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Modeling DC Power-Bus Structures with Vertical
Discontinuities Using a Circuit Extraction Approach

Based on a Mixed-Potential Integral Equation
Formulation

Jun Fan, Member, IEEE, Hao Shi, Member, IEEE, Antonio Orlandi, Senior Member, IEEE,
James L. Knighten, Senior Member, IEEE, and James L. Drewniak, Senior Member, IEEE

Abstract—The dc power-bus is a critical aspect in high-speed
digital circuit designs. A circuit extraction approach based on a
mixed-potential integral equation is presented herein to model ar-
bitrary multilayer power-bus structures with vertical discontinu-
ities that include decoupling capacitor interconnects. Green’s func-
tions in a stratified medium are used and the problem is formu-
lated using a mixed-potential integral equation approach. The final
matrix equation is not solved, rather, an equivalent circuit model
is extracted from the first-principles formulation. Agreement be-
tween modeling and measurements is good, and the utility of the
approach is demonstrated for dc power-bus design.

Index Terms—Circuit extraction, decoupling, mixed-potential
integral equation, power-bus design, via modeling.

I. INTRODUCTION

A DC POWER structure in a multilayer printed circuit board
(PCB) that employs two or more planes as dc power and

ground is common in high-speed digital design. Simultaneous
switching noise, which can lead to faulty switching, also re-
sults in high-frequency noise propagating on the power/ground
plane that can cause electromagnetic interference (EMI) prob-
lems [1], [2]. Surface-mount technology (SMT) decoupling ca-
pacitors are often placed in proximity to high-speed switching
devices to mitigate simultaneous switching noise, and reduce
the RF noise propagating on the power planes. This method is
very effective in many high-speed digital designs [2]–[4]; how-
ever, no proven, methodical design guidelines exist for SMT de-
coupling in dc power bus design. Current practices use a com-
bination of hueristic design guidelines and full-wave modeling
to guide SMT capacitor placement and ascertain the effective-
ness over frequency. Ultimately, though, achieving a design that
meets signal integrity (SI) and EMI requirements is still largely a
trial-and-error process. As clock speeds and edge rates increase,
meeting requirements in this fashion becomes more difficult and
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less practical. Further, as design densities increase, flexibility
for EMI retrofits late in the design cycle is severely reduced.
Guidelines for developing a dc power bus design, as well as eval-
uating the design are needed. Desirable power bus design guide-
lines should address several basic issues. These issues include
the selection of dielectric material and the interplane capaci-
tance. The total value of SMT decoupling capacitors needed to
sufficiently reduce high frequency noise on power planes for the
specified active components must be determined. Also, the indi-
vidual SMT decoupling capacitor value(s) and package(s) must
be selected. Further, the SMT decoupling capacitor location rel-
ative to specific ICs must be determined. Finally, the printed
circuit board layer stackup must be determined, and trade-offs
between closely spaced power and ground layers to increase in-
terplane capacitance, and widely spaced planes to accommo-
date intervening layers and shielding of high-speed signals must
be weighed. Hardware trial-and-error can provide insight for a
specific design, albeit at development cost and schedule penal-
ties. A general power-bus modeling approach is a powerful de-
sign tool that can be integrated into the design process to pro-
vide insight with more flexibility than possible with hardware
trial-and-error.

The simplest model for a power-bus is a lumped capacitance,
since the two planes behave like a parallel-plate capacitor at low
frequencies. All SMT decoupling capacitors are then modeled
as lumped series RLC circuits, in parallel with the power-bus
interplane capacitance, whereand are parasitic parameters
associated with the interconnects and the package [5], [6]. This
model is appropriate when the frequency is below board reso-
nance frequencies, which are determined by board dimensions,
(typically, several hundred megahertz). Other models, such as a
wire-antenna [7], a radial transmission line or rectangular cavity
[8]–[11], can partially recover the power-bus distributed be-
havior neglected by the lumped element modeling of the par-
allel planes. Other numerical electromagnetic techniques such
as FDTD [12] and FEM [13] can be applied to dc power bus
design issues, however, device models are not easily accom-
modated in these approaches. Another class of modeling ap-
proaches areequivalent-circuit models, by which the system
behavior may be modeled in terms of a collection of equiva-
lent circuit elements. An advantage of this approach is that it
can easily incorporate well-developed SPICE source, load, and

1521–3323/01$10.00 ©2001 IEEE
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Fig. 1. Power-bus structure with vertical discontinuities.

transmission line models, and it is reusable for multiple sim-
ulations in pursuing “what-if” scenarios. Developed circuit ex-
traction techniques include the partial element equivalent circuit
(PEEC) method [14]–[16], the transmission line matrix (TLM)
method [17], and other transmission-line type approaches [18],
[19].

