
 
 

 

  

Abstract—The paper describes a model, architecture, and 
functionality of a priority buffer, which receives an arbitrary 
sequence of instructions and outputs a new sequence ordered in 
accordance with the priorities of the instructions that have 
already been received. Any new incoming instruction changes 
the output sequence because it has to be accommodated in the 
buffer on the basis of its priority. It is shown that the desired 
functionality of the buffer can be described efficiently by the 
proposed parallel hierarchical algorithms involving recursion. 
The algorithms have been modeled in general-purpose software 
and implemented in hardware (in a commercially available 
FPGA). The results of experiments have shown that the buffer 
operates in strong conformity with the requirements and 
specification. The required memory is allocated and 
deallocated dynamically. The proposed buffer architecture is 
easily scalable, which enables a buffer of any size to be 
provided. 

I. INTRODUCTION 
ET us consider an embedded system whose 
functionality is controlled by a sequential flow of 

external instructions. The number of instructions is not 
known in advance and the input instruction transfer rate is 
not the same as the instruction processing speed in the 
system. Thus, it is necessary to use input buffering. For 
some practical applications the instructions have to be 
processed non-sequentially. Each instruction is provided 
with additional field(s) indicating the priority or some other 
parameters required for the proper selection of the 
instruction. A priority buffer (a priority queue) is a device 
that stores an incoming (sequential) flow of instructions (or 
other data) and allows outputs to be selectively extracted 
from the buffer for processing. The following list 
exemplifies some typical selection rules:  
• Each instruction (data item) is provided with an extra 

field indicating its priority. The selection mechanism has 
to be able to extract the instruction with the highest 
priority; 

• The embedded system has to be able to remove from the 
buffer all the instructions that are not longer required; 

• The embedded system has to be able to check if a 
particular instruction is in the buffer. 
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Any incoming instruction occupies the buffer memory 
that is allocated for it. If an instruction is removed from the 
buffer, the memory previously allocated for it has to be 
freed. Buffers of such type are required for numerous 
practical applications [1-8]. For example, in [1] a priority 
buffer (PB) stores pulse height analyzer events. Real-time 
embedded systems [3] employ a priority preemptive 
scheduling in which each process is given a particular 
priority (a small integer) when the system is designed. At 
any time, the system executes the highest-priority process. 
One of the proposals of [6] was to create a smart agent 
scanning and selecting the data according to their priority. A 
similar technique is also required for advanced control 
systems considered in [7]. Note that although the 
accumulated data can be of different types and the 
application of the buffer can vary, the basic operations and 
general functionality of the buffer is very similar to that 
described above. The architectures and design methods used 
are also diverse and they are mainly targeted to 
implementation in software. Many of them are based on sort 
and shift algorithms [5]. 

The paper suggests a technique for hardware 
implementation of a PB with the following distinctive 
features: a) run-time data sorting in a single buffer memory; 
b) dynamic memory allocation and deallocation in hardware. 
This technique includes: a) description of the PB by the 
proposed parallel recursive algorithms; b) modeling the 
algorithms in software; and c) implementation of the 
algorithms in hardware with the aid of a parallel hierarchical 
finite state machine. The technique has been employed for 
the design of a PB on the basis of commercially available 
field-programmable gate arrays (FPGAs). The functionality 
of the PB has been verified and a number of experiments 
have been performed. 

The remainder of the paper is organized in five sections. 
Section II introduces and describes the model, architecture 
and the desired functionality of a PB. Section III presents 
parallel hierarchical algorithms for a PB (also involving 
recursion) and reports the results of modeling the buffer in 
software. Section IV gives details of a hardware 
implementation that emphasizes parallelism, hierarchy, and 
dynamic memory allocation/deallocation. Section V 
demonstrates the basic software and hardware architectures 
for the experiments and shows the results. The conclusion is 
given in Section VI. 
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II. MODEL, ARCHITECTURE, AND FUNCTIONALITY OF 
PRIORITY BUFFER 

The proposed model is based on the incremental 
construction and processing of a special graph, which is 
similar to the binary tree considered in [9]. Incoming vectors 
(IV), representing instructions (data) and additional field(s), 
are ordered somehow, for example, by priorities or by the 
value of an instruction (data) code. The nodes of the tree 
contain N (N≥3) fields that are: a value of an IV, a pointer to 
the left child node, a pointer to the right child node and 
possibly some additional fields, for example: a counter 
indicating the number of occurrences of the value associated 
with the respective node; an additional pointer to the left 
child (right child) if more than one tree has to be built, etc. 
The nodes are maintained so that at any node, the left sub-
tree only contains values that are less than the value at the 
node, and the right sub-tree contains only values that are 
greater. In order to build this tree for a given set of IVs, we 
have to find the appropriate place for each incoming vector 
in the current tree. In order to extract a value, we can apply a 
special technique that depends on the selection rules, and 
can be based on forward and backward propagation steps 
that are exactly the same for each node. 

