

Abstract—The paper describes a model, architecture, and
functionality of a priority buffer, which receives an arbitrary
sequence of instructions and outputs a new sequence ordered in
accordance with the priorities of the instructions that have
already been received. Any new incoming instruction changes
the output sequence because it has to be accommodated in the
buffer on the basis of its priority. It is shown that the desired
functionality of the buffer can be described efficiently by the
proposed parallel hierarchical algorithms involving recursion.
The algorithms have been modeled in general-purpose software
and implemented in hardware (in a commercially available
FPGA). The results of experiments have shown that the buffer
operates in strong conformity with the requirements and
specification. The required memory is allocated and
deallocated dynamically. The proposed buffer architecture is
easily scalable, which enables a buffer of any size to be
provided.

I. INTRODUCTION
ET us consider an embedded system whose
functionality is controlled by a sequential flow of

external instructions. The number of instructions is not
known in advance and the input instruction transfer rate is
not the same as the instruction processing speed in the
system. Thus, it is necessary to use input buffering. For
some practical applications the instructions have to be
processed non-sequentially. Each instruction is provided
with additional field(s) indicating the priority or some other
parameters required for the proper selection of the
instruction. A priority buffer (a priority queue) is a device
that stores an incoming (sequential) flow of instructions (or
other data) and allows outputs to be selectively extracted
from the buffer for processing. The following list
exemplifies some typical selection rules:
• Each instruction (data item) is provided with an extra

field indicating its priority. The selection mechanism has
to be able to extract the instruction with the highest
priority;

• The embedded system has to be able to remove from the
buffer all the instructions that are not longer required;

• The embedded system has to be able to check if a
particular instruction is in the buffer.

V. Sklyarov is with University of Aveiro/IEETA, 3810-193 Portugal

(phone: +351234401539; fax: +351234370545; e-mail: skl@ua.pt).
I. Skliarova, is with University of Aveiro/IEETA, 3810-193 Portugal (e-

mail: iouliia@ua.pt).

Any incoming instruction occupies the buffer memory
that is allocated for it. If an instruction is removed from the
buffer, the memory previously allocated for it has to be
freed. Buffers of such type are required for numerous
practical applications [1-8]. For example, in [1] a priority
buffer (PB) stores pulse height analyzer events. Real-time
embedded systems [3] employ a priority preemptive
scheduling in which each process is given a particular
priority (a small integer) when the system is designed. At
any time, the system executes the highest-priority process.
One of the proposals of [6] was to create a smart agent
scanning and selecting the data according to their priority. A
similar technique is also required for advanced control
systems considered in [7]. Note that although the
accumulated data can be of different types and the
application of the buffer can vary, the basic operations and
general functionality of the buffer is very similar to that
described above. The architectures and design methods used
are also diverse and they are mainly targeted to
implementation in software. Many of them are based on sort
and shift algorithms [5].

The paper suggests a technique for hardware
implementation of a PB with the following distinctive
features: a) run-time data sorting in a single buffer memory;
b) dynamic memory allocation and deallocation in hardware.
This technique includes: a) description of the PB by the
proposed parallel recursive algorithms; b) modeling the
algorithms in software; and c) implementation of the
algorithms in hardware with the aid of a parallel hierarchical
finite state machine. The technique has been employed for
the design of a PB on the basis of commercially available
field-programmable gate arrays (FPGAs). The functionality
of the PB has been verified and a number of experiments
have been performed.

The remainder of the paper is organized in five sections.
Section II introduces and describes the model, architecture
and the desired functionality of a PB. Section III presents
parallel hierarchical algorithms for a PB (also involving
recursion) and reports the results of modeling the buffer in
software. Section IV gives details of a hardware
implementation that emphasizes parallelism, hierarchy, and
dynamic memory allocation/deallocation. Section V
demonstrates the basic software and hardware architectures
for the experiments and shows the results. The conclusion is
given in Section VI.

