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Abstract—Sensor faults continue to be a major hurdle for

systems health management to reach its full potential. At the

same time, few recorded instances of sensor faults exist. It is

equally difficult to seed particular sensor faults. Therefore,

research is underway to better understand the different fault

modes seen in sensors and to model the faults. The fault models

can then be used in simulated sensor fault scenarios to ensure

that algorithms can distinguish between sensor faults and system

faults. The paper illustrates the work with data collected from an

electro-mechanical actuator in an aerospace setting, equipped

with temperature, vibration, current, and position sensors. The

most common sensor faults, such as bias, drift, scaling, and drop-

out were simulated and injected into the experimental data, with

the goal of making these simulations as realistic as feasible. A

neural network based classifier was then created and tested on

both experimental data and the more challenging randomized

data sequences. Additional studies were also conducted to

determine sensitivity of detection and disambiguation efficacy to

severity of fault conditions.

Index Terms— modeling, transducers, fault diagnosis

I. INTRODUCTION

S
ENSORS play a central role in modern systems to realize
their full benefits of cost and performance. The degree of

autonomy of these systems is highly correlated with the
number of sensors used in those systems. Concepts like
guaranteed uptime also mandate continuous state analysis with
a respective increase in use of sensors.

However, as systems have become more reliable as a
whole, sensors have attained the reputation as being the “weak
link”. Indeed, sensor failures have been responsible for highly
publicized system breakdowns such as the aborted take-off of
the space shuttle. Particularly for systems that require very
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high overall reliability combined with the need to keep weight
low, there is a reluctance to add more sensors for that reason.
Where sensors are used, they are configured with up to
quadruple redundancy to be able to deal with sensor failure –
which, as in the cited case, may not prevent operational
disruption (depending also on the fault handling logic). This,
in contrast to the general trend described above, has
hamstrung the proliferation of system health management
systems and consequently the potential technical advances of
these systems.

Besides the weight addition, redundant sensors are not
always feasible due to considerations of cost, space
constraints, electrical/power constraints, and complexity
increase. Any new sensor has to “work its way on-board”.

It is therefore critical to have an understanding how sensors
fail in order to mitigate the effects of off-nominal sensor
behavior. While sensor fault detection and diagnosis are well
addressed in the literature, there is no consensus on
classification and nomenclature for sensor faults. Equally
sparse are research efforts on characterization of the various
classes of sensor faults and efforts to develop realistic sensor
fault models that allow the simulation of fault effects and the
study on the impact of the systems they are used in. Such
models and associated simulations would also allow the study
of sensor suit development; testing of fault detection,
isolation, and recovery algorithms; and assessment of
prognostic algorithm performance.

The paper starts with classifying and summarizing fault
modes for the most common sensor types used in the
aerospace industry. A brief overview of the state-of-the-art
diagnostic techniques for sensor faults is then provided. After
that the discussion shifts to describing experiments conducted
by the team in simulating and diagnosing sensor faults.
Finally, the results of the study are discussed and plans for
future work outlined.

II. SENSOR FAULT MODES

Success of any health monitoring system heavily depends
on the reliability of the employed sensors. In abstraction, a
sensor fault may be defined as an unexpected deviation in the
observed signal output in the absence of any anomalous
condition in the system under test. Sensor faults occur due to
various reasons, like manufacturing inefficiencies, wear and
tear with long term usage, incorrect calibration, or
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mishandling. That often results in some physical deviation
from design specifications within the sensor body, which in
turn leads to unexpected outputs. From a fault tolerant control
systems point of view, it is usually sufficient to identify the
erroneous behavior of a sensor such that no unintended
feedback is sent to the controller. System health monitoring is
more concerned with the type of deviation observed from the
normal expected output, irrespective of the actual physical
damage that causes it. However, given the central role that
sensor faults play in advancing system health management, it
is imperative to have a good understanding of the various
failure mechanisms within the sensors. Mapping failure
mechanisms to resulting behaviors is critical to properly
model sensor faults.

One can establish five basic behavioral sensor fault
categories:

Bias: A constant offset from the nominal statistics of the
sensor signal. Another way to describe bias is as the sensor
output at zero input. Bias can occur due to incorrect
calibration or physical changes in the sensor system. The
governing equation is Yf = X + 8 + noise, where 8 is the
constant offset value. A time variant 8 results into drift
failures.

Drift: A time varying offset from the nominal statistics of
the sensor signal. Generally, only linear drifts have been
modeled in the literature. However, a non-linear drift may be
possible. Drift failures may be represented as Yf = X + S(t) +
noise, where S(t) is the time varying offset factor.

Scaling (or gain failure): Magnitudes are scaled by a factor
a(t) where the form of the waveform itself does not change
[1]. Scaling can be represented by Yf = a(t)* X + noise, where
0 < a(t) < oo is a scaling constant that may be time varying.

Noise: A random time series is observed. For analytical
simplicity it is usually assumed that the noise is zero mean
unless some information is available otherwise. It may be
represented as Yf = noise.