The method proposed in this paper, denoted CEMPIE, is a
Circuit Extraction approach based on aMixed-PotentialIntegral
Equation [20]. CEMPIE is an extension of the PEEC method
to general multilayer dielectric media. Dielectrics can be taken
into account in PEEC [15], where finite dielectrics can be treated
in a volume-integral formulation. CEMPIE handles infinite di-
electric layers. It employs Green’s functions for a multi-lay-
ered medium; thus, the difficulties and complexity of a volume
integral equation formulation that results from an inhomoge-
neous medium can be transfered to the calculation of Green’s
functions. Although these Green’s functions are tedious to for-
mulate, their calculation is relatively fast. A triangular mesh is
adopted so that typical complex contours encountered in PCB
design can be modeled. All conductors are assumed of zero
thickness, and skin effect loss is neglected in this paper, though
skin effect and dielectric losses can be included [21]. One result
is provided that includes dielectric losses.

SMT decoupling capacitors added to the PCB to mitigate
simultaneous switching noise is an integral part of many dc
power-bus designs. These capacitors are connected to the power
or ground layer through short traces and vias (interconnects).
The parasitic inductance associated with these interconnects
limits the SMT capacitor’s performance with increasing fre-
quency. In addition, the mutual inductive coupling between two
adjacent vias,e.g.,the IC and an SMT capacitor, greatly affects
the decoupling behavior [22]. Characterizing these vertical
discontinuities, in combination with the planar power-bus
structure, is necessary for a better understanding of the physics,
as well as developing engineering design methodologies. A
lumped circuit model for vertical discontinuities, derived from
measurements [23], can be incorporated into the equivalent
circuit model of a planar power-bus geometry. However, some
compensation must be considered to ensure the correctness of
the modeling [24]. This paper presents an integral equation
formulation, including vertical discontinuities of the SMT via
interconnects to avoid such hueristic modeling approaches.
A circuit model is extracted that includes all interactions.
The mixed-potential integral equation (MPIE) formulation
is detailed in Section II, and the circuit extraction procedure

presented in Section III. Calculation of the Green’s functions
are outlined in Section IV, and modeling and measurement
results are compared in Section V.

II. MPIE FORMULATION

The CEMPIE approach is based on an MPIE formulation,
from which an equivalent circuit is extracted instead of solving
the matrix equation. Similar to the formulation of classic
scattering problems, an incident electric field is assumed.
Then, surface current densities and surface charge den-
sities are induced on the conducting planes of concern
(power planes), and on the surfaces of vertical discontinuities
as a result of the incident field. Ground planes and dielectric
layers are assumed to be infinite in the modeling, and are
incorporated into the Green’s functions. When the boundary
conditions on the remaining conducting surfaces are enforced,
an electric field integral equation results

(1)

where
dyadic Green’s function for the vector magnetic
potential;
induced scalar electric potential;
horizontal planes of concern;
vertical surfaces of vias and/or ports, as shown in
Fig. 1.

The incident electric field is assumed to be zero in (1),
since an equivalent circuit is extracted from this equation. Thus,
excitations can be included in circuit simulators as impressed
current sources, which are more easily handled than the incident
electric field.

Since triangular patches are more amenable than orthogonal
patches in dealing with arbitarily shaped structures, they are
chosen to discretize the horizontal planes of concern. However,
rectangular patches are used on the vertical surfaces, because, on
these vertical surfaces, the axial surface currents are dominant
(the height of vias and ports of interest is relatively small). The
current vector basis functions are anchored by the interior edges
of all triangular surface patches [25]. As illustrated in Fig. 2(a),
the th interior edge has a length of, which uniquely defines
two adjacent triangles and . Assuming the areas of these
two triangles are and , and the corresponding free ver-
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Fig. 2. Basis functions for a triangular or a rectangular mesh.

tices are and , then

if ,

if ,

otherwise

if ,

if ,

otherwise

(2)

where
basis function;

superscript basis function is defined for the horizontal
triangular cells;

;
;

;
.

