RL and the load ca- 
pacitance C and its associated esr. Also, the parasitic re- 
sistances within the power stage are neglected, which 
means that R, is accounted for solely as a current sensing 
device, and its voltage drop in the power stage is ignored. 
The dc output voltage V in Fig. 1 or Fig. 2 is determined 
by two inputs, the line voltage Vg and the control voltage 
V,. Similarly, in the small-signal model of Fig. 3 ,  the 
small-signal output voltage 0 is determined by the corre- 
sponding two small-signal inputs 0, and 0,. 

There are several parameters in the expressions for the 
element values in addition to those that are explicit in 
Figs. 1 and 2. These are defined and evaluated below, 
along with a review of their significance in the operation 
of the current-programmed converter. 

The current sensing function is represented by R f ,  which 
is the ratio of the voltage presented to the comparator to 
the switch current (that is, the inductor current) that is 
being sensed. Because of the gain factor N, the effective 
value of Rf is Rf = NR, = 5 x 0.02 = 0.10 Q for the 
buck converter of Fig. 1, and Rf = 3.25 X 0.025 = 
0.08 13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfl for the boost converter of Fig. 2. 

The numerical parameter n relates the equivalent cur- 
rent slope M, of the stabilizing ramp to the slope M I  of 
the inductor current during the switch on-time: 

n = 1 + 2Mc/Ml. ( 5 )  

Here, in the buck converter of Fig. 1 ,  the ramp reaches a 
peak voltage V, during a switching period T,, so the 

n D ’ -  1 

K 

nD’ - D equivalent current slope is M ,  = V,,/TsRf = 2.0/(40 X 

K ’ ( 2 )  0.10) = 0.5 A/ps. The inductor current slope during the 
switch on-time, when the inductor is connected between 
line and output, is M I  = ( V, - V )  / L  = 15 /40 = 0.375 

CI ’ 1 -~ C 2 ’ 1 -  

For the boost converter, the corresponding expressions are 
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A/ps. Hence n = 1 + 2 xuO.5/0.375 = 3.67. 
In the boost converter of Fig. 2, M ,  = V,,/T,Rf = 

0.25/(40 x 0.0813) = 0.0769 A/ps. The inductor cur- 
rent slope during the switch on-time, when the inductor 
is connected across the line, is MI = V g / L  = 28/195 = 
0.144 A/ps. Hence y1 = 1 + 2 x 0.069/0.144 = 2.07. 

The purpose of the stabilizing ramp is to extend the 
range of stability of the current-programmed power stage 
beyond the value Dmax/(  1 - D,,,) = n,  so D,,, = n / (  1 
+ n ) .  In the present buck converter case, n = 3.67 so 
D,,, = 3.67/4.67 = 0.786, which means that the mini- 
mum line voltage for which regulation of the output volt- 
age V = 15 V can be maintained is V/D,,, = 15/0.786 
= 19.1 V. In the boost converter case, n = 2.07 so D,,, 
= 2.07/3.07 = 0.674, and the minimum line voltage for 
which regulation of the output voltage V = 56 V can be 
maintained is ( 1  - D,,,) V = V / (  1 + n )  = 56/3.07 = 

18 v. 
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It is also shown in [6] that if the stabilizing ramp slope zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M, equals the slope zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM2 of the inductor current during the 
switch off-time, then any disturbance from the equilib- 
rium duty ratio is eliminated in one switching period; the 
value n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= nl corresponding to M, = M2 is nl = ( 1  + 
D ) / (  1 - D )  = 3 for D = 0.5. In the present buck con- 
verter example, n = 3.67 so M, exceeds M2,  and in this 
sense the converter is “over-stabilized. ” However, in the 
boost converter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 2.07 so M, does not exceed M2,  and 
the converter is “understabilized. ” 

The frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, which appears as a pole in all six y 
parameters, is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U S  
U, = - 

nnD’ 
/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,-IC 

LJ 
= (2n)4.34 kHz (buck) \ 2R R x 3.67 X 0.5 

= (2n)7.69 kHz (boost). 
25 

R X 2.07 X 0.5 

(6b) 
In [6], w, is identified as the crossover frequency of the 
loop gain of the minor current loop. This parameter rep- 
resents the only visible evidence of the current feedback 
loop after the feedback effects have been absorbed into 
the y-parameter model of Fig. 3. 

The resistance R is an “operating point parameter” de- 
fined as 

dc output voltage V 
dc output current I 

- -  R =  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(F - - 11.2 0 (boost). 

The operating point parameter affects the values of some 
of the elements in the model, as in any small-signal lin- 
earized model of a nonlinear system. For example, the 
emitter resistance in the Tee-model of a bipolar transistor 
is a function of the dc emitter current. In the present ex- 
ample, if the load on the regulator is a pure resistance RL, 
then R = RL numerically. However, the distinction in 
symbols will be retained as a reminder that R and RL are 
conceptually different; R is a parameter contained in the 
model of the power stage, whereas RL is an external ele- 
ment. The distinction is important when the load contains 
a constant current component and/or becomes complex. 

Finally, K is a “conduction parameter” defined as 

/ 2 x 4 0  
= 1.33 (buck) ( sa )  2~ \ 1.5 x 40 

As discussed in [6], the low-frequency loop gain of the 
current-programmed minor feedback loop is proportional 

- 

39 

to K ,  and K is the same conduction parameter that appears 
in the canonical model for a duty ratio programmed power 
stage in discontinuous conduction mode. Here, it appears 
in the model for a current-programmed power stage in 
continuous conduction mode and must exceed a certain 
critical value Kcfit  if the discontinuous conduction mode 
is to be avoided. 

It is shown in [9] that, for a buck converter Kcrit = D ‘ ,  
and for a boost converter Kcrit = D D t 2 .  In the present ex- 
amples D = 0.5, so Kcrit = 0.5 for the buck and Kcrit = 
0.125 for the boost. From (5 )  and (6), there is a corre- 
sponding minimum value Imin of dc load current: 

(G 0.5 = 3.75 A (buck) ( sa )  

40 0.125 = 0.718 A (boost). (9b) L3TZ 
The corresponding maximum load resistance (again, for 
a pure resistance load) is 

V 
RLmax = Rmax = - 

Imin 

(& = 4 Q  (buck) ( l oa )  

- 78 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACl (boost). ( l ob )  G8 - 

If the operating conditions of the buck converter in Fig. 
1 represent full load power of 150 W at I = 10 A, the 
minimum load power to avoid discontinuous conduction 
is 3.75 A X 15 V = 56 W, or about 38 percent of full 
load power. For the boost converter of Fig. 2, the mini- 
mum load power is 0.718 A x 56 V = 40 W ,  or about 
14 percent of full load power. 