Hard Fault: The sensor output is stuck at a particular level
expressed by Yf = C + noise, where C is a constant. In general
there are three sub-categories for hard failures.
1) Loss of Signal: represents the complete loss of sensor

data where the output from the sensor is zero (C=0) [1].
2) Stuck Sensor: represents the situation where sensor output

is stuck at a constant value.
Intermittents: Deviations from normal readings appear and

disappear several times from the sensor signal. The frequency
of such signatures is generally random. Intermittents can
appear in any of the failure modes described above. Due to
their random nature, they are the most difficult to track,
identify, and account for in diagnostics algorithms.

Other categorizations exist - for example one that rates the
quality of the sensor faults [2]. In particular, tame faults, are
fault signals that are both close to nominal signal range and
somehow correlated to it [1]. Faults such as bias and drift may
fall into this category. Additive faults (like bias and drift) have
been also classified into deterministic (constant offset) or
semi-deterministic (offsets jump at random intervals and with
random amplitudes) [3].

III. SENSED PHENOMENA

To be able to better model sensor faults, it is important to
have an insight into the basic operating principles of the
common sensors and the most common fault mechanisms. The
phenomena discussed here include only those of most interest
to aerospace systems, i.e. the ones encountered in temperature,
acceleration, pressure, strain, force, load, current, and position
measurements. Several other types of sensors commonly used
in aerospace applications, such as attitude, direction, radiation,
flow, and others, are left for future studies.

Measurements done by a sensor rely on a particular
physical property or behavior of materials. With suitable
infrastructure, these properties can be used to sense / measure
several distinct phenomena. For instance, a resistance strain
gage can be used to measure strain, stress, loads or pressure,
depending on the application. The mechanism of a particular
type of fault and its frequency depends, of course, on the
physical design of the sensor. The sensor mechanisms covered
and their corresponding uses (in italics) are as follows:
1) Thermocouples : temperature

2) Resistance Temperature Detectors (RTD) : temperature

3) Piezoelectric: acceleration, vibrations, pressure, strain,

force

4) Piezoresistive: strain, force, pressure, acceleration

5) Resistive strain: strain, force, pressure

6) Hall Effect: current, linear displacement

7) Magnetostrictive effects: linear displacement

8) LVDT: linear displacement, acceleration

This list is certainly not complete, but is representative of
the more commonly used sensors. Lastly, it needs to be
mentioned that while the root causes of a sensor fault can be
either a failure of the sensing mechanism itself or of the
electrical system interpreting the data, only the former cases
are discussed in this paper.

A. Thermocouples

Thermoelectric EMF is created in the presence of a
temperature difference between two different metals or
semiconductors. Thermocouples use this effect, called the
Seebeck effect [4], to detect the temperature difference
between two sources. A thermocouple circuit consists of two
metals, e.g. copper and constantan, with two junctions at
temperature To (test junction) and Tr as reference temperature
(Fig. 1). Thermocouples have the widest temperature range of
all sensor technologies, -200 to +2315°C, and can be used in a
wide variety of environments [5].

Fig. 1 : Thermocouple with External Reference Junction [6].
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Fig. 2 : A standard Platinum Resistance Thermometer [5].

Faults in Thermocouples:

1) Degradation, corrosion or breakage of junction leading to
bias, scaling, intermittent and/or complete failure [6].

2) Inhomogeneous changes in composition of the material
taking place due to long exposures to high temperatures,
resulting in thermoelectric drift. [7, 8].

3) When a thermocouple is bonded to a test surface,
degradation of this bond may lead to the junction being at
a lower temperature than the body, thus causing a bias.

4) A short (or degradation) in the lead wires due to
temperature, leading to complete failure, bias, or drift [4].

5) Change in the reference temperature leading to bias [6].
6) Change in the thickness of the conducting leads causing a

change in resistance, leading to a scaling error.

B. Resistance Temperature Detectors (RTD)

In an RTD, resistance increases with rise in temperature [4]
due to the positive temperature coefficient of electrical
resistance of metals. Precision RTDs consist of a thin
insulated platinum wire encapsulated in a ceramic or metallic
casing (Fig. 2). These casings are then immersed into the fluid
or bonded to the surface for temperature measurement. Their
normal operation range is –184.44°C to 648.88°C in this
range they are both more accurate and have more linear
characteristics than thermocouples [4]. No reference
temperature is needed for the RTDs, but they have to be
calibrated carefully at a particular temperature.

Faults in RTD’s:

1) Over time exposure to high temperatures can cause a drift
in the values of the RTD to several degrees per year [4].

2) A current passing through the RTD causes self heating of
the element that can lead to a bias in the readings [4, 9].

3) Thin Film RTDs experience change in resistance due to
surface stresses, which can lead to a bias in the readings.

4) Shock and vibration put strain on resistive wire and
change its characteristics, leading to drift [4].

5) Degradation of insulation can cause a short between the
coils and result in a lower resistance reading, leading to
bias [4].