Since the horizontal components of the surface current densi-
ties on the surfaces of vertical discontinuities are assumed to be
neglegible, which is the case within the frequency band of in-
terest, the corresponding current basis functions associated with
vertical rectangular cells are chosen to have the form of one-di-
mensional linear functions, and associated only with horizontal
edges of rectangles. As shown in Fig. 2(b),is the length of
the th horizontal edge, which uniquely defines two adjacent
rectangles and with areas of and , respectively.
Then the current basis function associated with this edge is de-
fined as

if ,

if ,

otherwise

(3)

Fig. 3. Geometry for intersection edges between triangular and rectangular
cells.

where the superscript indicates that the basis function is de-
fined for the vertical rectangular cells.

For an intersection edge between the horizontal and vertical
cells, a triangle and a rectangle are uniquely defined, instead of
two triangles or two rectangles. In this case, twopseudoedges
are assumed for every intersection edge, one belongs to the ad-
jacent triangle, and another belongs to the adjacent rectangle, as
shown in Fig. 3. Then, two current densities, one horizontal cur-
rent density for the triangle, and one vertical current density for
the rectangle, are defined and associated with each pseudo edge.
These two current densities have the similar formats as in (2) and
(3), although they both have only one component rather than two.
This treatment of intersections requires an extra step to enforce
current continuity after the moment matrix has been filled.

The current basis functions chosen have several important
properties. The current component normal to the boundary of
the arbitrary-shaped power plane is zero by definition; hence,
no line charge exists along the planar boundary. Then, the cur-
rent component normal to the vertical edges of the rectangular
cells is also zero,i.e.,no line charge exists along these vertical
edges. Furthermore, the current component normal to the edge
of any inner triangle is unity everywhere on the edge, which en-
sures that there is no line charge along this edge. Similarly, the
current component normal to any horizontal edge of the rectan-
gular cells is also unity everywhere on the edge. This ensures
there is no line charge along the inner horizontal edges of rect-
angular cells. Finally, it can be shown that the surface charge
densities are constant over each cell by taking the surface diver-
gence of these current basis functions.

The induced surface current densities can be expanded using
the chosen current basis functions as

(4)
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where
number of all inner edges of the triangular mesh, plus
the number of the intersection edges between the tri-
angular and retangular cells;
number of all horizontal edges of the rectangular mesh;
unknown current associated with theth edge.

The dyadic Green’s function in (1) has four components
in a stratified medium [26],

(5)

where
, induced -directed vector potentials due to an

-oriented or a -oriented dipole;
induced -directed vector potential due to an

-oriented dipole;
induced -directed vector potential due to a
-directed dipole.

Issues on Green’s functions will be further discussed in Sec-
tion IV. Then, (1) can be decoupled into two equations, when
the dyadic Green’s function is expanded as in (5), as

if

if

(6)

where , and, .
Equation (6) is then discretized. The surface current densities
are expanded using the current basis functions as in (4), and (6)
is tested using the functions and that take the same forms
as basis functions defined in (2) and (3). This testing procedure
ensures that the inner product reactions on the left-hand side
of (6) lead to a symmetric impedance matrix [27], [28]. The
moment equation is then expressed as

(7)

where and . Notice that is not
a complete reaction between a source and field, rather, it is only
a part of it. Therefore, it is not in general equal to .

Based on an assumption that the scalar potential in each cell is
constant [29], it can be shown that

(8)

where is the unknown cell scalar electric potential, which is
constant within a cell as assumed. Substituting (8) into (7) re-
sults in the matrix equation

(9)

where

(10)

The positive and negative signs are for positive and negative
cells, respectively. is the connectivity matrix between
edge-wise quantities and cell-wise quantities, and its elements
are determined by

if cell is edge 's positive side;
if cell is edge 's negative side;
otherwise.