Analysis of the buck and boost regulators of Figs. 1 and 
2 will now be discussed separately, in Sections 111, IV, 
and V, VI respectively. 

111. CURRENT-PROGRAMMED BUCK REGULATOR OPEN- 
LOOP PROPERTIES 

A .  Modijied y-Parameter Model 
The y-parameter expressions of (1) can be put into a 

somewhat more convenient form by elimination of the pa- 
rameter K in favor of the power stage inductance L, by 
(6) and (8): 

KR 
nD’ = UcL. 

For example, y22 can be written 

U Y 2 2  = 1 - * C L  D / n D ’  ( I  + k). (12) 
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The physical interpretation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw,L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2a x 4.34 x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.04 
= 1.09 !J is that it is the reactance of the power stage 
inductance at the current loop gain crossover frequency. 

It follows from (12) that 1 /y22 consists of a resistance 
in series with an inductance. However, in the regulator 
circuit of Fig. 1 ,  1 /y22, which is the output impedance of 
the power stage, is paralleled by C and R L .  As a conse- 
quence the inductive component y22 can be neglected be- 
cause at frequencies where it becomes significant in y22, 
the total parallel impedance is dominated by C. Hence 
(because of the way the power stage is loaded), 1 /y22 = 
w c L / (  1 - D/nD’) = 1.09/0.727 = 1.50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

Replacement of factors in K by w,L, according to (1 l), 
in the other y parameters allows (1)  to be rewritten in the 
following forms: 
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(14)  

Fig. 4 shows the small-signal model of the current-pro- 
grammed buck regulator of Fig. 1 ,  incorporating the mod- 
ifications already discussed. Since the regulator input 
properties seen by the line are not discussed in this paper, 
the input half of the y-parameter model is omitted; only 
the output half is needed to derive the loop gain, output 
impedance, and line-to-output transfer function. For con- 
venience in application of this model, the numerical val- 
ues already obtained are summarized below: 

D = 0.5 Rf = 0.10 !J 

R = R L  = 1.5 !J C = 2700 /AF ’ 

fc = 4.34 kHz w,L = 1.09 Q. (15)  

current- progrommed load 
buck power stage 

A 

- y  v = 21 0 

I 
0 I-- ( no4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

closed - loop 
I 

error amplif ier 

Fig. 4. Small-signal model of circuit of Fig. 1. y-parameter model of Fig. 
2 is modified and simplified for buck converter, and input half is omitted. 
Voltage minor feedback loop around error amplifier is absorbed in, and 
therefore is implicit in, model represented by gain block A , .  Only volt- 
age major feedback loop remains explicit. 

B. Open-Loop Transfer Functions A, ,  A , ,  and Z,  
The switch shown in Fig. 4 is introduced merely to per- 

mit separation between the open-loop and closed-loop 
properties. Three small-signal functions of the open-loop 
loaded power stage are of interest: the control-to-output 
transfer function A, = a/&,, the line-to-output transfer 
function (audio susceptibility) A, = 5 / f i g ,  and the output 
impedance (including the load) Z,. These functions are 
easily written down directly from the model of Fig. 3, and 
evaluated with use of (13)-( 15): 

where 

1 

where 

1 - D/nD’ 
A ,  = 

= 0.21 x 0.75 

= 0.16 + -16 dB 
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I I I I I 1 
L 3n 

Fig. 5. Magnitude versus frequency asymptotes of open-loop loaded power 
stage transfer functions control-to-output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, = D/D,, line-to-output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I D / i j g ,  and output impedance Z,, from model of Fig. 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 
~ 

1 + -  
U P  

om S 

where 

Rom = 1/9 = 0.75 Q + -2.5 dB ref. 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ. 
1 - D/nD '  

(22) 
These three functions are sketched in magnitude-asymp- 
tote form in Fig. 5. 

IV. CURRENT-PROGRAMMED BUCK REGULATOR 
CLOSED-LOOP PROPERTIES 

The model of Fig. 4 contains all the information nec- 
essary for the establishment of the major voltage loop gain 
and the regulator closed-loop output impedance Zof and 
line-to-output transfer function Ad. 

A. Loop Gain T, Phase Margin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcPu,  and Feedback 
Factor 1 + T 

The voltage loop gain T is simply the product of the 
error amplifier gain A I  and the control-to-output transfer 
function A, of the loaded power stage: 

T = AIA,. (23) 

If Al  is a constant AI,, the loop gain is merely a vertical 
scaling of the function A, with its various corner frequen- 
cies. This is the same as saying that the value of AI, de- 
termines not only the midband loop gain Tm as 

Tm = A d c m  (24) 

but also the loop gain crossover frequency f,, = v,,/27r, 

the frequency where the magnitude of T crosses the 0-dB 
axis, as shown in Fig. 6. By the geometry of the graph, 

w,, = Tmwp. (25) 

The value of A I ,  must be chosen so that crossover oc- 
curs below the pole w,, because otherwise the phase mar- 
gin would be too small. Obviously, one wishes to place 
the crossover frequency as high as possible to get the wid- 
est bandwidth over which the benefits of feedback are re- 
alized. 

Where shall the loop gain crossover frequency f,, be 
placed? Let us try puttingf,, at about one-third of the pole 
frequency fc = 3.34 kHz, say f,, = 1.67 kHz. 

of the voltage loop gain 
is 180" minus the sum of the lag contributions from the 
poles at f p  and f,: 

The resulting phase margin 

4.34 

= 180" - (87" + 21") = 72". (26) 

This is an acceptable phase margin, so we can adopt the 
crossover frequency f,, = 1.67 kHz and use (25) to find 
the corresponding midband loop gain as Tm = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf , , / fp = 
1670/79 = 21.3 -+ 26.5 dB. From (24), the required 
value of the error amplifier gain is A I ,  = Tm/ACm = 
21.3/7.5 = 2.84 + 9.1 dB. 