C. Piezoelectric sensors

Piezoelectricity is the ability of some materials (certain
crystals and ceramics) to generate an electric potential in
response to applied mechanical stress. A typical piezoelectric
sensor consists of a piezoelectric crystal which is bonded to
the surface of interest. Electrodes are connected to the either
end of the crystal to sense the electric potential (charge) which
can then be related to the stress experienced by the crystal -
using piezoelectric and stress coupled equations (Fig. 3). They

have a wide frequency range, from 0.01 Hz to 1 MHz [5], and
temperature range from -270°C to +650°C.
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Fig. 3 : Piezoelectric accelerometer in compression mode [5].

Depending on the type of stress applied, a piezoelectric crystal
can be used for sensing the following properties [4]:
1) Accelerations, from the stress induced in the piezoelectric

crystal by a seismic mass (compression, flexure, or shear
modes).

2) Vibrations, when mounted directly onto a surface.
3) Strain, when a thin piezoelectric crystal is bonded to a

surface.
4) Pressure, either sensed directly by a piezoelectric disk

(for high pressure applications) or via strains induced in a
diaphragm.

5) Forces, by transmitting them directly through the crystal.

Faults in piezoelectric sensors:

Debonding due to degradation of the interface between
the piezoelectric crystal and the substrate (or the seismic
mass) over time can lead to either lower stresses being
transferred between them resulting in a scaling error
(scale factor < 1) or a change in the frequency response of
the crystal, which may, in turn, affect high frequency
behavior of the sensor [10].
Cracking of the crystal due to fatigue or shock causes
scaling of the outputs from the sensor or a frequency shift
of the sensor [11].
Depolarization of the crystal takes place if the crystal is
subjected to temperatures above the operating range, even
for a small time, that can result in a partial or complete
loss of sensing capabilities [12].
Electric or mechanical fatigue of the crystal over time
causes loss of polarization of the crystal, leading to
scaling errors in the sensor [12].
Loss of contact between the crystal and the lead wires
over time due to fatigue or shock can lead to intermittent
or complete failure.
Temperature variations can lead to a change in the
electro-mechanical properties of the crystals, resulting in
bias or drift.

D. Piezoresistive sensors

The piezoresistive effect is the change in electrical
resistance of a material due to applied mechanical stress
(which is different from the change in resistance due to
dimensional changes, as in a strain gage). Ceramics (or
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semiconductors) are typically used as the sensing material
since metals have very high gage factors (Fig. 4).
Piezoresistive sensors can be used in static applications and
moderately high frequencies up to 2500 Hz [4] and in thermal
environments as high as 540°C [5]. Their operating range is
up to 25G and they can withstand shocks of up to 2000G [9].
The principles of operation of piezoresistive sensors are the
same as that of piezoelectric sensors, with the difference in the
frequency range and shock characteristics. Piezoresistive
sensors can be configured in the same ways as piezoelectric
ones - to sense accelerations, forces, strains, pressures and low
frequency vibrations.
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Fig. 4 : An absolute pressure sensor with a hermetically sealed vacuum

reference chamber on one side of the sensing element [5].

Faults in Piezoresistive Sensors:

1) Debonding of the interface between the piezoresistive
element and the substrate can lead to a lower degree of
stresses transfer to the piezoresistive element, which in
turn can lead to a scaling error.

2) Cracking of the piezoresistive element due to excessive
fatigue or shock can lead to a scaling error and, in
extreme cases, a complete failure.

3) Loss of contact between the element and the lead wires or
electrodes can lead to intermittent or complete failure of
the sensor.

4) Temperature variations can lead to a change in the
electro-mechanical properties of the element, leading to
bias in the readings.

E. Resistive Strain Gage

Resistive strain gages rely upon the change in the resistance
due to the dimensional changes in the material (as opposed to
change in material characteristics for piezoresistive materials)
[9]. These gages consist of a grid of very fine wire or foil
bonded to a backing (Fig. 5). The electrical resistance of the
grid varies linearly with strain. Strain gages are good for
detecting local strains, but have lower gage factors than the
piezoresistive gages, which is compensated for by making
them larger in size. They can generally be used only in
applications which are static or have low vibration
frequencies. Strain gages are also used in load cells or
pressure transducers by measuring the stresses in the
diaphragm, and in some cases, for measuring temperatures
[5].

Metallic Foil Copper Coated Tabs

I T
Encapsulation	 Backing

Fig. 5: A Typical Foil Strain gage [13].

Faults in Strain Gages:

1) Gaps in the bonding layer between the strain gage and the
substrate lead to either bias or scaling error, depending on
the nature of the void. Debonding of the gage will result
in the same faults. This is of critical importance since the
bond area in a strain gage is much larger than that in
piezoresistive or piezoelectric sensors [6].

2) Fatigue of the wire or foil can lead to cracks, causing
either bias or scaling (change of gage factor) fault. In
extreme cases, complete failure may occur [13].

3) Temperature variations between the loaded and the
temperature-compensated strain gage can lead to bias
[13].

4) Loss of contact between the lead wires and the tabs on the
strain gage leads to intermittent or complete failure of the
sensor.