(11)

It is important to note here that while the matrix (7) must have a
symmetric impedance matrix, separating the equation as in (9)
leads to component matrices that by themselves are not sym-
metric, as is apparent in thematrix. This asymmetry must be
addressed in the circuit extraction process in order to ensure cir-
cuit reciprocity.

In this MPIE formulation, some quantities are edge based
such as and , since current basis functions are defined as
associated with mesh edges. Others are cell based such as
and , because they are assumed constant over each cell. In
corresponding circuit notations, an edge is defined as a circuit
branch and a cell as a circuit node. Therefore, interpreted in



FAN et al.: MODELING DC POWER-BUS STRUCTURES WITH VERTICAL DISCONTINUITIES 147

circuit terms, the above equation is exactly a form of the Kir-
choff’s voltage law (KVL), i.e., the sum of the voltage drops
in a closed loop is zero. The coefficient before the ma-
trix indicates that the matrix represents the inductive behavior of
the network. Therefore, it is denoted thebranchwise inductance
matrix herein. This inductance matrix is asymmetric with the
right-upper submatrix equal to zero, which is the consequence

of the asymmetry in the dyadic Green’s function for the
vector potential in a stratified medium. Sommerfeld pointed out
that two components of vector potential were required to satisfy
the boundary conditions at dielectric interfaces for a horizontal
electric dipole [30]. Traditionally [31], for an- or -directed
electric dipole, the vector potential takes the form

(12)

where represents or . However, for a -directed electric
dipole, the corresponding vector potential only has the-direc-

tional component. For this reason, in the form of given in
(5), there are only and terms, and no and
terms exist. Any entry in the matrix, as discussed before, is
only a part of the source-field reaction. Therefore, the asym-
metry of the matrix does not conflict with the reciprocity
theorem. However, it does introduce some difficulties when ex-
tracting an equivalent circuit; hence, restoration of symmetry is
necessary, and will be discussed later.

On the other hand,nodal currentscan be defined as total cur-
rents flowing out of the corresponding mesh cells. This means
that

(13)

where is the nodal current of cell; and and are the
numbers of triangular and rectangular cells, respectively. The
continuity equation provides the relationship between the sur-
face charge densities and the surface current densities as

(14)

where and are the horizontal- and vertical-impressed cur-
rent densities; and as defined previously,and are the hor-
izontal- and vertical-induced current densities, respectively. As
discussed before, excitations are treated as impressed current
sources in circuit simulators. The inclusion of the impressed cur-
rent densities in (14) provides the ability to do so. The continuity
equation can also be described as

(15)

where , , and are the charge, the induced current, and
the impressed current associated with cell, respectively. The

induced nodal currents are related to the induced branch-wise
currents by the connectivity matrix as

(16)

As mentioned before, the surface charge density is constant
over each cell (a property of the current basis functions). Thus,
the charge density can be expressed using pulse basis functions
as

where

in cell
elsewhere

is a pulse basis function, and is the area of Cell . Then, the
surface electric potential is related to the surface charge density
by the scalar electric potential Green’s functions as

(17)

Equation (17) can be expressed in a matrix-equation notation as

(18)

where

(19)

From circuit theory, charge stored in a capacitor is the product of
the voltage drop across the capacitor and its capacitance. Then
the matrix is theinverse capacitance matrix. It is cell-wise
since and are both cell based. Then, using (9), (15), (16) and
(18), a discretized form of a mixed-potential integral equation
results as

(20)
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where

(21)

This equation has a standard form of modified nodal analysis
that is utilized in many circuit simulators [32]. Thematrix is
asymmetric, as discussed before. Thematrix is also asym-
metric, as shown in (19). Two different Green’s functions
and are used in the previous derivation. They represent the
scalar-potential Green’s functions for the point charge associ-
ated with an - and a -directed electric dipole. In a multilayer
medium, the scalar potentials of point charges that are associ-
ated with a horizontal electric dipole (HED) and a vertical elec-
tric dipole (VED) are different [33]. Therefore, in general, the
scalar-potential Green’s function for the point charge that is as-
sociated with an arbitrarily oriented dipole doesn’t exist in a
stratified medium. However, in power bus structures, the surface
currents are either horizontal or vertical, since the currents on
the surfaces of vertical discontinuities are all assumed to be-di-
rectional. So two different scalar-potential Green’s functions,

and , are specified and

(22)

where is the scalar-potential Green’s function for the point
charge associated with a-oriented electric dipole, and is the
same as .