In the proposed model each node of the tree is associated 
with an incoming vector in such a way that: 
• The first IV is associated with the root node of the tree; 
• The relationship with other IVs is provided through 

pointers, i.e. through addresses of IVs in the buffer 
memory. We assume that such memory is allocated 
dynamically for implementation in software and 
sequentially for implementation in hardware. The latter 
will be considered in detail in section IV; 

• Any new IV (after the first) is accommodated on the tree 
in such a way that it satisfies the basic rules, namely at 
any node, the left sub-tree only contains values that are 
less than the value at the node, and the right sub-tree 
contains only values that are greater; 

• More than one tree can be constructed from the root node. 
For example, the first tree could order the IVs by their 
priorities and the second tree by the values of the 
instruction codes. In this case the number of pointers to 
the left and right sub-trees is doubled. Note that the 
number of IVs stored is the same and the memory for 
each cell is increased only by the amount required for 
storing additional addresses.  

Fig. 1 depicts a general architecture for a PB. It is 
composed of 3 primary blocks, which implement the buffer:  
1) building the tree with the characteristics considered 

above;  
2)  extracting data by applying the rules mentioned above; 
3) rebuilding the tree (removing the nodes that are not 

longer required). 
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Fig 1. General architecture of a priority buffer. 
 

Fig. 2 gives an example. Suppose it is necessary to build a 
tree for the sequence of IVs shown in Fig. 2, a. The vectors 
have to be ordered by their priorities (see the upper values 
written within rectangles representing IVs, such as 
3,6,1,5,…) and by the instruction codes (see the lower 
values, such as 26,21,16,9,…). 
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Fig 2. An example demonstrating how the tree for the given sequence (a) 
has been constructed (b) and how it has been stored in memory (c). 
 

The first IV is 3/26 (priority = 3; instruction code = 26) 
and node 0 of the binary tree has been allocated (see Fig. 2, 
b). This node is the root for two trees, which are built 
differently. The first tree orders the IVs by their priorities 
and the second tree - by their instruction codes. The edges of 
the first tree are shown by solid lines and the edges of the 
second tree are shown by dotted lines (in the latter case, the 
connections of the lines with parent nodes are indicated by 
small filled circles for better visibility). Within each node, 
the priority and the instruction code are separated by a slash.  
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Fig. 2, c shows how the IVs are stored in the PB memory. 
Memory addresses are shown at the bottom and they are the 
same as the node numbers in the trees. Each cell with an 
address A (A=0,1,…,15) contains 4 additional fields that are: 
a pointer (address) to the left sub-tree of the first tree; a 
pointer to the right sub-tree of the first tree; a pointer to the 
left sub-tree of the second tree; and a pointer to the right 
sub-tree of the second tree. For example (see Fig. 2,b and 
2,c), the node 4 (8/11) is stored at the address 4 and it has: a 
pointer 10 to the left sub-tree (7/35) of the first tree; a 
pointer 5 to the right sub-tree (12/5) of the first tree; a 
pointer N to the left sub-tree of the second tree where N is 
some predefined value indicating that the left sub-tree does 
not exist; and a pointer 12 to the right sub-tree (14/12) of the 
second tree. 

The next section shows the method for building trees with 
the structure considered. Extracting pre-ordered (by the tree) 
vectors is rather simple. It is necessary to traverse the tree in 
such a way that just the right sub-trees are selected at each 
step and if the right sub-tree does not exist, it means that the 
rightmost node has been reached containing the highest 
value. This is either the IV with the highest priority (see the 
first tree in Fig. 2, b) or the IV with the largest value of the 
instruction code (see the second tree in Fig. 2, b). After 
getting a vector with the highest value, the traversal process 
backtracks to the nearest parent node and extracts its value. 
Then the left sub-tree is explored in the same manner.  

In order to extract nodes with given values it is necessary 
to apply a special method, which will be presented in the 
next section. 