F. Hall effect sensors

A voltage potential VH, called Hall voltage, appears across a
conductor when a magnetic field is applied at right angles to
the current flow. Its direction is perpendicular to both the
magnetic field and the current and its magnitude is
proportional to both the magnetic flux density and the current
(see Fig. 6)

Magnetic
Flux

^li'rA

Hall
Voltage	 Applied

Current

Fig. 6: a) Hall effect in a conductor, b) a hall effect current sensor [4].

The magnetic field causes a gradient of carrier
concentration across the conductor A larger number of carriers
on one side of the conductor, compared to the other side,
causes a voltage potential VH, [4]. Typically a ferrite crystal
around a current carrying conductor is used to concentrate the
magnetic field of the current, around a sensor. A bias current
is then applied to the sensor and Hall voltage measured, which
is proportional to the current in the main conductor. A Hall
effect displacement sensor can utilizes a Hall sensor and a
movable magnet, with an output proportional to the distance
between the two.
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noise.
Faults in Hall effect sensors:

1) Flaws in the core, such as degradation (corrosion, cracks),
residual magnetic fields, or core breakage can result in a
bias.

2) Changes in the bias current through the sensor can result
in bias or scaling.

3) Temperature variations can change the magnetic
properties of the ferrite core, resulting in decrease (or
increase) of the induced magnetization, causing a bias in
the readings.

4) Changes in the orientation of the induced magnetic field
in the sensor (due to mechanical shocks or other reasons)
can change the value of Hall voltage and lead to a scaling
error.

G. Magnetostrictive Sensor

Ferromagnetic materials such as iron and nickel display the
property of magnetostriction, where application of a magnetic
field causes a strain in the crystal structure, resulting in a
change in size and shape of the material [4]. To measure
displacement, a moving magnet forms the “target”, marking
the position. The magnet’s field, acting on a magnetostrictive
wire, creates an ultrasonic pulse in the wire when a current
pulse is passed through the wire. The time interval from the
current pulse to the detection of the ultrasonic pulse at the end
of the wire is used to determine the position of the magnet
along the wire (Fig. 7) [9].

Magnetic field of current pulse interacts with field of the magnet
to produce strain pulse traveling at sonic velocity

I	,`^	 n I

Current

^i Pulse

Strain Pulse	S

N
S ` turns into electrical

V signal	 N

S
Moving Position
Magnet

Fig. 7: Magnetostrictive principle for displacement measurement [ 14].

Faults in magnetostrictive sensors:

1) Changes in temperature cause a change in the velocity of
propagation of sound through the magnetostrictive wire,
which can lead to bias. Temperature also changes the
magnetostrictive properties of materials, resulting in a
bias [15].

2) Degradation (corrosion) of the ferromagnetic wire can
lead to changes in the magnetosctrictive and ultrasonic
properties, resulting in bias.

3) Loss of contact at the receiving end for the strain pulses
can result in intermittent or complete failure.

4) Stray magnetic fields (particularly strong fields) can
cause a random error in readings or result in excessive

H. Linear Variable Differential Transformer (L VDT)

An LVDT is a position-to-electrical sensor whose output is
proportional to the position of a movable magnetic core. The
core moves linearly inside a transformer consisting of a center
primary coil and two outer secondary coils wound on a
cylindrical form (Fig. 8). The secondary windings are wound
out of phase with each other. Moving the core, results in a
differential voltage between secondary coils, which varies
linearly with the core’s position [5]. The LVDT can be
coupled with a spring-mass system to detect the displacement
of the spring to measure acceleration or force [4].

High Permeability	High Density Glass Filled
Magnetic Shell	 Polymer Coil Form

Coil Assembly

Core

I

I	Secondary	P	Primary	 Secondary

Stainless Steel Mounting
and End Caps

Fig. 8: Construction of a LVDT [4].

Faults in LVDT’s:

1) Short in one of the coils can lead to either a bias or
complete failure of the sensor.

2) Leakage of magnetic fields between the secondary coils
can lead to a bias [5].

3) Changes in the primary voltage lead to a smaller induced
voltage in the secondary, leading to a scaling error.

Table 1 shows the range and median for the different fault
classes that have been found in the literature. This will
provide an aid in modeling the sensor faults with realistic
magnitudes when superimposed onto real data. It will also
allow simulation of diverse sensor faults and subsequent
training of algorithms to detect these sensor faults and
distinguish them from system component faults. The number
of references in literature showing actual sensor faults is
found to be very limited; hence we list these statistics for a
range of different sensors.

TABLE 1 : TYPICAL RANGES FOR SENSOR FAILURE VALUES AS AVAILABLE

FROM THE LITERATURE.