The currents at the intersection edges between vertical dis-
continuities and power plane must be continuous. In the pre-
vious formulations, two current densities are specified for every
intersection edge, thus two unknown branch currents associated
with one intersection edge are used in (20). To enforce current
continuity, let these two unknowns be equal for every intersec-
tion edge. Then, the matrix equation becomes

(23)

where , , and are modified matrices or vectors, after the
current continuity procedure is applied.

III. CIRCUIT EXTRACTION

There are two ways to extract an equivalent circuit model
from (23), based on either loop currents or node potentials. If
the equivalent circuit is extracted based on loop currents the
mutual coupling terms, which may be in the forms of mutual
inductances and current-controlled sources, which are hard to
simulate in SPICE, will result. Therefore, the circuit extraction

used herein is based on node potentials. The extracted circuit in-
cludes and elements only. A pure relationship between the
node potentials and the impressed node currents can be derived
from (23), by back-substituting for the unknownvector, as

(24)

where the matrix is denoted as thenodal admittance matrix
of the system, and

(25)

As discussed before, the matricesand are asymmetric, and
is also asymmetric. However, the complete field admittance

matrix is symmetric, as the reciprocity theorem requires. Ex-
citation can be specified in the right-handvector, and the cor-
responding node potentials can be obtained from (24).

Instead of directly solving (24), an equivalent circuit model
is extracted from the admittance matrix. The prototype of the
equivalent circuit used herein is the one with a circuit branch
between every two circuit nodes (including every node to the
common ground node). This circuit model will give good re-
sults, provided that the admittance matrix can be exactly re-
stored for circuit simulations. At an arbitrary node, according
to (24), the nodal current is

(26)

where is the entry at the th row and the th column in
the admittance matrix, and is the potential of node with
respect to the ground node (here the ground plane). Note here
that the are elements of the inverse impedance matrix, and
are from field quantities, namely, source-field reactions.

At the same time, for the circuit prototype described before,
Kirchoff’s current law (KCL) requires the balance of currents
at every node, i.e.,

(27)

as shown in Fig. 4, where denotes a circuit branch con-
necting nodes and . (a circuit quantity) is the admit-
tance of this branch, and is the branch current. is the
admittance of the branch connecting nodeto the common
ground node. A comparison between (26) and (27) leads to

and (28a)

(28b)

From , the values of the equivalent circuit elements be-
tween nodes and can be directly determined. Since the
matrix is the sum of an inductive part and a capacitive part, every
branch (including node to ground) is a parallel LC circuit. The
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Fig. 4. Current balance at nodem.

Fig. 5. Typical equivalent circuit between any arbitrary pair of two nodes
m andn. For nodes with current flowing into ground plane, there is a shunt
inductance as well.

values of L and C can be obtained through (28a) and (28b) from
the inductive and capacitive parts of separately.

The entries in the and matrices are functions of vector-
or scalar-potential Green’s functions, which are frequency
dependent. Hence, the circuit that is extracted from (28a) and
(28b) is also frequency dependent, which makes the circuit
simulation difficult and time-consuming. A quasistatic approx-
imation of the Green’s functions is employed to overcome this
problem. Then the values of extracted inductance and capaci-
tance are constant over frequency. However, this approximation
introduces an additional mesh constraint to keep the extracted
circuit meaningful and valid for capturing the distributed be-
havior of the power bus up to a specified upper frequency. This
limitation is determined by the highest frequency of interest,
layer stackup, and dielectric materials [20].

Under the quasistatic approximation, it can be demonstrated
that is equal to , i.e., the matrix is now symmetric.
This results in asymmetry in the matrix, since the matrix
is asymmetric. To restore the symmetry in(the circuit matrix
whose entries are ’s) that is required by circuit reciprocity,
let [34]

(29)

The nondiagonal entries in the matrix are averaged so that
the symmetry of the matrix, as well as of the matrix, is
restored.