Modeling, Design, and Implementation of a Priority Buffer for
Embedded Systems

Valery Sklyarov, Iouliia Skliarova

L

Proceedings of the 7th Asian Control Conference,
Hong Kong, China, August 27-29, 2009

ThA1.1

978-89-956056-9-1/09/©2009 ACA 9

II. MODEL, ARCHITECTURE, AND FUNCTIONALITY OF
PRIORITY BUFFER

The proposed model is based on the incremental
construction and processing of a special graph, which is
similar to the binary tree considered in [9]. Incoming vectors
(IV), representing instructions (data) and additional field(s),
are ordered somehow, for example, by priorities or by the
value of an instruction (data) code. The nodes of the tree
contain N (N≥3) fields that are: a value of an IV, a pointer to
the left child node, a pointer to the right child node and
possibly some additional fields, for example: a counter
indicating the number of occurrences of the value associated
with the respective node; an additional pointer to the left
child (right child) if more than one tree has to be built, etc.
The nodes are maintained so that at any node, the left sub-
tree only contains values that are less than the value at the
node, and the right sub-tree contains only values that are
greater. In order to build this tree for a given set of IVs, we
have to find the appropriate place for each incoming vector
in the current tree. In order to extract a value, we can apply a
special technique that depends on the selection rules, and
can be based on forward and backward propagation steps
that are exactly the same for each node.

In the proposed model each node of the tree is associated
with an incoming vector in such a way that:
• The first IV is associated with the root node of the tree;
• The relationship with other IVs is provided through

pointers, i.e. through addresses of IVs in the buffer
memory. We assume that such memory is allocated
dynamically for implementation in software and
sequentially for implementation in hardware. The latter
will be considered in detail in section IV;

• Any new IV (after the first) is accommodated on the tree
in such a way that it satisfies the basic rules, namely at
any node, the left sub-tree only contains values that are
less than the value at the node, and the right sub-tree
contains only values that are greater;

• More than one tree can be constructed from the root node.
For example, the first tree could order the IVs by their
priorities and the second tree by the values of the
instruction codes. In this case the number of pointers to
the left and right sub-trees is doubled. Note that the
number of IVs stored is the same and the memory for
each cell is increased only by the amount required for
storing additional addresses.

Fig. 1 depicts a general architecture for a PB. It is
composed of 3 primary blocks, which implement the buffer:
1) building the tree with the characteristics considered

above;
2) extracting data by applying the rules mentioned above;
3) rebuilding the tree (removing the nodes that are not

longer required).

request instruction
with the highest priority

remove a particular
instruction

P PB

In
st
r Build

the
tree

Extract
data

Rebuild
the tree

IV1IV2IV3

Fig 1. General architecture of a priority buffer.

Fig. 2 gives an example. Suppose it is necessary to build a
tree for the sequence of IVs shown in Fig. 2, a. The vectors
have to be ordered by their priorities (see the upper values
written within rectangles representing IVs, such as
3,6,1,5,…) and by the instruction codes (see the lower
values, such as 26,21,16,9,…).

3
26

6
21

1
16

5
9

8
11

12
5

10
31

9
17

2
39

4
14

7
35

11
33

14
12

13
29

15
8

0
7

3/26

6/211/16

5/9 8/11

12/5

10/31

9/17

2/39

4/14 7/35

11/33

14/12

13/29 15/8

0/7

3
26

2
1
1
6

6
21

3
4
2
N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1
16

15
8
3
7

5
9

9
N
5
4

8
11

10
5
N
12

12
5

6
12
N
14

10
31

7
11
13
8

9
17

N
N
N
N

2
39

N
N
10
N

4
14

N
N
N
N

7
35

N
N
11
N

11
33

N
N
N
N

14
12

13
14
N
N

13
29

N
N
N
N

15
8

N
N
15
N

0
7

N
N
N
N

Priority
Instr code
Left sub‐tree1
Right sub‐tree1
Left sub‐tree2
Right sub‐tree2

0

12

3 4
5

6

7

8

9

10

11
12

13

14

15

a)

b)

c)

Fig 2. An example demonstrating how the tree for the given sequence (a)
has been constructed (b) and how it has been stored in memory (c).