Fault	Range Median Remarks	Sensors & References

Unknown [16]

Bias	
1.2% to 20% % change over Air flow [17]
60%	 the nominal value Temperature, Fuel Flow,

rotor speed [18]

0.3 to 0.7 0.45	Scale Factor	
Piezoelectric [10, 12]

Scaling	 Accelerometers [1]

2.5 to 4.8 3.28	Scale Factor	Accelerometers [1]

% change over

6% tou	
the nominal	Unknown [16]

Drift	
75%	

29%	value, reported at Fuel Flow [17]
the end of the	Temperature [18]
drift (or data set)
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Unknown [16]

%peak to peak
Pressure [17]

°
Noise	

2.5% -to
20%	values over the

Temperature, Fuel Flow,
250%

nominal value
rotor speed [18]
Accelerometers [19]
Gyroscope [20]

Over a range of

Intermittent	2 to 10
20% to 29% of

Dropout	drops
8 drops the reported data Unknown [16]

set, with median
range of 23%

IV. SENSOR FAULT DETECTION AND IDENTIFICATION (FDI)
TECHNIQUES

The problem of fault detection and disambiguation has been
approached from various angles in the past three decades. A
wide variety of techniques have been reported; they can,
however, be categorized into four basic categories. The
emphasis on each of these categories has changed with time
and all come with their own strengths and shortcomings. A
brief overview of such approaches is presented here.

Most of the early work has focused on model-based sensor
fault detection and disambiguation methods which, in general,
require mathematical models of the system under investigation
and utilize analytical redundancy generated by these models
[3, 21]. The majority of these approaches first compare the
observed sensor output and parameter estimates obtained from
the model to compute residuals. There are few distinct
categories for model-based approaches [22]. Parity
approaches compute a residual vector that is zero when no
fault is present and non-zero otherwise, to detect that a fault
has occurred. Various parity approaches include Parity Space
Approach (PSA) [23], Parity Equation Approach (PEA) [24],
Generalized Likelihood Ratio Test (GLT), and Least Square
Residual Approach (LSRA). Another approach is based on
Bank of Observers (state estimators) that offer to cancel out
the contribution of noise and model inaccuracies [25-27].
State Estimation Approaches based on Kalman Filters
generate an estimate that can be used to compute residuals by
comparing it with measured states [28, 29]. Other model based
approaches include Fault Detection Filters [3], and Parameter
Identification Approaches [30] that model various faults and
track corresponding model parameters. Sometimes, the
performance of analytic redundancy based FDI techniques is
limited by modeling uncertainties.

In the recent years a great emphasis has been laid on data-
driven methods as well, where signal processing and artificial
intelligence techniques are employed. Such techniques are
especially important in situations where the complexity of the
system make it extremely difficult to model. These methods
are relatively simpler and quicker to implement. Features are
computed using standard statistical estimates or utilizing
specialized domain knowledge [31, 32]. Various machine
learning approaches, like Artificial Neural Networks (ANN),
are very popular in the literature. Furthermore, expert system
based approaches have also been used, where history data is
used to construct a set of rules to diagnose system and sensor
faults. Hybrid techniques have been developed to complement

various individual techniques. For instance, in [24] authors
propose a hybrid method that combines Parity Equation
Approach (PEA) with wavelet based signal processing to
avoid the need of a mathematical model of the aircraft. A
pseudo model-based approach based on Principal Component
Analysis (PCA) has been proposed in [29] where PCA is used
to compute residuals in the absence of a mathematical model.

Therefore, a significant emphasis has been laid on generic
fault detection techniques borrowing ideas from system
diagnostics; however, the efforts on detecting specific sensor
faults are less evident. In the absence of real sensor fault data
it may be desirable to simulate realistic fault scenarios and
develop specific techniques that will address more robust
solutions to sensor fault detection and disambiguation from
system faults. That will, in turn, improve the confidence on
overall system diagnostics.

V. EXPERIMENTAL SETUP

A ballscrew electromechanical actuator was used as the
plant in our experiments. The experiments were performed on
a test stand located at Moog Inc. The test actuator (Moog
MaxForce 883-023) was connected to the hydraulic load
cylinder by a rotating horn. Control and data acquisition were
performed by real-time software running on dSPACE
platform. Table 2 contains a list of all of the sensors used on
the test platform, as well as their associated sampling
frequencies.

Vibration was measured at four points on the test actuator,
as shown in Fig. 9. All three axes of vibration were measured,
with an additional measurement in the Z-direction by the
accelerometer mounted directly on the nut of the ball screw.
Temperature measurements were provided by a T-type
thermocouple on the nut and an RTD embedded in the stator
of the motor, as shown in. Fig. 9. Load is sensed by a Model
75 Sensotek 50,000 lbf. load cell. The position of the rod end
of the test actuator was measured by a Trans-Tek 0219-0000
Linear Differential Voltage Transducer (LVDT).

TABLE 2 : LIST OF SENSORS.

Closed loop
(3) LEM LA

(compensated),
3-Phase Currents	25-P Current 24 kHz

works on
Transducers

Hall effect

X-Y-Z	 (3) PCB Model Piezoelectric ceramic,
Accelerometers	352A24

24 kHz
shear

Measurement Sensor Type Sample Rate

Model 75 Bonded foil strain
Load Sensotec Load gage compression 3 kHz

Cell and tension

Position
Trans-Tek

LVDT 3 kHz
0219-0000

Nut Temperature
T-type Copper-constantan

3 kHz
Thermocouple thermocouple

Motor Temperature
Integrated

RTD (thermistor) 3 kHz
Stator RTD

Torque Producing T200 Motor
Hall effect sensor 3 kHz

Current Drive Output

Motor Velocity
T200 Motor

Resolver 3 kHz
Drive Output
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Nut Accelerometer PCB Model
	Piezoelectric ceramic,

24 kHz
352A24	shear

LEM LA 25-P current transducers were used on each motor
phase to sense the phase currents. For data acquisition, the
Moog T200 motor drive output an analog signal representing
the torque producing current, as well as the motor velocity.