The error amplifier is actually an opamp with local 
feedback to set its overall gain AI  and hence the crossover 
frequency of the regulator major voltage loop. Since only 
9.1 dB of gain is required, most of the available opamp 
gain is wasted. However, the lost gain can be recovered, 
for frequencies sufficiently far below the regulator loop 
crossover frequency, by placing an "inverted zero" wI in 
the error amplifier gain function: 

A I  = Alm(  1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9). 27 

From the circuit in Fig. 1, 

Alm = Ra/Rb  (28 

The zero w1 is open to choice; let us make w1 /27r = f1 = 
11 Hz. Since A,, is already set at 2.84 and Rb = 95.3 K 
is specified, the required values of R, and C, are 

R, = Aim& = 2.84 X 95.3 = 270 k (30) 

c,=-- 1 - 10-3 = 0.053 jtF. (31) 
wlRa 27r X 11 X 270 

The final designed loop gain T is  shown in Fig. 7. The 
inverted zero atfl = 11 Hz contributes a small additional 
phase lag tan-' (11/1670) = 0.4" at the crossover fre- 
quencyf,, = 1.67 kHz, resulting in a negligible reduction 
in the original phase margin r # ~ ~  = 72 " . 

The expression for the final regulator voltage loop gain, 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I 

- 4 0  - 
. Tm A I,,, A,, i 2 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.3 * 26.5dB 

Fig. 6. Placement of loop gain crossover frequency xrc at 4.34 kHz, by 
appropriate choice of midband loop gain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT,,, and hence of error amplifier 
gain A , ,  

by incorporation of (16) and (27) into (23), is 

( 1  +:) 
T = T, 

where 

= 21.3 -+ 26.5 dB. 

Also, the regulator voltage loop crossover frequency is, 
from (18) and (25), 

(35) 

2.84 x lo6 
0.10 X 2700 

= (2a)1.67 kHz. (36) - - 

The above numerical results for T, and wU, of course con- 
firm the values that led to the choice of A , ,  in the first 
place. To complete the summary of analytical and nu- 
merical results, the expressions and numbers for the cor- 
ner frequencies are repeated below: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a,=-- Os - (2n)4.34 kHz. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
anD' 

One of the most important advantages of the adopted 
modeling approach is that the properties of the current- 
programmed power stage are already explicit before the 

regulator major voltage loop is considered. The direct re- 
sult of this approach is that the regulator closed-loop 
properties can be found from the open-loop properties by 
the familiar formulas for single-loop systems. 

In particular, the regulator closed-loop output imped- 
ance Zof and line-to-output transfer functions Aef are given 
in terms of their respective open-loop values Zo and A, by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L O  

l + T  
Z0f = - 

A,  Aef = - 
l + T  

(39) 

where Tis the regulator major voltage loop gain given by 

Only one additional calculation is required, which is to 
find the feedback factor 1 + T from the known T. This 
can be done very easily, to a sufficient degree of accuracy, 
by a semigraphical technique. 

As shown in Fig. 7, 1 + T can be constructed by draw- 
ing the asymptotes for l + T just above those of T for 
frequencies below the crossover f,,. However, beyond 
crossover, Tis much less than unity, so 1 + T = 1 or 0 
dB. All that remains is to identify the corner frequencies 
of 1 + T. The inverted zero fi and the lowest pole zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf p  are 
the same as those in T; the new zero, by the geometry of 
the asymptotes, is ( 1 + T,)& or ( 1 + T,) fVc /Tm.  Hence 
the factored pole-zero expression for 1 + T can be written 
by inspection of the asymptotes as 

(32)-(38). 

1 + T =  ( 1  + T,) 
( 1  +--s-\ 
\ U p /  

(41) 

Note that if (32) for T were substituted into 1 + T and the 
pole-zero factors found algebraically, a cubic equation 
would have to be solved. With ' appropriate approxima- 
tion, the result of (41) would be obtained. 

B. Closed-Loop Transfer Functions Zof and A& for 
Maximum Load 

be found from substitution of (21) and (41) into (39): 
The regulator closed-loop output impedance Zof can now 

I 

1 

( I  +:)(' ' ( 1  

Zof = Rofm 

where 

Rem - Tm Rom 
Rofm = - - -- 1 + T, 1 + T, T, 

21.3 0.10 
22.3 2.84 

= 0.034 Q .  =-- (43 1 
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Fig. 7. Construction of feedback factor 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT from loop gain T,  after in- 
verted zero chosen to be at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, = 11 Hz has been introduced into T, for 
minimum load resistance R, = R = 1.5 Q. . 

I I I I 

loon - 

fp= 79 Hz 

I o n -  

I I *  Tm - f,, =l.67 kHz 
Tm 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20 l*Tm=22.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- 0  I f f -  

I 
O l n  - 

~RR,,=0.75R 

--20 f , = I I H z  

10.034R e -29 .5dB 
ref IQ 

IOHz 100 lkHz 

Fig. 8. Construction of closed-loop output impedance Z,, from its open- 
loop value Z, and feedback factor 1 -t T, according to Z,, = Z o / (  1 + 
T ) ,  for R, = R = 1.5 Q. 

Although the algebra is simple, more insight is gained 
into the above result if the process is conducted graphi- 
cally. In Fig. 8, the magnitude asymptotes for Z, and 1 
+ Tare shown; their difference gives Zo/( 1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT )  = ZOf.  

The same graphical process can be used to find the reg- 
ulator closed-loop line-to-output transfer function. Fig. 9 
shows the magnitude asymptotes of A, and 1 + T from 
(19) and (41); their difference gives A,/( 1 + T )  = Ad. 

Analytically, the result is 

I I I I 

- 2o I*T,= 22.3 - 

I+Tm fVc= 1.67 kHz - 
Tm 

C A Q m = 0 . 1 6 ~ 1 6 d B  I I 

il dB f ,=IIHz 

f,= 4.34 

=0.0070*-43dB 

Fig. 9. Construction of closed-loop line-to-output transfer function A ,  
from its open-loop value A ,  and feedback factor 1 + T,  according to A,, 
= A f / (  1 + T )  for R, = R = 1.5 0. 

where 

T, D( 1 - l/nD’)R -- - 
1 + T,,, A,,wcL 

21.3 0.5 x 0.455 x 0.10 

22.3 2.84 x 1.09 
-- - 

= 0.0070 -+ -43 dB. (45) 

V. CURRENT-PROGRAMMED BOOST REGULATOR OPEN- 
LOOP PROPERTIES 

A. Modijied y-Parameter Model 

The y-parameter expressions of (3) can be put into a 
somewhat more convenient form. For example, y22 can 
be written 

nDr3 
y22 = (; + =)( 1 + :). (46) 

From the definitions of U, and K ,  (6) and (8), 

(47 1 

where 

L, = L/DI2 = 195/0.52 = 780 pH (48) 

is the same “effective inductance” value that appears in 
the canonical model for the boost converter under duty 
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ratio programmed continuous conduction mode [8]. The 
physical interpretation of w,L, = 27r x 7.7 x 0.780 = 
37.7 Q is that it is the reactance of the effective inductance 
at the current loop gain crossover frequency. 