The first IV is 3/26 (priority = 3; instruction code = 26)
and node 0 of the binary tree has been allocated (see Fig. 2,
b). This node is the root for two trees, which are built
differently. The first tree orders the IVs by their priorities
and the second tree - by their instruction codes. The edges of
the first tree are shown by solid lines and the edges of the
second tree are shown by dotted lines (in the latter case, the
connections of the lines with parent nodes are indicated by
small filled circles for better visibility). Within each node,
the priority and the instruction code are separated by a slash.

7th ASCC, Hong Kong, China, Aug. 27-29, 2009 ThA1.1

10

Fig. 2, c shows how the IVs are stored in the PB memory.
Memory addresses are shown at the bottom and they are the
same as the node numbers in the trees. Each cell with an
address A (A=0,1,…,15) contains 4 additional fields that are:
a pointer (address) to the left sub-tree of the first tree; a
pointer to the right sub-tree of the first tree; a pointer to the
left sub-tree of the second tree; and a pointer to the right
sub-tree of the second tree. For example (see Fig. 2,b and
2,c), the node 4 (8/11) is stored at the address 4 and it has: a
pointer 10 to the left sub-tree (7/35) of the first tree; a
pointer 5 to the right sub-tree (12/5) of the first tree; a
pointer N to the left sub-tree of the second tree where N is
some predefined value indicating that the left sub-tree does
not exist; and a pointer 12 to the right sub-tree (14/12) of the
second tree.

The next section shows the method for building trees with
the structure considered. Extracting pre-ordered (by the tree)
vectors is rather simple. It is necessary to traverse the tree in
such a way that just the right sub-trees are selected at each
step and if the right sub-tree does not exist, it means that the
rightmost node has been reached containing the highest
value. This is either the IV with the highest priority (see the
first tree in Fig. 2, b) or the IV with the largest value of the
instruction code (see the second tree in Fig. 2, b). After
getting a vector with the highest value, the traversal process
backtracks to the nearest parent node and extracts its value.
Then the left sub-tree is explored in the same manner.

In order to extract nodes with given values it is necessary
to apply a special method, which will be presented in the
next section.

III. ALGORITHMS AND MODELING IN SOFTWARE
To execute the operations required for the PB we can use

a variety of techniques. We will apply recursive algorithms
because of their clarity and effectiveness for operations over
binary trees, which was shown in [10,11] on numerous
examples. Although in software iterative algorithms over
binary trees reveal slightly better performance, the
implementation of recursive algorithms in hardware often
gives the opposite result [11,12] and the relevant circuits
consume less resources and exhibit better performance. It
will be shown below that forward and backward propagation
steps are exactly the same for each node. Thus, a recursive
procedure can be applied directly.

Fig. 3 depicts a flow chart for the basic algorithm of the
PB composed of 7 modules, which are: Z0 – the top level
algorithm; Z1 – gets IVs and activates Z4 for each of them
(adding new IV to the tree); Z2 – extracts an IV from the
buffer (with the aid of module Z6) using the selected priority
rule; Z3 – provides synchronization with other modules and
removes unneeded tree nodes already extracted by Z6 or on a
request from the embedded system; Z4 – provides
synchronization with other modules and adds a new IV to

the tree; Z5 – removes an unneeded tree node; Z6 – finds the
required IV using the selected priority rule and sends it to
the embedded system. For simplicity Fig. 3 shows just the
operations needed for functionality of the PB and the
operations for interfacing with the embedded system are
hidden.

Begin

Start 0

Z1, Z2, Z3

Stop

End

1

1

0

Z0

a) b) c) d)

Data

Z4Add data

Begin

End

1

0

Z1
Request

Z6
Find and
send

Z3Remove

Begin

End

1

0

Z2 Z3

Sy
nc
hr
o
of

w
ri
te

op
er
at
io
ns

z5

Busy (Z4)
1

0

Wait

Begin
Set busy(Z3)

End
Reset

busy(Z3)

Fig 3. Basic algorithms of a PB.

Note that Z1, Z2 and Z3 might be executed in parallel in

case if access to shared buffer memory is properly
synchronized. We will apply pseudo parallelism in the
software implementation and explain how to execute
different modules in parallel in hardware circuits in the next
section. Flow charts for the modules Z4, Z5 and Z6 are not
shown in Fig. 3 because these modules are described in
detail in C++ code fragments presented below.