III. ALGORITHMS AND MODELING IN SOFTWARE 
To execute the operations required for the PB we can use 

a variety of techniques. We will apply recursive algorithms 
because of their clarity and effectiveness for operations over 
binary trees, which was shown in [10,11] on numerous 
examples. Although in software iterative algorithms over 
binary trees reveal slightly better performance, the 
implementation of recursive algorithms in hardware often 
gives the opposite result [11,12] and the relevant circuits 
consume less resources and exhibit better performance. It 
will be shown below that forward and backward propagation 
steps are exactly the same for each node. Thus, a recursive 
procedure can be applied directly. 

Fig. 3 depicts a flow chart for the basic algorithm of the 
PB composed of 7 modules, which are: Z0 – the top level 
algorithm; Z1 – gets IVs and activates Z4 for each of them 
(adding new IV to the tree); Z2 – extracts an IV from the 
buffer (with the aid of module Z6) using the selected priority 
rule; Z3 – provides synchronization with other modules and 
removes unneeded tree nodes already extracted by Z6 or on a 
request from the embedded system; Z4 – provides 
synchronization with other modules and adds a new IV to 

the tree; Z5 – removes an unneeded tree node; Z6 – finds the 
required IV using the selected priority rule and sends it to 
the embedded system. For simplicity Fig. 3 shows just the 
operations needed for functionality of the PB and the 
operations for interfacing with the embedded system are 
hidden. 
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Fig 3. Basic algorithms of a PB. 

 
Note that Z1, Z2 and Z3 might be executed in parallel in 

case if access to shared buffer memory is properly 
synchronized. We will apply pseudo parallelism in the 
software implementation and explain how to execute 
different modules in parallel in hardware circuits in the next 
section. Flow charts for the modules Z4, Z5 and Z6 are not 
shown in Fig. 3 because these modules are described in 
detail in C++ code fragments presented below.  

The basic modules, that construct the binary tree and 
permit nodes to be removed from the tree, are Z4 and Z5. The 
other modules execute supplementary operations and 
synchronize access to the shared memory. The following 
C++ code fragments describe the primary operations of the 
modules Z4, Z5 and Z6 (for simplicity, exception handling for 
such problems as errors in memory allocation is not shown). 

 
// Z4 module 
tree_node* build_tree(tree_node* node, int value) 
{ if (node == 0)  
 { node = new tree_node; 
  node->value = value; 
  node->c = 1; // setting counter to 1 
  node->r = node->l = 0;  
 } 
 else if (value == node->value) 
  node->c++; // incrementing counter 
 else if (value < node->value)  
  node->l = build_tree(node->l,value); 
    // traversing the left sub-tree   
 else  
  node->r=build_tree(node->r,value);  
    // traversing the right sub-tree 
 return node;    
} 
 
// Z5 module 
void extract_from_tree(tree_node*& node, int value) 
{ tree_node *temp_node; 
 if (node != 0)  // verifying if node exists 
  if (value > node->value)  
 

7th ASCC, Hong Kong, China, Aug. 27-29, 2009 ThA1.1

11



 
 

 

      // traversing the right sub-tree 
   extract_from_tree(node->r,value);  
  else if (value < node->value)  
      // traversing the left sub-tree 
   extract_from_tree(node->l,value); 
  else 
  { if ( (node->l == 0) && (node->r == 0) ) 
      // in this case the node has to be deleted 
   { delete node; 
    node = 0; 
   } 
   else if (node->r != 0) 
   { // changing pointers for the right node 
    temp_node = node->r; 
    if ((node->l) != 0) 
     build_subtree(temp_node,node->l, 
                         node->l->value);   
    node->r = temp_node->r; 
    node->l = temp_node->l; 
    node->value = temp_node->value; 
    node->c = temp_node->c; 
    delete temp_node; 
   } 
   else  
   { // changing pointers for the left node 
    temp_node = node->l; 
    node->r = temp_node->r; 
    node->l = temp_node->l; 
    node->value = temp_node->value; 
    node->c = temp_node->c; 
    delete temp_node;        
   }           
  }          
}  
 
// Z6 module 
void extract_most_priority(tree_node* node)   
{ if(node != 0)  
 { while (node->r != 0) 
   node = node->r; 
  // send node->value to the embedded system  
 }    
} 
 

In this code the tree_node is considered to be the 
following structure: 
 
struct tree_node    
{ int value; // node value (instruction code) 
 int c;     // counter for repeated values 
 struct tree_node* l; // pointer to the left 
                       // sub-tree 
 struct tree_node* r; // pointer to the right 
                       // sub-tree 
 // other fields if required 
}; 
 

The build_subtree function is a simplified build_tree 
function with the following code: 
 
tree_node* build_subtree(tree_node* node 

tree_node* subnode, int value) 
{ if(node == 0) node = subnode;  
 else if(value < node->value)  

      node->l =  
       build_subtree(node->l, subnode, value); 
else  node->r =  
       build_subtree(node->r, subnode, value);  

 return node;   
} 

Section V explains how the C++ functions considered 
above have been used for modeling the priority buffer in 
software. 