It follows from (46) that 1/y22 consists of two resis- 
tances in parallel, w,L, 11 R, in series with an inductance. 
However, in the regulator circuit of Fig. 1 ,  1 /y22, which 
is the output impedance of the power stage, is paralleled 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC and RL. As a consequence, the inductive component 
of y22 can be neglected because at frequencies where it 
becomes significant in y22, the tatal parallel impedance is 
dominated by C. Hence (because of the way the power 
stage is loaded), 1/y22 = w,L,IIR = 37.7/11.2 = 8.63 
Q.  

Replacement of factors in K by wCL,, according to (47), 
in the other y parameters allows (3) to be rewritten in the 
following forms: 

1 1 
Y12 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-D'--- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S 
1 + -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

WC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW C L  

1 1  
Ylc = - ~ 

Rf l  + s  
* C  

1 - D/nD'  1 

S 
1 + -  

c3 WZg 

1 + -  
WC 

Y21 = - D ' R y  

1 

where 

R ( l  - D/nDr)  
c 3 = 1 +  

WcLe 

11.2( 1 - 0.5/2.07 X 0.5) 

37. 
= 1 +  = 1.15. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(50)  

There are two zeros in the expressions for the y param- 
eters. That in y2c is the same right half-plane (RHP) zero 
that occurs in the canonical model for the boost converter 
under duty ratio programming in continuous conduction 
mode [8], defined as 

wz = R/L, = 11.2 X 103/0.78 = (2a)2.29 kHz. 

(51)  

The other zero is related to the switching frequency U, and 
is defined as 

1.15 x 25 
= 2a = (27r)18.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkHz. (52) 

c3 u s  
Wzg = - 

7rD 7r X 0.5 

Fig. 10 shows the small-signal model of the current- 
programmed boost regulator of Fig. 2 incorporating the 
modifications already discussed. The input half of the 
y-parameter model is again omitted. The numerical values 

inductonce neqliqible 
V 

\ 

closed-loop 
y V '  
21 0 "C 

c, I + S  
W I O  L -- 

D'R i + s  error omplificr 
WC 

Fig. 10. Small-signal model of circuit of Fig. 2. y-parameter model of 
Fig. 3 is modified and simplified for boost converter, and input half is 
omitted. Voltage minor feedback loop around error amplifier is absorbed 
in, and therefore is implicit in, model represented by gain block A , .  Only 

voltage major feedback loop remains explicit. 

already obtained are summarized as 

~3 = 1.15 f, = 7.19 kHz D = 0.5 

Rf = 0.0813 Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, = 2.23 ~ H Z  

f,, = 18.3 ~ H Z  

C = 2000 pF 

R = RL = 11.2 Q. W,L, = 37.7 Q 

(53)  

B. Open-Loop Transfer Functions A, ,  A, ,  and 2, 

The three small-signal functions of the open-loop loaded 
power stage of interest are the control-to-output transfer 
function A, = O/O,, the line-to-output transfer function 
(audiosusceptibility) A,  = 0/6,, and the output imped- 
ance (including the load) 2,. These functions are easily 
written down directly from the model of Fig. 10 and eval- 
uated with the use of (53): 

where 

D ' ( U , L , I I R ~ I R ~ )  0.5(37.71111.21] 11.2) A ,  = - 
Rf 0.0813 

(55) 
0.5 x 4.88 - - = 30.0 + 30 dB 

0.0813 

1 
= (27r) 16.4 Hz 

io3 - - up = 
( w,L,II R I I  RL)C 4.88 x 2 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C3(ac&IIRIIR~) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1.15 x 4.88 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'R 0.5 X 11.2 

A,, = - 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.00 -+ OdB 

1 
zo = Rom 

1 + s / a p  

where 

Ro, = (a,L,lI RI(R,) = 4.88 Q -+ 14 dB ref. 1 Q .  

(59) 

These three functions are sketched in magnitude-asymp- 
tote form in Fig. 11. 

VI. CURRENT-PROGRAMMED BOOST REGULATOR 
CLOSED-LOOP PROPERTIES 

The model of Fig. 10 contains all the information nec- 
essary for the establishment of the major voltage loop 
gain, the regulator closed-loop output impedance Zof , and 
line-to-output transfer function Ad.  

A. Loop Gain T, Phase Margin + M ,  and Feedback 
Factor 1 + T 

The voltage loop gain T is simply the product of the 
error amplifier gain A I  and the control-to-output transfer 
function A, of the loaded power stage: 

T = AIA,. (60) 

If A I  is a constant AI , ,  the loop gain is merely a vertical 
scaling of the function A, with its various comer frequen- 
cies. This is the same as saying that the value of A I ,  de- 
termines not only the midband loop gain T,,, as 

but also the loop gain crossover frequencyf,, = avc/27r, 
the frequency where the magnitude of T crosses the 0-dB 
axis, as shown in Fig. 12. By the geometry of the graph, 

T m  = AImAcm (61) 

a,, = Tmap. (62) 
The value of A I ,  must be chosen so that crossover oc- 

curs below the RHP zero a,, because if it were above a,, 
the phase lag of T would exceed 180" and the regulator 
would be unstable. Obviously, one wishes to place the 
crossover frequency as close to a, as possible to get the 
widest bandwidth over which the benefits of feedback are 
realized. 

Where shall the loop gain crossover frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfur be 
placed? Let us try putting fur at about one-third of the 
RHP zero frequencyf, = 2.29 kHz, say fuc = 750 Hz. 

The resulting phase margin 4M of the voltage loop gain 
is 180" minus the sum of the lag contributions from the 
poles at& and f c ,  arid the RHP zero at& = 2.29 kHz: 

+ tan-' - 
7.69 

750 0.75 + tan-' - 
2.29 

= 180" - (89" + 18" + 6")  = 67". (63) 

A,: 30 3 0 d 0  1 I 1 I 

1011 

Fig. 11. Magnitude versus frequency asymptotes of open-loop loaded 
power stage transfer functions control-to-output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, = D / D , ,  line-to-out- 
put A,  E D / f i s ,  and output impedance Z , ,  from model of Fig. 10. 

I I I I 

- T m = A l m A c m = 4 5  0 *33d0  

~ dB 

--20 

I t  
f,=2 2 3 k H z  

--20 
100 I hHz 

1 I I 

Fig. 12. Placement of loop gain crossover frequency A,< at 750 Hz, by 
appropriate choice of midband loop gain T, and hence of error amplifier 
gain Aim. 