Y direction Z direction accelerometer
accelerometer Nut housing thermal couple

^-	X direction
accelerometer

Z direction
Motor accelerometer
Thermal Couple

Fig. 9 : Location of sensors on Moog MaxForce 883-023 actuator

A. Tests Performed

Table 3 describes the types of mechanical component fault
cases introduced during the tests.

TABLE 3 : DIFFERENT EXPERIMENTS PERFORMED WITH SEEDED MECHANICAL

COMPONENT FAULTS.

Sensor faults were injected a posteriori, as described in the
next section. Permutations of the following conditions were
used to run 2 x 2 x 2 = 8 scenarios for each of the mechanical
component fault cases:
Motion profile: sinusoid or triangular wave
Load type: constant or spring
Load level: low (860 lbs spring force, 900 lbs constant force)
or high (1725 lbs spring force, 1800 lbs constant force)

For the purposes of training and testing the neural network
based classifier, described in the subsequent sections,
extended duration scenarios were created using the collected
data. These scenarios were designed to preserve the character
of the collected data as much as possible, while extending the
duration to 180 seconds. They contain two segments each –
nominal, to represent a healthy system before the fault
occurred and a faulty segment (90 seconds each). Since on
the test stand the faults had to be seeded before the start of the
tests, due to hardware limitations, nominal data was chosen

from the experiments conducted under the same conditions.
The total number of scenarios produced was 48 - 8
(conditions) x (2 components faults + 4 sensor faults).

VI. SENSOR FAULT SIMULATIONS

Bias: in our experiments bias, injected into temperature sensor
data, was specified as percentage of the average baseline
temperature (80F), calculated over the set of nominal (no fault
injected) scenarios. Gaussian noise was then introduced into
the actual amount of bias added, with a signal-to-noise ratio of
5 (see Fig. 10).
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Fig. 10: Simulating various sensor faults in different sensor signals.

Drift: this fault was also injected into the nut temperature
data. The fault was defined by specifying drift velocity
(distance traveled in a certain period of time). The length of
constant drift velocity segments was randomized (max 1000
data points) and Gaussian noise introduced into velocity value
itself – so for each segment the velocity may be somewhat
different from its neighbors. The signal-to-noise ratio for the
later was set to 5.

Scaling: the signal is amplified by the scaling factor, also
with Gaussian noise injected (SNR of 5).

Loss of Signal: sensor data from the point of failure
replaced by all zeros.

VII. CLASSIFIER D IAGNOSTICS SYSTEM

Given the complexity of the experimental data and the
variety of failure modes (actuator and sensor failures), a

Experiment Set Description

Baseline Data collected with a nominal actuator just before the
first set of ball return jam tests.

One Ball Return One of the return channels fully blocked. Simulates
Jammed obstruction of the return channel by a detached piece of

insulation or other debris.
Repeatability Tests to determine whether disassembly and reassembly

of actuators affects test results. Five back to back runs
were conducted.

Backlash Tests with undersized balls to simulate backlash
(freeplay)

Spalling The purpose of this series of tests was to determine if a
surface flaw (spall) can be detected using the actuator
sensor suit. Three flaws have been electro-discharge
machined into the screw of the actuator. The flaws were
machined into the entire root of the screw forming a
continuous flaw from crest to crest.
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diagnostic system based on Artificial Neural Networks (ANN)
was designed. A comprehensive analysis of data was carried
out to extract a set of uncorrelated features that would not
only detect various fault modes but also disambiguate between
sensor and system faults. Keeping this requirement of being
able to disambiguate between system and sensor faults, the
confusion matrix was further partitioned into sections that
helped interpret results accordingly. This section explains the
implementation details and enumerates various key aspect of
the classifier diagnostic system.

A. Feature Extraction

Feature extraction is one of the most important steps in
building a successful (accurate and reliable) diagnostic
system. For a successful practical implementation it is
desirable that features are not only be computationally
inexpensive but also explainable in physical terms.
Furthermore, they should be characterized by a) large
between-class and small within-class variance, b) should be
fairly insensitive to external variables like noise, and c) should
be uncorrelated with other features. Keeping these issues in
mind we selected a set of seven features that were expected to
detect and distinguish between a healthy system, two actuator
fault modes, and four different sensor faults (see Table 4).