The basic modules, that construct the binary tree and
permit nodes to be removed from the tree, are Z4 and Z5. The
other modules execute supplementary operations and
synchronize access to the shared memory. The following
C++ code fragments describe the primary operations of the
modules Z4, Z5 and Z6 (for simplicity, exception handling for
such problems as errors in memory allocation is not shown).

// Z4 module
tree_node* build_tree(tree_node* node, int value)
{ if (node == 0)
 { node = new tree_node;
 node->value = value;
 node->c = 1; // setting counter to 1
 node->r = node->l = 0;
 }
 else if (value == node->value)
 node->c++; // incrementing counter
 else if (value < node->value)
 node->l = build_tree(node->l,value);
 // traversing the left sub-tree
 else
 node->r=build_tree(node->r,value);
 // traversing the right sub-tree
 return node;
}

// Z5 module
void extract_from_tree(tree_node*& node, int value)
{ tree_node *temp_node;
 if (node != 0) // verifying if node exists
 if (value > node->value)

7th ASCC, Hong Kong, China, Aug. 27-29, 2009 ThA1.1

11

 // traversing the right sub-tree
 extract_from_tree(node->r,value);
 else if (value < node->value)
 // traversing the left sub-tree
 extract_from_tree(node->l,value);
 else
 { if ((node->l == 0) && (node->r == 0))
 // in this case the node has to be deleted
 { delete node;
 node = 0;
 }
 else if (node->r != 0)
 { // changing pointers for the right node
 temp_node = node->r;
 if ((node->l) != 0)
 build_subtree(temp_node,node->l,
 node->l->value);
 node->r = temp_node->r;
 node->l = temp_node->l;
 node->value = temp_node->value;
 node->c = temp_node->c;
 delete temp_node;
 }
 else
 { // changing pointers for the left node
 temp_node = node->l;
 node->r = temp_node->r;
 node->l = temp_node->l;
 node->value = temp_node->value;
 node->c = temp_node->c;
 delete temp_node;
 }
 }
}

// Z6 module
void extract_most_priority(tree_node* node)
{ if(node != 0)
 { while (node->r != 0)
 node = node->r;
 // send node->value to the embedded system
 }
}

In this code the tree_node is considered to be the
following structure:

struct tree_node
{ int value; // node value (instruction code)
 int c; // counter for repeated values
 struct tree_node* l; // pointer to the left
 // sub-tree
 struct tree_node* r; // pointer to the right
 // sub-tree
 // other fields if required
};

The build_subtree function is a simplified build_tree
function with the following code:

tree_node* build_subtree(tree_node* node

tree_node* subnode, int value)
{ if(node == 0) node = subnode;
 else if(value < node->value)

 node->l =
 build_subtree(node->l, subnode, value);
else node->r =
 build_subtree(node->r, subnode, value);

 return node;
}

Section V explains how the C++ functions considered
above have been used for modeling the priority buffer in
software.

IV. IMPLEMENTATION IN HARDWARE
In order to implement the same algorithms (see Fig. 3) in

hardware, we must solve the following two problems:
• Provide for implementation of recursive calls, which are

not directly supported by hardware description
languages;

• Manage dynamic memory allocation/deallocation, which
is significantly more difficult comparing to software.

We can solve the first problem with the aid of a
hierarchical finite state machine (HFSM) [13] enabling the
hardware circuits to implement hierarchical and recursive
calls.

The following technique has been used to allocate and
free memory dynamically. Storage for the PB (such as that
shown in Fig. 2, c) has been implemented in a memory
block with a fixed number of cells (such as those numbered
by the indices 0,1,2,…,15 in Fig. 2,c). A special register is
provided that contains the index of the memory cell holding
the root node of the tree. Each cell is expanded with a one
bit flag field – F, indicating whether the cell is occupied
(F=1) or not (F=0). The tree is constructed sequentially in
such a way that for any new incoming node, the first cell
from the beginning for which F=0 is selected. As soon as a
node is removed the relevant flag F is set to 0 indicating that
the cell can be reused to store new data. Thus, the cells are
occupied and emptied during run time and dynamic memory
allocation and deallocation is enabled.