Fig. 5 shows a typical circuit between an arbitray pair of
nodes and . A parallel LC branch exists between these two
circuit nodes, and there is also a shunt capacitance between
each node and the ground node. The shunt inductance to ground
for the horizontal cells as indicated in (28b) is neglected, since
its value is usually very large (There is no significant conduc-
tion current flowing into the ground plane.). However, for those
nodes that are associated with cells that have vertical surface
currents flowing into the ground plane, there is an inductance
connecting from the node to the ground node as well. As shown

Fig. 6. Equivalent circuits for a via and a test port.

in Fig. 6, for a via connecting the power and ground planes, its
vertical rectangular cells adjacent to the ground plane have sur-
face currents flowing into the ground plane. The choice of the
ground node is consistent with the choice of the Green’s func-
tions. Since all ground planes are assumed as infinitely large
perfect electric conductors (PEC) and incorporated into the cal-
culation of Green’s functions, the resulting circuit refers to the
ground planes as the ground node.

IV. CALCULATION OF GREEN’S FUNCTIONS

Calculation of the Green’s functions for a multilayer structure
involves the calculation of Sommerfeld integrals, which when
evaluated using numerical techniques are very time-consuming.
In order to accelerate the convergence of Sommerfeld integrals,
many extrapolation methods have been developed. Michalski
[35] gives an extensive review. In this work, the Green’s func-
tions are obtained using a different approach based on complex-
image theory [36], [37], which is applied to the inverse Fourier
transform from spectral to spatial domain based on the Sommer-
feld identity. The spectral-domain expressions for the Green’s
functions are relatively straight-forward though tedious, to de-
rive, since they are solutions to a one-dimensional (-direction)
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problem [38], assuming the dielectric layers and PEC ground
plane are of infinite extent. The derivations and results are in-
cluded in the Appendix.

The inverse Fourier transform is given by the Sommerfeld
identity as [38]

(30)

i.e.,

(31)

This identity is particularly useful in obtaining the spatial-do-
main Green’s functions by approximating the spectral-domain
expressions in a multilayer medium as a series of complex im-
ages

(32)

where

Then, the spatial-domain expression can be obtained by substi-
tuting (32) into (30) and

(33)

Several numerical methods can be used to develop an
approximate spectral-domain Green’s function as a series of
complex exponentials (complex images). The original Prony’s
method [36], and the least-square Prony’s method [39], were
first used. The efficiency and noise sensitivity problems associ-
ated with these Prony’s methods were greatly improved by the
generalized pencil of function (GPOF) method [40]. However,
the GPOF method is not robust for slowly converging, rapidly
varying functions. A further improvement to the GPOF method,
denoted a two-level approach [37], is used in the CEMPIE
modeling described in this work.

The dyadic vector potential Green’s function for a multilayer
medium has four components. As shown in the previous deriva-
tion, all four of these components, i.e., , , and ,
are required for the calculations of the moment matrix, since
both horizontal and vertical current densities are present in the
3-D problem that includes vias. The evaluation of the compo-
nents , and is considerably more complicated, as
compared with the calculation of . When is calculated,
the -directional coordinates of all field and source points are
fixed, since all horizontal electric dipoles are on one or more
power planes. The spectral-domain expressions are the same
for all the pairs of field and source locations with the same ob-
servation and source coordinates. Then the inverse Fourier
transform has to be performed only once. However, for the other
three components, the-directional coordinate of field point,
or source point, or both, varies along the surfaces of vertical
discontinuities. This means the spectral-domain expressions are
different for the basis function pairs with differentand/or

coordinates; thus, the inverse Fourier transform must be per-
formed for each of these pairs. The spectral-domain expressions
are exponential functions that vary rapidly withand . There-
fore, even for a very small via, many spatial sample points are
needed, which is very time consuming and impractical. The so-
lution is to carry out the integration overand/or analytically
for the spectral domain expressions for the Green’s function
multiplied with the testing and/or basis function for each vertical
cell [41]–[43]. Then the inverse Fourier transform needs only to
be performed once for this vertical cell. When this procedure is
applied, another problem arises. Commonly, the height of each
vertical cell is not larger than 100 mils (2.54 mm). After the
integration of the Green’s function multiplied with the testing
and/or basis function (which is a function ofor ), the values
obtained are too small to ensure that the GPOF procedure works
properly with sufficient numerical precision. For this problem to
be solved, the values of the GPOF input series must be scaled to
an appropriate range, and then the GPOF output rescaled back.

