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Modeling Development of Multimodal Emotion

Perception Guided by Tactile Dominance and

Perceptual Improvement
Takato Horii , Yukie Nagai, Member, IEEE, and Minoru Asada, Fellow, IEEE

Abstract—Humans recognize others’ emotional states such as
delight, anger, sorrow, and pleasure through their multimodal
expressions. However, it is unclear how this capability of emo-
tion perception is acquired during infancy. This paper presents a
neural network model that reproduces the developmental process
of emotion perception through an infant–caregiver interaction.
This network comprises hierarchically structured restricted
Boltzmann machines (RBMs) that receive multimodal expressions
from a caregiver (visual, audio, and tactile signals in our cur-
rent experiment) and learn to estimate her/his emotional states.
We hypothesize that emotional categories of multimodal stim-
uli are acquired in a higher layer in the network owing to
two important functions: 1) tactile dominance and 2) percep-
tual improvement. The former refers to that tactile sensors can
detect emotional valence of stimuli such as positive, negative,
and zero valence more directly than can other sensors due to
characteristics of the nerve systems of the skin. This function
was implemented as semisupervised learning in the model. The
latter refers to developmental changes in the perceptual acu-
ity, which was replicated by refining the variance parameters of
the low-layered RBMs. Experimental results demonstrated that
tactile dominance and perceptual improvement have the role of
facilitating the differentiation of emotional states of multimodal
expressions; however, the influences only appear when both func-
tions are included in the model together. Considering our results
from the psychological perspective may help to elucidate the
neural and social mechanisms of the development of emotion
perception.

Index Terms—Computational modeling, development of emo-
tion perception, infant–caregiver interaction, neural networks for
development, perceptual development, tactile interaction.

I. INTRODUCTION

E
MOTION perception refers to capabilities of recognizing

emotions of others. We, humans, can estimate the other’s
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emotional states such as delight, anger, sorrow, pleasure,

and so on from the other’s multimodal expressions during

interaction [1], [2]. Many researchers studied how humans

acquire the capability of emotion perception in infancy

(e.g., [3] and [4]) although it is not fully revealed yet. For

understanding the developmental changes in emotion percep-

tion, several researchers displayed visual, audio, or audiovisual

emotional expressions of others to infants and young chil-

dren (e.g., [5]–[8]). Walker-Andrews [5] argued that human

infants have only rudimentary capacities to detect, discrimi-

nate, and recognize (or perceive) others’ emotional expressions

at birth; however, the capabilities rapidly develop during the

first year of life. She reviewed many articles about infants’

capabilities of emotion perception and suggested that younger

infants (around five months old) can detect only primary

meaning of emotional expressions of others. On the other

hand, older infants can discriminate and recognize the emo-

tional categories of others’ expressions (e.g., basic emotions)

owing to perceptual development. Grossmann [8] reported that

12-month-old infants showed different reactions to an event-

related potential in their brain when they faced angry and

happy audiovisual stimuli (i.e., facial and vocal emotional

expressions of others). We consider there to be more evidence

in support of the developmental process of emotion percep-

tion in particular findings that the tactile interaction between

infants and their caregivers appear to affect the ability of

emotion perception [9]–[11]. However, these studies observed

only changes in behaviors when the subjects faced emotional

stimuli. Thus, it remains unclear what causes the develop-

mental changes in emotion perception because there are no

methods to present the actual emotional states perceived by

infants.

Cognitive developmental robotics is a research field aimed

at understanding the mechanisms of cognitive development

process by synthetic approaches utilizing human-like robots

and computer simulations [12]. A number of researchers

in robotics have constructed emotional systems and repro-

duced the abilities and developmental process of emotion

(e.g., [6] and [13]–[18]). Blanchard and Cañamero [14]

proposed a general perception-action architecture, which takes

account of imprinting experiences and reward-based learn-

ing methods. Their experimental result of simple human–

robot interaction showed that the proposed model acquired

affective behavior, driven by parameters of the model (e.g.,

“distress” caused by a difference between the current and
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imprinted experiences and “comfort” included by reward stim-

uli). Hiolle et al. [16] and Lones et al. [18] examined

influences of a novel environment and different experiences on

the arousal regulation and behavior learning by agents. These

studies evaluated how robots’ behavior and model parameters

(e.g., arousal and comfort) differentiate through the interaction

between the robots and environment; however, they did not

consider developmental changes in emotion.