This is an acceptable phase margin, so we can adopt the 
crossover frequencyf,, = 750 Hz and use (62) to find the 
corresponding midband loop gain as T, = A,,/& = 

750/16.4 = 45.8 -+ 33 dB. From (611, the required value 
of the error amplifier gain is A I ,  = T,/A,, = 45.8/30.0 
= 1.53 -+ 4 dB. 

The error amplifier is actually an opamp with local 
feedback to set its overall gain A I ,  and hence the cross- 
over frequency of the regulator major voltage loop. Since 
only 4.1 dB of gain is required, most of the available 
opamp gain is wasted. However, the lost gain can be re- 
covered, for frequencies sufficiently far below the regu- 
lator loop crossover frequency, by placing an "inverted 
zero" a' in the error amplifier gain function: 

AI  = Ai , (  1 + y ) .  
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From the circuit in Fig. 2, 

The zero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwl  is open to choice; let us make w 1  /2n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= f l  = 
9.50 Hz. Since A I ,  is already set at 1.53 and Rb = 47.5 
k is specified, the required values of R, and C, are 

R, = AimRb = 1.53 X 47.5 = 72.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk (67) 

= 0.230 pF. (68) 
1 0 - ~  - 1 

WiR, 
c ,= - - - -  

2~ X 9.50 X 72.7 

The final designed loop gain Tis shown in Fig. 13. The 
inverted zero at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi = 9.50 Hz contributes a small addi- 
tional phase lag tan-' (9.50/750) = 0.7" at the cross- 
over frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,, = 750 Hz, resulting in a negligible 
reduction in the original phase margin +,,, = 67". 

The expression for the final regulator voltage loop gain, 
by incorporation of (54) and (64) into (60), is 

( I  + % ) ( I  -:) 
T = T, (69) 

where 

= 45.8 -P 33 dB. (70) 

Also, the regulator voltage loop crossover frequency is, 
from (56) and (62), 

A1,D' 1.53 x 0.5 x lo6 
W ,  = TmwP = - - - 

RfC 0.0813 X 2000 

= (2n)750 Hz. (71) 

The above numerical results for T, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, of course con- 
firm the values that led to choice of Ai ,  in the first place. 
To complete the summary of analytical and numerical re- 
sults, the expressions and numbers for the comer frequen- 
cies are repeated below: 

a , = - -  - (2n)7.69 kHz 
nnD' 

R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W, = - = (2n)2.29 kHz 

Le 

wa = = (2n)18.3 kHz. 
TD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f vc  = 750Hz 

100 IhHt IO 

Fig. 13. Construction of feedback factor 1 + T from loop gain T ,  after 
inverted zero chosen to be at f, = 9.5 Hz has been introduced into T, 
for minimum load resistance R, = R = 11.2 Q .  

The regulator closed-loop output impedance Zof and 
line-to-output transfer functions Ad are given in terms of 
their respective open-loop values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZo and A,  by 

(76) 
Z O  Z0f = - 

l + T  

(77) 

where Tis the regulator major voltage loop gain given by 

Only one additional calculation is required, which is to 
find the feedback factor 1 + T from the known T. As 
shown in Fig. 13, 1 + T can be constructed by drawing 
the asymptotes for 1 + T just above those of T for fre- 
quencies below the crossoverf,,. However, beyond cross- 
over, T is  much less than unity, so 1 + T = 1 or 0 dB. 
All that remains is to identify the corner frequencies of 1 
+ T. The inverted zero wl and the lowest pole wp are the 
same as those in T; the new zero, by the geometry of the 
asymptotes, is ( 1  + T,)& or ( 1  + T,,,)f,,/T,. Hence the 
factored pole-zero expression for 1 + T can be written by 
inspection of the asymptotes as 

(69)-(75). 

(78) 

Note that if (69) for T were substituted into 1 + T and the 
pole-zero factors found algebraically, a cubic equation 
would have to be solved. With appropriate approxima- 
tion, the result of (78) would be obtained. 

B. Closed-Loop Transfer Functions Zof and Ad for 
(73 ) Maximum Load 

The regulator closed-loop output impedance Zof can now 

(74) 
be found from substitution of (58) and (78) into (76): 

1 

( l  + % ) ( I  ' ( 1  + T,)w,,, 

Zof = Ro, 
(75) 
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where 

45.8 0.0813 
46.8 1.53 x 0.5 

= -  = 0.10 Q. (80) 

Although the algebra is simple, more insight is gained 
into the above result if the process is conducted graphi- 
cally. In Fig. 14, the magnitude asymptotes for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZo and 1 
+ Tare shown; their difference gives Z o / (  1 + T )  = Zof. 

The same graphical process can be used to find the reg- 
ulator closed-loop line-to-output transfer function. Fig. 15 
shows the magnitude asymptotes of A, and 1 + T from 
(57) and (78); their difference gives A , / (  1 + T )  = Ad.  
Analytically, the result is 

where 

T, C3Rf 
1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT, AI,Dt2R 

45.8 1.15 x 0.0813 
46.8 1.53 X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.52 X 11.2 

- 

- -- 

= 0.021 + -33 dB. 

C. Closed-Loop Transfer Functions Zof, Ad for 
Minimum Load 

The value of the design-oriented analysis approach is 
that the simple analytic results, directly in terms of the 
circuit elements, can be used both to select suitable design 
values and to determine the effects of different operating 
conditions. 

In the previous section, such expressions were derived 
for the regulator closed-loop output impedance Zof and 
line-to-output transfer functions Ad in terms of the major 
voltage loop gain T. Numerical results were obtained for 
full-load operating conditions corresponding to RL = R = 
11.2 Q. It is of interest to determine the regulator perfor- 
mance functions at minimum load, defined in Section 
11-B as the load below which discontinuous conduction 
occurs, which corresponds to RL = R = 78 s2. At the same 
time, the relevant analytical results can conveniently be 
gathered together. 

1000 - 

IOf l -  

O l n -  

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.10n 9 - 2 0 4 0  

- 4 0  

Fig. 14. Construction of closed-loop output impedance Z,, from its open- 
loop value Z, and feedback factor 1 + T,  according to Z,, = Z, , / (  1 + 
T ) ,  forR, = R = 11.2 fl. 

I IOHZ I00 IhHZ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIO 1 
Fig. 15. Construction of closed-loop line-to-output transfer function A ,  

from its open-loop value A, and feedback factor 1 + T,  according to Ad 
= A # / (  1 + 7‘) for RL = R = 1 1.2 0. 