This process is illustrated in Fig. 4. Let us assume that the
size of the fixed memory block is 8, the tree is constructed
only on the basis of instruction priorities and that the
incoming data are the same as in Fig. 2, a (see Fig. 4, a).
Suppose initially four instructions (3/26, 6/21, 1/16 and 5/9)
arrive. They will be stored in memory as shown in Fig. 4, b.
Then the two instructions with the highest priority (6/21 and
5/9) are extracted. As a result, the memory will be changed
(see Fig. 4, c). If three new instructions from the incoming
flow in Fig. 4, a (8/11, 12/5 and 10/31) then arrive, they will
be stored in memory as shown in Fig. 4, d. Fig. 4 e, f, g
illustrate: extracting the highest priority instruction 12/5
(Fig. 4, e); receiving three new instructions (9/17, 2/39 and
4/14) from the incoming flow in Fig. 4, a (Fig. 4, f); and
extracting the five highest priority instructions 10/31, 9/17,
8/11, 4/14, and 3/26 (Fig. 4, g). Now cell 2 represents the
root of the tree and there are 2 nodes in the tree. The index
2 is kept in the special register mentioned above and this
enables the traversal procedure to be started from the correct
node.

7th ASCC, Hong Kong, China, Aug. 27-29, 2009 ThA1.1

12

3
26

6
21

1
16

5
9

8
11

12
5

10
31

9
17

2
39

4
14

7
35

11
33

14
12

13
29

15
8

0
7

3
26
F=1

2
1

6
21
F=1

3
N

1
16
F=1

N
N

5
9
F=1

N
N

a)

b)
F=0F=0F=0F=0

c)

7 6 5 4 3 2 1 0

3
26
F=1

2
N

F=0

1
16
F=1

N
N

F=0F=0F=0F=0F=0

7 6 5 4 3 2 1 0

d)
3
26
F=1

2
1

8
11
F=1

N
3

1
16
F=1

N
N

12
5
F=1

4
N

10
31
F=1

N
N

F=0F=0F=0

7 6 5 4 3 2 1 0

e)
3
26
F=1

2
1

8
11
F=1

N
4

1
16
F=1

N
N

F=0

10
31
F=1

N
N

F=0F=0F=0

7 6 5 4 3 2 1 0

f)
3
26
F=1

2
1

8
11
F=1

6
4

1
16
F=1

N
5

9
17
F=1

N
N

10
31
F=1

3
N

2
39
F=1

N
N

4
14
F=1

N
N

F=0

7 6 5 4 3 2 1 0

g)
F=0F=0

1
16
F=1

N
5

F=0F=0

2
39
F=1

N
N

F=0F=0

7 6 5 4 3 2 1 0

Fig 4. Dynamic memory allocation/deallocation in hardware.

The modules Z0-Z6 have been considered as behavioral
specifications of an HFSM whose register memory has been
replaced with a stack. The basic architecture of such an
HFSM is described by a known HFSM template [10], i.e. by
a predefined customizable hardware description language
(HDL) code.

Specifications of the modules Z0-Z6 are used to properly
customize the HFSM template and the resulting HDL code is
synthesizable in commercially available CAD tools, such as
Xilinx ISE [14] for FPGAs. The HFSM enables any module
to activate itself [13]. Thus, the required recursive calls in
the modules can be executed. Parallel calls, such as Z1,Z2,Z3
in Fig. 3, a, have been implemented in the HFSM through
the use of multiple stacks (one stack for each parallel
module). Dynamic memory allocation and deallocation,
such as node = new tree_node; in the module Z4 and delete
temp_node; in the module Z5, have been provided in
accordance with the technique described above in this
section. Additional modules Z7 (instead of the C++ operator
new) and Z8 (instead of the C++ operator delete) were used
for such purposes.

V. EXPERIMENTS
The description and modeling of the PB was done in C++

(Microsoft Visual Studio). The primary objective was to
verify the algorithms (see section III) and the intended
functionality allowing subsequent implementation in
hardware. Fig. 5 gives the general architecture of the model.