IV. IMPLEMENTATION IN HARDWARE 
In order to implement the same algorithms (see Fig. 3) in 

hardware, we must solve the following two problems: 
• Provide for implementation of recursive calls, which are 

not directly supported by hardware description 
languages; 

• Manage dynamic memory allocation/deallocation, which 
is significantly more difficult comparing to software. 

We can solve the first problem with the aid of a 
hierarchical finite state machine (HFSM) [13] enabling the 
hardware circuits to implement hierarchical and recursive 
calls.  

The following technique has been used to allocate and 
free memory dynamically. Storage for the PB (such as that 
shown in Fig. 2, c) has been implemented in a memory 
block with a fixed number of cells (such as those numbered 
by the indices 0,1,2,…,15 in Fig. 2,c). A special register is 
provided that contains the index of the memory cell holding 
the root node of the tree. Each cell is expanded with a one 
bit flag field – F, indicating whether the cell is occupied 
(F=1) or not (F=0). The tree is constructed sequentially in 
such a way that for any new incoming node, the first cell 
from the beginning for which F=0 is selected. As soon as a 
node is removed the relevant flag F is set to 0 indicating that 
the cell can be reused to store new data. Thus, the cells are 
occupied and emptied during run time and dynamic memory 
allocation and deallocation is enabled.  

This process is illustrated in Fig. 4. Let us assume that the 
size of the fixed memory block is 8, the tree is constructed 
only on the basis of instruction priorities and that the 
incoming data are the same as in Fig. 2, a (see Fig. 4, a). 
Suppose initially four instructions (3/26, 6/21, 1/16 and 5/9) 
arrive. They will be stored in memory as shown in Fig. 4, b. 
Then the two instructions with the highest priority (6/21 and 
5/9) are extracted. As a result, the memory will be changed 
(see Fig. 4, c). If three new instructions from the incoming 
flow in Fig. 4, a (8/11, 12/5 and 10/31) then arrive, they will 
be stored in memory as shown in Fig. 4, d.  Fig. 4 e, f, g 
illustrate: extracting the highest priority instruction 12/5 
(Fig. 4, e); receiving three new instructions (9/17, 2/39 and 
4/14) from the incoming flow in Fig. 4, a (Fig. 4, f); and 
extracting the five highest priority instructions 10/31, 9/17, 
8/11, 4/14, and 3/26 (Fig. 4, g). Now cell 2 represents the 
root of the tree and there are 2 nodes in the tree. The index 
2 is kept in the special register mentioned above and this 
enables the traversal procedure to be started from the correct 
node. 
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Fig 4. Dynamic memory allocation/deallocation in hardware. 
 

The modules Z0-Z6 have been considered as behavioral 
specifications of an HFSM whose register memory has been 
replaced with a stack. The basic architecture of such an 
HFSM is described by a known HFSM template [10], i.e. by 
a predefined customizable hardware description language 
(HDL) code. 

Specifications of the modules Z0-Z6 are used to properly 
customize the HFSM template and the resulting HDL code is 
synthesizable in commercially available CAD tools, such as 
Xilinx ISE [14] for FPGAs. The HFSM enables any module 
to activate itself [13]. Thus, the required recursive calls in 
the modules can be executed. Parallel calls, such as Z1,Z2,Z3 
in Fig. 3, a, have been implemented in the HFSM through 
the use of multiple stacks (one stack for each parallel 
module).  Dynamic memory allocation and deallocation, 
such as node = new tree_node; in the module Z4 and delete 
temp_node; in the module Z5, have been provided in 
accordance with the technique described above in this 
section. Additional modules Z7 (instead of the C++ operator 
new) and Z8 (instead of the C++ operator delete) were used 
for such purposes. 

V. EXPERIMENTS 
The description and modeling of the PB was done in C++ 

(Microsoft Visual Studio). The primary objective was to 
verify the algorithms (see section III) and the intended 
functionality allowing subsequent implementation in 
hardware. Fig. 5 gives the general architecture of the model. 