Current-Programmed Boost Regulator of Fig. 2- 
Parameters: 

2L 
K = - .  

RTS 

At minimum load, 
2 

K = Kcfit = DDt2 = 0 .5 (0 .5 )  = 0.125 (84) 

and 

R = RL = 78 Q. 
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Hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

KR 0.125 x 78 

nDf3 2.07 x (0 .5 )  
U L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - =  3 = 37.7 n c e  

and 

and 

R ( l  - D / n D ’ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0, Le 

c 3 = l +  = 2.07. 

Loop gain: 

where 

0.5 x 19.2 
0.081 

= 1.53 = 180 -, 45 dB 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Up = 

(UcLe IIRIIRL) 

= (27r)4.14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz 

27r X 25 
a x 2.07 x 0.5 

lo6 - - 
19.2 x 200 

7rnD 

= (27r)7.69 kHz 

R 78 
Le 780 

w = - = - lo6 = ( 2 ~ ) 1 5 . 9  ~ H Z  

= (2a)9.5 Hz. 
103 - 1 

w1=-- RaCa 72.7 x 0.230 

Loop gain crossover frequency: 

A lmD’  - 1.53 x 0.5 x lo6 
U,, = - - 

RfC 0.0813 X 2000 

= (27r)750 Hz. 

Feedback factor: 

1 + T =  (1  + T,) 

( l  + % ) ( l  + ( 1  + Tms T,)wVc ) 

Closed-loop output impedance: 

where 

= 0.11 n. (98) 
180 lo6 -- - 
181 2a  x 750 x 2000 

Closed-loop line-to-output transfer function: 

(I+:) 
A - A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d -  & ( ‘ + ? ) ( l  + ( 1  
(89) 

(99) 

where 

Tm C3Rf Tm c3 1 
A & = - - = - - -  1 + T , A , , D ~ ~ R  1 + T, D ~ R ~ , C  

180 2.07 1 o6 
(90) 

= -  
181 0.5 X 78 27r x 750 x 2000 

2.07 x 25 
Uzg = - c34 = 27r = (2a)32.9 kHz. 

7rD 7r X 0.5 

VII. DISCUSSION OF THE MODEL AND THE RESULTS 
(92) 

(93 ) Programming 
A. Remarks on the Effectiveness of Current 

In accordance with the preferred approach outlined in 
Section 11-A the regulator voltage feedback loop is ex- 
plicitly exposed, while the current feedback loop has been 
absorbed into the model representing the overall proper- 
ties of the current-programmed power stage. One of the 
advantages of this form is that the properties of the cur- 
rent-programmed power stage are immediately visible, 
which is why the three functions A,, A,, and Z, could be 
written directly by inspection of the model. 

Also, it can be seen how well the current programming 
does its intended job of making the output current “con- 
stant.” What this objective really means is that the output 
current should be represented in the model by a current 
generator proportional to the control voltage 0,. It is seen 
that such a current generator (the yZc generator) is indeed 
present, but that the output current is not equal to it be- 
cause the output resistance is not infinite. 

(94) 

(95) 

(96) 
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For the buck converter, the output resistance is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw , L / (  1 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD / n D ‘ )  and, as shown in [6], the denominator only 
goes to zero in the limit of instability when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn + D / D ’ .  
Therefore, the output resistance can only go to infinity if 
either the switching frequency or the inductance goes to 
infinity, a limit that corresponds to infinite loop gain of 
the current minor feedback loop [6]. The actual value of 
the output resistance w , L / (  1 - D / n D ‘ )  in the present 
example is 1.5 Q, and not at all large, consistent with the 
point made in [6] that the low-frequency current loop gain 
is not large. 

For the boost converter, the output resistance consists 
of two resistances in parallel, w,L, and R. The resistance 
w,L, goes to infinity only if either the switching frequency 
or the inductance goes to infinity, a limit that corresponds 
to infinite loop gain of the current minor feedback loop 
[6]. The actual value in the present example w,L, = 37.7 
Q is not very large, also consistent with [6 ] .  However, 
even if there were infinite current loop gain, so that w,L, 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, the output of the current-programmed power stage 
would still not be an ideal current source because of the 
remaining resistance R across the output. This reflects the 
fact, also pointed out in [6], that the current being “pro- 
grammed” in the boost converter is not the output current 
but the input current (note that in (49) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy1 I does go to zero, 
although yz2 does not, as w,L, + 00). 

Finally, the current generator y2,  fi, itself in Figs. 4 and 
10 fails to “program” its current at higher frequencies, 
because of the pole w, and, in the boost converter, also 
because of the RHP zero w,. As already mentioned, this 
pole is the crossover frequency of the current loop gain, 
that is, the frequency above which the current-program- 
ming ceases to function at all. Consequently, the control- 
to-output transfer function A, given by (16) and (54) con- 
tains not only the dominant pole wp (commonly thought 
to be the “only comer frequency” in this function), but 
also a second pole zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, as shown graphically in Fig. 5 for 
the buck converter, and the second pole and RHP zero U, 

for the boost, shown in Fig. 11. 
Were it not for these “shortcomings” of the current 

feedback loop, the yZc&, current generator in Fig. 4 for 
the buck would be 1 / R f ,  and this would also be the output 
current, so that the output current would ideally be pro- 
grammed to be equal to ( 1 / R f )  &. In Fig. 10 for the boost, 
the yZc 8, current generator would be D / R f ,  so that the 
output current would be programmed to be equal to 
( D ’ / R f )  6,. The D’ occurs because it is actually the input 
current being programmed, which is D’ times the output 
current. 

Thus R f ,  the effective current sense resistance, sets the 
control voltage to output current gain, and therefore ap- 
pears as an explicit (reciprocal) factor in the control volt- 
age to output voltage transfer function given by (16) and 
(17) for the buck, and (54) and (55) for the boost. This 
transfer function implicitly applies to the power stage with 
the minor current-programming feedback loop closed, just 
as the gain block labeled “error amplifier” in Figs. 1 and 

2 applies to the error amplifier with its minor voltage 
feedback loop closed. 

In this way, the various feedback loops are accounted 
for in an orderly fashion, and in the models of Figs. 4 and 
10, only the regulator major voltage feedback loop re- 
mains to be considered. This is done in the familiar man- 
ner used for conventional “single-loop” regulators, the 
only difference being the incorporation of a different ca- 
nonical model for the power stage. 