TABLE 4. FAULT VS. FEATURE MATRIX SHOWING RELEVANCE OF INDIVIDUAL

FEATURES IN DISAMBIGUATING BETWEEN VARIOUS FAULTS

Faults	
Features

TDNut TDMotor	SDx	SDy	SDZ	DI

Return Channel
Ball Jam	

X	I	X	X	i	X	X	i

Spall

Nut
thermocouple X X

Drift

Nut
thermocouple X

Bias
Z Accel. X

Scaling
X Accel
Complete
Failure

In addition, since there were several different experimental
conditions that considerably affect the sensor measurements,
two additional features were designed that characterize the
experimental conditions. Features were calculated every half
second on a one second long sliding window. Thus for each
90 second long segment, under various conditions, 180 feature
points were available. These features are briefly described in
Table 5.

TABLE 5 : VARIOUS FEATURES AS INPUTS TO THE CLASSIFIER FOR TRAINING AND TESTING EXPERIMENTS.

Feature Sensors Definition Fault Modes Rationale

Spall, jam, sensor Nut temperature rises due to increased friction from
Temperature Nut thermocouple,

Absolute deviation from nominal bias spalled nut. Motor temperature rises due to increased
Deviation Motor

temperature range current levels to counter increased resistance
(TD) thermocouple

Temperatures also change due to bias

Nut thermocouple,
A binary feature that assumes the value Sensor drift Monitoring over some period of time can help identify

Drift Indicator
Motor

one, if a finite rate of change of sensor drift and distinguish it from bias, which is not
(DI) temperature is detected within the expected to change continuously in shorter time-

sampling window, and zero otherwise intervals

Signal Standard
Accelerometers: Jam, dead sensor

Jam reflects in increased vibrations of the
Deviation

X, Y, Z on motor Standard deviation of the signal within
accelerometers mounted on the motor. Dead sensor

(SD)
housing and one one sampling window

results in zero output
on the Nut

Load Profile
Characterizes the smoothness of load All Nature of load the profile significantly changes the

Indicator
Position sensor profiles ranging between smooth vibration signature of the system. This difference

sinusoids to rough triangular profiles should be distinguished from failure signatures

Assesses the force on actuator. For All
opposing force motion the force Given combinations of two different load conditions

Force Indicator Position sensor
remains constant, proportional to peak and two load application methods, differences in
loads. For spring motion force varies corresponding sensor signatures should be
with the position and is a fraction of the distinguished from fault signatures
peak loads

B. Diagnostic Classifier

A multi-category classifier was implemented using a three
layer Artificial Neural Network (ANN). The first layer
consisted of nine nodes, with tansigmoid transfer functions,
one for each feature in the input feature vector. The hidden
layer had five nodes with logsigmoid transfer function and the

output layer had seven nodes with logsigmoid transfer
functions one for each of the seven classification categories.
All input features were continuous real-valued and were
standardized to have zero mean and unit variance [33]. Binary
targets were assigned such that of the seven output bits only
the correct category bit was 1 and the rest were 0. Initial
weights for the network were chosen based on standardized
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input ranges to ensure uniform learning [33]. Networks were
trained using the resilient back-propagation (RPROP)
algorithm [34].

C. Evaluation Procedure

Data was divided into two sets for training and testing
purposes based on the experiment load levels. The network
was trained on low load conditions (~900lbs) and was tested
for high load (~1800lbs) conditions. In order to obtain a
meaningful statistic, 30 ANNs were trained and tested for
each experiment and the results averaged. Training was
carried out for 200 epochs. Results were further aggregated in
the form of a confusion matrix as shown below to observe the
False Positive rate (FP), False Negative rate (FN),
Misclassification rate (MC), and Non-Identification rate (NI).
As expected, it was observed that the detection and
disambiguation performance varied with changing sensor fault
magnitudes. Therefore, a sensitivity analysis was carried out
to characterize the effect of sensor failure magnitudes. For
each of the three sensor faults drift, bias, and scaling
corresponding fault parameter was varied one by one over a
wide range of values while keeping other fault parameters
fixed at a predetermined level derived from typical ranges
available from the literature. More specifically, these
predetermined values are temperature bias fixed at an offset of
100% of peak-to-peak magnitude, temperature drift fixed at
0.02 °F/sec, and scaling fixed at 1.5 times. The ranges of
variation for these parameters are shown in Table 6.

TABLE 6. RANGES OF SENSOR FAULT PARAMETER VARIATION FOR CLASSIFIER

SENSITIVITY ANALYSIS.

VIII. RESULTS AND DISCUSSION

Results were aggregated in two ways. First, the
performance was evaluated in terms of sensitivity of metrics
(FP, FN, MC, and NI) from the classifier for individual sensor
faults. Therefore, if parameters for a sensor fault fi, were
varied, the effect was recorded only on the performance of
classifier in classifying the sensor fault fi, even though all
other (system and sensor) fault modes were also present.
Second, an overall performance assessment was made and an
aggregate number was recorded for total FP, FN, MC, and NI
rates for all faults combined as the intensity of a single sensor
fault fi was varied. The metrics for individual sensor faults are
defined as follows.
False Positive: Sensor fault fi is reported when no fault
present.
False Negative: No fault reported when a sensor fault fi

present.
Misclassification: A system fault reported when sensor fault fi

present or sensor fault fi reported when a system fault is
present.

Non Identification: A fault detected but not identified when
sensor fault fi present.