The PB implements the algorithms shown in Fig. 3, 
permitting incoming data to be accumulated in memory that 
is dynamically allocated and deallocated according to the 
external requests from blocks A and B. Block A generates a 

sequence of instructions with random priorities. Block B 
forms random requests for getting instructions with the 
highest priority and removing instructions that are no longer 
required. Input/output timing parameters have also been 
selected randomly and differently for the blocks A and B. 
Instead of parallel execution of the modules Z1,Z2,Z3, 
pseudo parallel mode was implemented, i.e. an individual 
time slot for each module was used. The time slots for 
modules Z1,Z2,Z3 were equal and they were repeated 
cyclically: 1,2,3,1,2,3, etc. The experiments in software 
showed that the proposed algorithms and architecture of PB 
are correct and can be implemented in hardware. 

Note that all the experiments were performed in software 
in pseudo parallel mode. Thus, the design and test of 
hardware is very important because only in hardware we can 
verify the required parallelism.   
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Fig 5. Modeling of PB in software. 

 
Hardware implementation was done in an FPGA of 

Spartan-3 Xilinx family using DETIUA-S3 [15] and 
NEXYS2 [16] prototyping boards. The control circuit for 
the PB was implemented on the basis of an HFSM VHDL 
template that contains a reusable predefined code for HFSM 
stack memory and a customizable code for HFSM 
combinational circuits. Customization was done in 
accordance with the algorithms described in section III and 
modeled in software. Synthesis of the HFSM was realized 
using the methods [10,13]. Parallel modules (such as those 
shown in Fig. 3, a) were executed with the aid of individual 
stacks for each module running in parallel. Thus, real 
parallelism has been achieved. Fig. 6 gives the general 
architecture of the hardware implementation. 

A processing unit, which is composed of a parallel HFSM 
with an attached datapath, implements the algorithms 
considered in section III. The datapath consists of hardware 
circuits controlled by the FSM that generate 
branching/waiting conditions for the FSM. In general, these 
circuits permit access to shared memory to be properly 
synchronized, provide temporary storage for executing 
operations, etc. The method described in section IV was 
used for dynamic memory allocation/deallocation. The 
parallel FSM also provides for an FPGA interface with 
supplementary circuits that execute the same functions as the 
blocks A and B in Fig. 5. The block A continuously 
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generates instructions. If the memory in Fig. 6 is full, the PB 
sets an indicator requesting the block A to suspend 
generation of instructions. As soon as some memory is free 
generation of instructions is resumed. The memory is 
organized as 512 of 36 bit words. Obviously, the size of 
memory can be increased easily. 

All components of the processing unit in Fig. 6 were 
described in VHDL. Synthesis from the VHDL specification 
was done in Xilinx ISE [14]. The experiments with the PB 
implemented in hardware have demonstrated that all the 
requirements have been satisfied and the PB functions in 
close conformity with the specification. 
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Fig 6. Implementation of PB in hardware (in FPGA) and supplementary 
circuits for experiments. 
 

The buffer has been used in an automatic system for 
garage control described in [17] for managing parking slots 
and priorities based on accumulation of data about free 
parking slots with their priorities for potential parking of 
(new) arriving cars. The accumulation is done in a PB, 
which takes input data items about released slots and outputs 
items with the highest priority. The PB is organized in such a 
way that the established priorities might be dynamically 
rearranged as well as some items can be removed on 
external requests (for example, when some parking slots are 
reserved for special purposes). The PB is organized on the 
basis of the proposed tree-based structure and it has been 
implemented, validated and tested in hardware. 

VI. CONCLUSION 
Priority buffers enable incoming data to be accumulated 

in memory in accordance with additional information 
indicating the order in which these data have to be processed 
in an embedded system. The proposed buffer is built on the 
basis of a fixed size memory that is filled and emptied 
dynamically. The number of occupied memory cells is 
equal to the number of incoming data that are ordered with 
the aid of a binary tree which is dynamically coded and kept 
in the buffer.  

To construct and to process the tree, a set of parallel and 
hierarchical specifications have been suggested and modeled 
in software. It is shown that these specifications can be 
implemented in hardware with the aid of a parallel 
hierarchical finite state machine that also supports an 

external interface and dynamic memory allocation and 
deallocation. The buffer was modeled in C++ and further 
described in VHDL, synthesized, and implemented in 
FPGAs of Xilinx Spartan-3 family. 
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