The PB implements the algorithms shown in Fig. 3,
permitting incoming data to be accumulated in memory that
is dynamically allocated and deallocated according to the
external requests from blocks A and B. Block A generates a

sequence of instructions with random priorities. Block B
forms random requests for getting instructions with the
highest priority and removing instructions that are no longer
required. Input/output timing parameters have also been
selected randomly and differently for the blocks A and B.
Instead of parallel execution of the modules Z1,Z2,Z3,
pseudo parallel mode was implemented, i.e. an individual
time slot for each module was used. The time slots for
modules Z1,Z2,Z3 were equal and they were repeated
cyclically: 1,2,3,1,2,3, etc. The experiments in software
showed that the proposed algorithms and architecture of PB
are correct and can be implemented in hardware.

Note that all the experiments were performed in software
in pseudo parallel mode. Thus, the design and test of
hardware is very important because only in hardware we can
verify the required parallelism.

Instruction generator
with random priorities PB

Dynamic
memory

Random requests Interface support

Interface support

A

B

Fig 5. Modeling of PB in software.

Hardware implementation was done in an FPGA of

Spartan-3 Xilinx family using DETIUA-S3 [15] and
NEXYS2 [16] prototyping boards. The control circuit for
the PB was implemented on the basis of an HFSM VHDL
template that contains a reusable predefined code for HFSM
stack memory and a customizable code for HFSM
combinational circuits. Customization was done in
accordance with the algorithms described in section III and
modeled in software. Synthesis of the HFSM was realized
using the methods [10,13]. Parallel modules (such as those
shown in Fig. 3, a) were executed with the aid of individual
stacks for each module running in parallel. Thus, real
parallelism has been achieved. Fig. 6 gives the general
architecture of the hardware implementation.

A processing unit, which is composed of a parallel HFSM
with an attached datapath, implements the algorithms
considered in section III. The datapath consists of hardware
circuits controlled by the FSM that generate
branching/waiting conditions for the FSM. In general, these
circuits permit access to shared memory to be properly
synchronized, provide temporary storage for executing
operations, etc. The method described in section IV was
used for dynamic memory allocation/deallocation. The
parallel FSM also provides for an FPGA interface with
supplementary circuits that execute the same functions as the
blocks A and B in Fig. 5. The block A continuously

7th ASCC, Hong Kong, China, Aug. 27-29, 2009 ThA1.1

13

generates instructions. If the memory in Fig. 6 is full, the PB
sets an indicator requesting the block A to suspend
generation of instructions. As soon as some memory is free
generation of instructions is resumed. The memory is
organized as 512 of 36 bit words. Obviously, the size of
memory can be increased easily.

All components of the processing unit in Fig. 6 were
described in VHDL. Synthesis from the VHDL specification
was done in Xilinx ISE [14]. The experiments with the PB
implemented in hardware have demonstrated that all the
requirements have been satisfied and the PB functions in
close conformity with the specification.

Instruction generator
with random priorities

Random requests Interface support

Interface support

A

B
Parallel HFSM

based on
multiple stacks

Fixed size
memory

with dynamic
cell allocation/
deallocation

Supplementary circuits PB

P
ro

ce
ss

in
g

un
it

Datapath

Fig 6. Implementation of PB in hardware (in FPGA) and supplementary
circuits for experiments.

The buffer has been used in an automatic system for
garage control described in [17] for managing parking slots
and priorities based on accumulation of data about free
parking slots with their priorities for potential parking of
(new) arriving cars. The accumulation is done in a PB,
which takes input data items about released slots and outputs
items with the highest priority. The PB is organized in such a
way that the established priorities might be dynamically
rearranged as well as some items can be removed on
external requests (for example, when some parking slots are
reserved for special purposes). The PB is organized on the
basis of the proposed tree-based structure and it has been
implemented, validated and tested in hardware.

VI. CONCLUSION
Priority buffers enable incoming data to be accumulated

in memory in accordance with additional information
indicating the order in which these data have to be processed
in an embedded system. The proposed buffer is built on the
basis of a fixed size memory that is filled and emptied
dynamically. The number of occupied memory cells is
equal to the number of incoming data that are ordered with
the aid of a binary tree which is dynamically coded and kept
in the buffer.