Properly choosing the number of complex images that are
used to approximate the spectral-domain expressions for the
Green’s functions is also critical. Effective approximations
using complex images for the spectral-domain expressions for
the Green’s functions do not always ensure the correct spatial
results, i.e., the generalized Sommerfeld identity does not apply
for all the complex images resulting from the GPOF procedure.
For example, the terms having very small coefficients and very
large exponential indices are possible noise terms, which result
in dramatic errors in far fields. Hence, these terms must be
removed from the GPOF output. If these noise terms exist, a
change in the number of complex images or in the criterion
of determining noise is necessary. Further, the real part of the
exponential index of each complex image should be greater
than zero. Otherwise, the term will represent a convergent wave
that cannot result from a real source. This feature provides
another check for the GPOF output. If the real part of any
exponential index is less than zero, the input parameters of the
GPOF procedure should be adjusted and the method re-applied.

V. DC POWER BUS MODELING AND RESULTS

There are two kinds of vertical discontinuities of interest,viz.,
via, and port types. As shown in Fig. 6, the via vertical discon-
tinuity connects power and ground planes together, while the
port vertical discontinuity (like an SMA connector) connects
the inner conductor to a power plane and the outer conductor
to a ground plane. For both types, there is a current associated
with each intersection edge between the vertical discontinuities
and the ground plane. This current flows across the edge, from
the retangular cell associated with the edge (such as cells,
and in Fig. 6), and into the ground plane (for a via) or the ex-
ternal load/source (for a port). The connectivity matrix defined
in (11) relates mesh edges (circuit branches) to mesh cells (cir-
cuit nodes). It can be shown by studying the basis functions that
the current associated with an edge always flows from the edge’s
positive cell to its negative cell. Therefore, the rectangular cells
adjacent to the ground plane (such as cells, , and in Fig. 6)
are positive cells of the corresponding intersection edges. The
corresponding negative cells are the ground node (for a via), or
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Fig. 7. Modeling a simple power bus geometry.

an external node where an external load or source is connected
(for a port). The connectivity matrix contains the information
about the positive and negative cells of the intersection edges,
thus, it determines whether the current flows into the ground
plane or an external node. The equivalent circuits that are asso-
ciated with the rectangular cells of a via, which are adjacent to
the ground plane, will include an inductance connecting those
cells (circuit nodes) to the ground node. However, for a port, the
equivalent circuits that are associated with the rectangular cells
adjacent to the ground plane will include an inductance con-
necting these cells to the external node, rather than the common
ground node, where the external source or load is connected.

Several power-bus geometries were modeled with the
CEMPIE approach, and compared with measurements.
Fig. 7(a) shows a power-bus structure with a shorting post and
two test ports. The test board was a two-layer board with two
solid planes representing power and ground layers, respectively.
The shorting post represented a via. The board was fabricated
from FR-4 material, and the relative dielectric constant was

. The board thickness was 44 mils (1.12 mm), and the
diameters of the via and the feed port conductor were 40 mils
(1.02 mm) and 20 mils (0.508 mm), respectively. The
between the two test ports was investigated experimentally
using an HP8753D network analyzer. The reference planes
were at the 3.5 mm test cable connectors. A simple 12-term
error correction model using an open, short, and load was
used in the calibration. Port extension was used to move the
measurement plane to the coaxial cable feed terminals looking

Fig. 8. Modeling a power island geometry.

into the power bus. Fig. 7(b) shows the comparison between
modeling and measurement. The results compare favorably up
to 3 GHz. Beyond that, the modeled result predicts the correct
trends. There are discrepancies in magnitude at resonances, but
losses were not included in this model.