B. Sign@cance and Interpretation of the Design- 
Oriented Analysis 

Analysis is only one of the tools used in design, and 
analysis is only useful if its results can be used in reverse 
to select element values to achieve certain performance 
results, namely, to meet the specifications. 

The interpretation of the analytic results obtained 
above, discussed in this section, is indispensable if full 
value is to be obtained from the analysis. This is, after 
all, the whole purpose of the “design-oriented analysis” 
approach. 

The most important aspects of the analytic results are 
the loop gain crossover frequency and the midband (max- 
imum) values of the closed-loop output impedance and 
line-to-output transfer function, and how they vary from 
minimum to maximum load resistance and from minimum 
to maximum line voltage. The load resistance RL enters 
the equations directly, and also indirectly through the op- 
erating point parameter R,  which for a purely resistive 
load is numerically equal to the load resistance RL. The 
line voltage enters the equations through the duty ratio D 
needed to maintain the regulated output voltage V = 15 
V. 

Although the midband loop gain T, of the buck regu- 
lator, by (33), varies quite strongly with both D and RL, 
the crossover frequency w, = A,,,, /RfC, by (351, is in- 
dependent of both line and load. This is because the dom- 
inant pole wp, (37), varies inversely with T, as the same 
function of D and RL through the common factor [ w,L / (  1 
- D / n D f ) ]  11 RL. It is, of course, desirable to have a 
crossover frequency that changes little, if at all, with op- 
erating conditions. Similar remarks apply to the boost 
regulator, except that the D dependence is absent. 

On the other hand, the midband loop gain T, itself does 
not have any particular significance because it is explicit 
only over the narrow frequency range between the in- 
verted zero wl and the dominant pole wp. The final pole 
w, in the loop gain is also independent of load but does 
depend on line voltage. In the boost regulator, at the min- 
imum load condition of Fig. 16, T,,, does not even appear 
explicitly because the (load-dependent) pole wp has 
dropped below the (fixed) inverted zero w 1  . The RHP zero 
w, increases in proportion to the load resistance, by (93). 

In the boost regulator, although the loop gain crossover 
frequency is independent of load, the phase margin 
changes because two of the four corner frequencies change 
with load. At maximum load resistance (minimum load 
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I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1 I 1 

I+Tm 

Tm 
- f,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA750 HZ 

\ 
f, = 7.69 k Hz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-20 

d B  

fI=15.9kHz - -40  

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI00 I k H z  10 
1 1 I I 

Fig. 16. Loop gain T and feedback factor 1 + T for maximum load resis- 
tance R, = R = 78 Q .  Compared to minimum load resistance case of 
Fig. 13 dominant polef, has moved below inverted zerofl. and RHP 
zerof: has moved above current loop-gain crossover frequency fc. 

current), the phase margin is 

9.5 750 
tan-' - + tan-' - ( 750 4.14 

4M = 180" - 

+ tan-' - 
7.69 

0.75 + tan-' - 
15.9 

= 180" - (0.7" + 90" + 3" + 6") = 80". 

(102) 

Interestingly, not only does the midband loop gain T, in- 
crease with load resistance, but so does the phase margin; 
at minimum load resistance the phase margin is 67", (63), 
and the (fixed) contributions of the inverted zero w1 from 
the error amplifier and of the current loop-gain crossover 
frequency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, are negligible at both extremes of load. The 
increase in 4M at higher load resistance essentially results 
from the movement of the power stage RHP zero w, fur- 
ther beyond the crossover frequency U,,. 

In both regulators, the feedback factor 1 + Tessentially 
follows T until it levels out at unity at the zero ( 1  + 
Tm)wvC/T,, by (41) and (96). Even at maximum load re- 
sistance, the midband loop gain is sufficiently high that 
( 1 + T,)/T, = 1 and so 1 + T levels out at essentially 
the crossover frequency f,,. 

The closed-loop output impedance Zof is its open-loop 
value divided by the feedback factor, which results in (42) 
and (79). Since the loop gain goes away at the crossover 
frequency, the closed-loop output impedance is essen- 
tially equal to its open-loop value beyond U,,; since its 
open-loop value is dominated by the load capacitance C 
the midband (maximum) closed-loop value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARofm is equal 
to the load capacitance reactance at the frequency ( 1 + 
T,,,) w,,/T,, as seen from Eqs. (43) and (80). The closed- 

loop output impedance drops below Rofm at decreasing fre- 
quencies below w1 because the error amplifier gain in- 
creases, and so the loop gain increases faster than the ca- 
pacitance reactance. 

The most significant consequence of these points is that 
the closed-loop output impedance Zof is independent of 
load RL (and of the operating point parameter R ) ,  to the 
extent that (1  + T,)/T,,, = 1. 

Very similar remarks may be made concerning the 
closed-loop line-to-output transfer function Ad of (44) and 
(81), which is also equal to its open-loop value divided 
by the feedback factor. The midband (maximum) closed- 
loop value Agfm is equal to its open-loop value at the fre- 
quency ( 1  + Tm)wvc/T,, as seen from (45) and (82). For 
the buck regulator, as in the case of the output impedance, 
this maximum value does not depend on the operating 
point parameter R. For the boost regulator, unlike in the 
case of the output impedance, however, this maximum 
value does depend on the operating point parameter R, 
both explicitly by (82), and implicitly through c3 by (88). 
The closed-loop line-to-output transfer function Ad is 
smaller at maximum than at minimum load resistance. 

Some further points can be made regarding the design 
choices. The central importance of the loop gain cross- 
over frequency has been emphasized: it determines the 
midband value of the closed-loop output impedance and 
of the line-to-output transfer function, and the pole above 
which they fall off. Clearly, it is desirable to have as high 
a crossover frequency fUc as possible. In the buck regu- 
lator, the maximum crossover frequency is limited by its 
encroachment on the second pole w, of the power stage 
and consequent reduction of phase margin. In the boost 
regulator, the crossover frequency is limited by its en- 
croachment on the RHP zero w, of the power stage, with 
consequent reduction of phase margin. Because w, in- 
creases with load resistance, the worst-case in this respect 
occurs at minimum load resistance, for which the design 
choice U,, = w,/3 was made, and which directly sets the 
required midband gain AI, of the error amplifier. 

The other frequency of salient importance is the error 
amplifier inverted zero at f l .  It is desirable to have f l  as 
high as possible to make as narrow as possible the fre- 
quency over which the closed-loop output impedance and 
line-to-output transfer function have their maximum val- 
ues (Figs. 8, 9, 14, 15, 17, and 18). The limiting factor 
is again phase margin; a higherf, reduces 4,,,. The design 
choices of AI, and fi are implemented by the appropriate 
values of R, and CO in the error amplifier circuit of Figs. 
1 and 2, as given by (30), (31) and (67), (68). 