As shown in Fig. 11, the diagnostic classifier implemented
in this study is slightly sensitive to small drifts. For small
drifts it becomes difficult to disambiguate between drift fault
and baseline data, and hence a higher false negative rate. As
drift velocity increases, it is easier to correctly identify a drift
fault. The overall detection and disambiguation performance
is within 5% FP, within 4% FN, less than 2% MC, and NI
generally less than 8% except for low drift velocities where it
is as high as 16% in some cases.
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Fig. 11: Sensitivity of the classifier as drift velocity parameter changes.

Fig. 12 shows the classifier performance for bias sensor
fault. Here the sensitivity of the classifier can be clearly seen.
The reason for this sensitivity can, however, be attributed to
two factors. First, for low bias there is a high false negative
rate as it is difficult to distinguish from baseline data. Second,
several fault modes, like ball jam and spall also result in
increased operating temperatures, just like bias. However,
since jam and spall are also reflected in other features that do
not trigger in the presence of bias, a high non-identification
rate is also observed. In terms of overall performance, once
again less than 4% FP and FN are observed whereas NI goes
as high as 18% for low values of bias. Misclassification rate is
negligible.
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Fig. 12: Sensitivity of the classifier bias parameter changes.

Scaling fault detection performance deteriorates when
scaling coefficient is close to one. As evident from Fig. 13,
it’s easier to detect both a down scaled signal or an up scaled
signal but problems arise when fault signal is very identical to
the healthy signal. For the scaling case, the overall NI rate was
observed as high as up to 29% at scaling values close to one.
FP rates remain low within 5%, FN within 4%, and MC less
than 1% when combined for all fault scenarios.

Sensor Fault Min Value Max Value

Bias 0 500% of peak-to-peak magnitude offset
Drift 0.005 °F/sec 0.25 °F/sec
Scaling 0.1x 5x
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Fig. 13: Sensitivity of the classifier as scaling parameter changes.

Therefore, it can be concluded that in this study, the overall
performance of the classifier, remains consistent with low FP,
FN, and MC rates varying in the range of 0-7%, except for the
NI rate which becomes high in more sensitive ranges for all
three fault modes. Features are needed that are less sensitive to
fault intensity parameters. The sensitivity analysis provides a
useful insight into the fault classification problem where a
classifier must be evaluated for all possible fault scenarios and
designed to provide a more robust fault diagnosis.

IX. PLANS FOR FUTURE WORK

There are a number of different avenues for future work.
First, the set of sensors needs to be more exhaustively
explored for sensors not covered in this article. While a first
stab was taken at examining sensors of most interest within a
narrow application domain, there is still a wide suite of
unexplored sensors. In addition, other fault modes should be
considered. While we have constrained this investigation to
the faults occurring within the sensors themselves, a large
number of faults associated with sensors are due to data
acquisition (analog-to-digital converters, signal conditioning,
etc.), electrical systems supporting sensor operation (power
supplies), and other reasons. Moreover, some sensor fault
types, such as intermittencies should be the subject of closer
examination since they cause a large number of problems in
real systems.

While in this work we have studied a classifier system that
distinguished between sensor faults and system faults, it
should be investigated how these classifiers (or reasoners) can
be scaled to deal with large systems. This can be
accomplished by a system-of-systems approach, by
developing sensor fault tolerant schemes, or by modeling
explicit or implicit function or analytical redundancies.
Classifiers rely on features to allow optimal detection of
sensor faults. While the features described herein focused
mostly on time-domain features, other features (e.g.,
frequency-based feature) should be considered. In practice,
sensor fault detection should go hand-in-hand with
accommodation strategies. The understanding gained in the
underlying mechanisms of sensor faults should be tapped into
when considering new techniques for sensor accommodation.
This should help in making system health management a more
viable.

Another avenue for future work is the verification of the
fault models developed. Experiments with seeded sensor
faults on real systems should be conducted to confirm that the
models behave correctly. To that end, plans are under way to
carry out sensor fault experiments on a new actuator test stand
at NASA Ames by manipulating sensors to induce certain
types of faults and observe their signatures while the system
operates under a variety of load conditions.Among other
topics, it will aid in diagnostic and prognostic work for
position measurement devices, such as LVDTs and
resolvers/encoders, as one of the key feautures of the stand is
an external, high-precision laser-triangulation position sensor

X. CONCLUSIONS

This paper has examined the physical underpinnings of
sensor faults and has mapped them to five main categories.
The ultimate goal has been to enable better systems health
management by providing an insight into the behavior of
sensor faults (as opposed to treating them as black box) which
in turn might lead to improved fault accommodation
strategies. In that spirit, a fault detector/classifier has been
shown that successfully handles the set of faults under study
for a wide range of fault parameters. A major contribution is
the sensitivity of the classifier to variations of the fault
parameters which identifies the regions in which sensor faults
might pose a problem for the health reasoner. This approach
might suggest a methodology of more generally developing
and testing diagnostic systems on a wider range of possible
sensor faults. A comprehensive analysis of sensor faults might
ultimately lead to more robust system health management
reasoners.
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