To construct and to process the tree, a set of parallel and
hierarchical specifications have been suggested and modeled
in software. It is shown that these specifications can be
implemented in hardware with the aid of a parallel
hierarchical finite state machine that also supports an

external interface and dynamic memory allocation and
deallocation. The buffer was modeled in C++ and further
described in VHDL, synthesized, and implemented in
FPGAs of Xilinx Spartan-3 family.

REFERENCES
[1] R.A. Mewaldt, C.M.S. Cohen, W.R. Cook, et al., “The Low-

Energy Telescope (LET) and SEP Central Electronics for the
STEREO Mission”, Space Science Rev., 136, pp. 285–362, 2008.

[2] Proceedings of the Second UK Embedded Forum, Newcastle,
Leicester, Southampton, 2005.

[3] S.A. Edwards, “Design Languages for Embedded Systems”,
Computer Science Technical Report CUCS-009-03, Columbia
University, May, 2003.

[4] H. Lonn and J. Axelsson, “A Comparison Of Fixed-Priority And
Static Cyclic Scheduling For Distributed Automotive Control
Application”, Proceedings of the 11th Euromicro Conference on
Real-Time Systems, York, England, pp. 142-149, 1999.

[5] P.A. Pietrzyk and A. Shaoutnew, “Message Based Priority Buffer
Insertion Ring Protocol”, Electronics Letters, vol. 27, no. 23, pp.
2106-2108, 1991.

[6] H.T. Sun, “First Failure Data Capture in Embedded System”,
Proceedings of IEEE IIT, 2007, May 17-20, Chicago, USA, pp.
183-187, 2007.

[7] V. Sklyarov, “Models, Methods and Tools for Synthesis and
FPGA-based Implementation of Advanced Control Systems”,
Proceedings of the 2nd International Conference on Mechatronics,
ICOM’05, Kuala Lumpur, Malaysia, pp. 1122-1129, 2005.

[8] T. Lin, “Mobile Ad-hoc Network Routing Protocols:
Methodologies and Applications”, Ph.D. thesis, Blacksburg,
Virginia, 2004.

[9] B.W. Kernighan and D.M. Ritchie, The C Programming
Language, Prentice Hall, 1988.

[10] V. Sklyarov, “Reconfigurable models of finite state machines and
their implementation in FPGAs”, Journal of Systems Architecture,
47, pp. 1043-1064, 2002.

[11] V. Sklyarov, I. Skliarova, and B. Pimentel, "FPGA-based
Implementation and Comparison of Recursive and Iterative
Algorithms", Proceedings of the 15th International Conference on
Field-Programmable Logic and Applications - FPL'2005, Finland,
pp. 235-240, 2005.

[12] V. Sklyarov and I. Skliarova, "Recursive and Iterative Algorithms
for N-ary Search Problems", International Federation for
Information Processing, vol. 218, 2nd IFIP Symposium on
Professional Practice in Artificial Intelligence - AISPP'2006, ed.
J. Debenham, 19th IFIP World Computer Congress - WCC'2006,
Santiago de Chile, Chile, pp. 81-90, 2006.

[13] V. Sklyarov, “Hierarchical Finite-State Machines and Their Use
for Digital Control”, IEEE Transactions on VLSI Systems, vol. 7,
no. 2, pp. 222-228, 1999.

[14] Xilinx products, available at: www.xilinx.com.
[15] M. Almeida, B. Pimentel, V. Sklyarov, I. Skliarova, "Design

Tools for Rapid Prototyping of Embedded Controllers",
Proceedings of the 3rd International Conference on Autonomous
Robots and Agents - ICARA'2006, Palmerston North, New
Zealand, pp. 683-688, 2006.

[16] Digilent products, available at: http://www.digilentinc.com/.
[17] V. Skliarov, I. Skliarova, A. Neves, “Modeling and

Implementation of Automatic System for Garage Control”,
Proceedings of the ICROS-SICE International Conference 2009,
Fukuoka, Japan, August 2009.

7th ASCC, Hong Kong, China, Aug. 27-29, 2009 ThA1.1

14