Another modeling example is a power-island geometry illus-
trated in Fig. 8(a). Results are shown in Fig. 8(b). The geomet-
rical dimensions of the parameters in Fig. 8(a) used in the test
board were mm, mm, mm, mm,

mm, and mm. This test board also used an FR-4 ma-
terial with the spacing between power and ground layers of 44
mils (1.12 mm). Again the measured and modeled results com-
pare favorably, with discrepancies at the resonances dominated
by the neglected losses in the CEMPIE modeling.

Fig. 9(a) illustrates a power bus geometry with an SMT de-
coupling capacitor. The dielectric layer material was FR-4 as
well, with a relative dielectric constant of , and loss tan-
gent of 0.02. The PCB was 44 mils’ (1.12 mm) thick and had two
solid planes. A 0.1 F SMT decoupling capacitor was placed
on the board. One end of the capacitor was directly soldered to
the ground plane, and the other end was connected to the power
plane through a via. The input impedance at the test port was
measured using an HP4291A impedance analyzer. The mod-
eled results are compared with the measurements in Fig. 9(b).
Good agreement is demonstrated up to 1.8 GHz, which is the
maximum frequency of the impedance analyzer. The via and the
test port were included in the first principles formulation, while
the capacitor was incorporated into the CEMPIE extracted cir-
cuit model as a lumped series RLC circuit. The values of this
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Fig. 9. Modeling a power bus geometry with an SMT decoupling capacitor.

RLC circuit were measured using the impedance analyzer. In
this modeling example, dielectric losses were included by using
a complex dielectric constant.

VI. CONCLUSIONS

The CEMPIE formulation presented herein is derived from
Maxwell’s equations and uses a circuit extraction approach. The
Green’s functions for a stratified medium are used, instead of
the free space Green’s functions. Vertical discontinuities are in-
cluded into the first principles formulation; hence, it is a 3D
modeling approach which can deal with general power layer ge-
ometries. Measurements demonstrate that it is suitable for mod-
eling multilayer PCB structures. With SPICE or IBIS models
of IC components, and suitable transmission-line models for
signals, CEMPIE can be used to model power-bus noise distri-
butions and thus address SMT decoupling capacitor problems.
Signal integrity (SI) and EMI design issues such as stackup con-
figurations, gapped power layers, interplane capacitance,etc.,
can also be addressed.

APPENDIX

SPECTRAL-DOMAIN EXPRESSIONS FORGREENS’S FUNCTIONS

The spectral-domain Green’s functions for a multilayer
medium can be derived from the solution of one-dimensional
problems. First, consider a case with a point source
embedded in a homogeneous medium. The field solutions are

(34)

For an horizontal electric dipole (HED), , then

(35)

The Fourier transform is defined as

(36)

and the corresponding inverse transform as

(37)

Then, the spectral-domain expressions forand are

(38)

where the negative sign is for , and the positive sign is
for .

When the source is embedded in the multilayer medium
shown in Fig. 10, the fields in the same layer as the source can
be constructed from the solutions of the homogeneous case.
The only modification is to include an upgoing wave and a
downgoing wave into the-variation of the solutions as

(39)

When boundary conditions are enforced at

(40)

and at ,

(41)
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Fig. 10. Illustration of coordinates for a multilayer structure.

where and are Fresnel reflection coefficients [38],
the unknown coefficients are then solved as

(42)

where

Further, the Green’s functions are

(43)

Substituting (39) and (42) into (43), the components of Green’s
functions are derived as

(44)
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Similar derivations from the field solutions of a vertical electric
dipole (VED) give

(45)

When field and source points are in different layers, the
derivation of the spectral-domain expressions for the Green’s
functions needs to apply the concept of generalized transmis-
sion coefficient [38]. If the field and source points are in layers

and , respectively, where , then the field solutions in
layer for an HED embedded in layercan be written as

(46)

where and are coefficients of upgoing wave com-
ponents in and , respectively. From previous solu-
tions, at ,

(47)

When boundary conditions are enforced at

(48)

a simple relationship between and (for both TM and TE
cases) results

(49)

Once and are solved, the following components
of Green’s functions can be calculated from and

(50)
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Similar derivations from the field solutions in layerof a VED
that is embedded in layer, where , give

(51)

When the field point is in layer, where and is the
source layer, the components of Green’s functions are

(52)
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