The consequence of too low a phase margin, whether 
because of proximity of either the second pole w, or the 
inverted zerof' to, the crossover frequency f i ,c, is that both 
the closed-loop output impedance and line-to-output 
transfer functions develop a resonant peak above their 
midband values. In the extreme, of course, instability re- 
sults. 

Consideration has been given here mainly to the effects 
of load resistance upon the regulator performance func- 
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Fig. 17. As Fig. 14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbut for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, = R = 78 h2. 
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Fig. 18. As Fig. 15 but forR, = R = 78 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

tions. However, all the information relevant to the cur- 
rent-programmed buck regulator of Fig. l is contained in 
the model of Fig. 4. A complete design should of course 
also take into account a range of line voltages V,, which 
would be accounted for in the model by a corresponding 
range of duty ratio D. 

Other choices of stabilizing ramp slope M,, represented 
through the parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn of (3, could also be considered. 
It has already been mentioned in Section II-B that the buck 
power stage is overstabilized in the sense that M, exceeds 
M2,  the declining inductance current slope during the 
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power switch off-time. The power stage is even more 
overstabilized in another sense, related to the line-to-out- 
put transfer function A,. 

As seen from Fig. 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20), the line-to-output transfer 
function A, contains the factor (1 - 1 /nD') (from the 
y21 element of the y parameter model of the current-pro- 
grammed power stage). This factor is zero if nD' = 1 .  
From ( 5 ) ,  this occurs if the stabilizing ramp slope is cho- 
sen to be M, = M,, such that 

In the example regulator, this corresponds to a voltage 
stabilizing ramp amplitude Vp = 0.76 V, rather than the 
original value Vp = 2.0 V. Moreover, this optimum value 
is independent of operating point for a given regulated 
output voltage. 

Almost all the numbers in the example circuits of Figs. 
1 and 2 are the same as those used by Schoneman and 
Mitchell [7], who presented experimental measurements 
of the closed-loop output impedance and line-to-output 
transfer function to verify predictions made by an entirely 
different modeling approach. 

The only regulator design parameter in this paper cho- 
sen differently from that of Schoneman and Mitchell is the 
error amplifier midband gain A , ,  = R, /Rb,  which is here 
set at A,, = 2.84 with a required resistance R, = 270 k, 
for the buck regulator, and A,, = 1.53 with R, = 72.7 k 
for the boost. The value of C, here is different from that 
of Schoneman and Mitchell only to maintain the same 
value of the inverted zero fl = 1 1  Hz for the buck and f l  
= 9.5 Hz for the boost. 

Although the regulator properties and transfer functions 
derived in this paper have not been directly verified ex- 
perimentally by the author, they agree completely with 
the experimental measurements presented by Schoneman 
and Mitchell when their values A , ,  = 78.7/95.3 = 0.83 
for the buck and AI, = 12.4/47.5 = 0.26 for the boost 
are employed. This may be taken to be adequate proof of 
the validity of the canonical models for the current-pro- 
grammed power stages of Figs. 4 and 10. 

There is actually one other difference from the model 
of Schoneman and Mitchell. In the circuit of Figs. 1 and 
2, the resistance 0.012 Q in series with the capacitance C 
gives a zero at w2 = (21r)6.7 kHz for the buck and w2 = 
(21r)5.0 kHz for the boost regulator, which has been ig- 
nored throughout this paper to eliminate the correspond- 
ing factor from numerous equations. It could easily be 
replaced, and would appear as a factor ( 1 + s / w 2 )  in the 
numerators of -the expressions for the loop gain and the 
open-loop and closed-loop output impedance and line-to- 
output transfer functions. 

Both the modeling approach employed in this paper and 
that of Schoneman and Mitchell are based on state-space 
averaging method for switched-mode converters [8]. This 
means that results at frequencies approaching the switch- 
ing frequencyf, = 25 kHz are not reliable. 
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VIII. CONCLUSION 

Current-programming of switching power stages is be- 
coming widely adopted. However, application of more 
recently presented equivalent circuit models has not been 
fully developed. This paper discusses the use of a partic- 
ular model for the power stage in the analysis and design 
of current-programmed buck and boost regulators. 

Since current-programming introduces a minor feed- 
back loop around the power stage, which is inside the reg- 
ulator major voltage loop, a choice must be made at the 
outset as to which loop or combination of loops are to be 
adopted for analysis purposes. The merits of alternative 
choices are discussed in Section 11, and additional com- 
ments are offered in [lo]. 

The approach chosen is that in which the current-pro- 
gramming minor loop is absorbed into an equivalent cir- 
cuit (canonical model) that represents the properties of the 
current-programmed power stage as a whole. The benefit 
gained is that the degree to which the current-program- 
ming is effective can immediately be seen explicitly from 
this model, which then becomes one transfer block in the 
model of the regulator major voltage feedback loop. From 
there, the familiar methods for single-loop feedback sys- 
tems can be employed. The simplicity of this approach is 
of significant value in the method of design-oriented anal- 
ysis, in which the analytic results (which are not “an- 
swers” in themselves) can be used in reverse to make de- 
sign choices and tradeoffs. 

This procedure is pursued in the following sections, ap- 
plied for illustration to a 150-W current-programmed buck 
regulator and a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA280-W boost regulator switched at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25 kHz. 

In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI11 the y-parameter canonical model for a 
current-programmed power stage is modified and simpli- 
fied for specific application to the example buck converter 
and immediately leads to simple factored pole-zero 
expressions for the control-to-output and line-to-output 
(audiosusceptibility) transfer functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,  and A,, and for 
the power-stage output impedance Z,. 

These open-loop functions are used in Section IV to 
determine the regulator (single-)loop gain T and, by a 
simple semigraphical technique, the feedback factor 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 
T.  The feedback factor in turn is used to find the regulator 
closed-loop properties of Zof and Ad that correspond to the 
converter open-loop values, by Zof = Zo/ (  1 + T )  and 

In Sections V and VI corresponding procedures are fol- 
lowed for the example boost regulator. 

These steps represent the essence of the design-oriented 
analysis approach, in which the analytic results, which 
are to match the specifications, are in simple forms closely 
related to the original elements in the system. The signif- 
icance and interpretation of the design-oriented analysis 
approach as applied to the example regulator are dis- 
cussed at some length in Section VII. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Agfl (1 + T I .  
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