To attack this issue with prior studies, we proposed a

computational neural network model for reproducing devel-

opmental changes in emotion perception in infancy based on

infant–caregiver interactions. This model relies on two key

ideas based on psychological studies [5], [11]. The first idea

is tactile dominance: that is, the fact that the sense of touch

can detect the emotional valence of stimuli more directly than

other modalities can. The second idea is perceptual develop-

ment of infants’ multimodal sensation (i.e., sense of vision,

audio, and touch). Our previous approach [19] only focused

on tactile dominance in order to modeling development of

multimodal emotion perception. The model was able to dif-

ferentiate positive and negative emotion; however, it showed

unclear differentiation of negative emotions. We expected that

the perceptual development might induce detailed differen-

tiation of emotional categories. In Section II, we explain

more details of our ideas and hypothesis for representing the

development of emotion perception. The proposed model is

composed of restricted Boltzmann machines (RBMs), which

belong to stochastic neural networks. The first idea, tactile

dominance, was modeled as a semisupervised module of the

proposed network, while the second idea, perceptual devel-

opment, was modeled via a learning process of the variance

parameters in the distribution of input modules (see Section III

for more details). We compared experimental results under

four different conditions (i.e., with or without tactile domi-

nance and with or without perceptual development) by using

virtual infant–caregiver interactions. Finally, we discuss our

model and brain regions related to the module of our model;

the validity of tactile dominance as a contributor to the devel-

opment of emotion perception, which will be discussed in

relation to congenital insensitivity to tactile sensation; and the

future scope of this line of research in Section V.

II. OUR HYPOTHESES

A. Tactile Dominance

Tactile sensation is exceedingly important for infants, and

younger infants tend to use touch to interact with their own

body and external environment, owing to their undeveloped

vision [11], [20]. Interestingly, caregivers also employ the

tactile modality more often than others (e.g., vision and

audio) when interacting with infants [21]. Touch is also

an important modality for emotional communication from a

neuroscience perspective. When we suffer pain from tactile

stimuli, for instance, two types of nerves in our skin are acti-

vated [22], [23]: an Aδ-fiber, which is a myelinated fiber, and a

C-fiber, which is an unmyelinated fiber. C-fibers are considered

more primitive nerves than Aδ-fibers. Björnsdotter et al. [24]

examined the different anatomical mechanisms of C-fibers that

transmit positive emotional valence due to the touch. Such

C-fibers are called “C tactile (CT) afferents.” CT afferents

are distributed over hairy skin and respond to gentle contact

(e.g., stroking the surface of the skin) at a velocity range of

1–10 cm/s. They concluded that CT afferents help humans

experience positive emotions and enhance the social aspects of

human–human interaction through skin contact. Importantly,

C-fibers, besides detecting the emotional valence of touch,

deliver the information not only to the somatosensory area of

the brain but also to the limbic system (e.g., the insular cor-

tex and thalamus) that is known as an emotional brain region.

However, these communicative functions of touch have been

neglected in modeling studies of emotion.

We hypothesize that tactile communication allows infants to

perceive the emotional valence, a value of emotional stimuli

[e.g., positive, negative, and nonvalued (zero value) infor-

mation] from others’ multimodal expressions. For instance,

touching the skin of infants softly might elicit a positive

emotional valence, whereas more forceful contact or pinch-

ing might elicit a negative emotional valence during the

interaction. Consequently, the emotional valence from the

sense of touch might aid to perceive emotional categories of

other sensory signals during infancy.

B. Perceptual Development

Humans’ sensory organs develop during the fetal

period [25], whereas their perceptive faculties develop

after birth over the course of one year. For instance, infants’

visual acuity increases from birth to six months of age [26].

Furthermore, for auditory perception, infants’ ability to

discriminate frequencies improves from 3, 6, to 12 months

after birth [27].

Walker-Andrews [5] studied the development of emotion

perception from the viewpoint of the influence of percep-

tual development during the first year of life in infancy. By

reviewing many studies that considered the development of

emotion perception and perceptual development in the sense of

vision and audio, she claimed that younger infants (around five

months old) can notice primal information of the emotional

meaning of others’ expressions (e.g., positive or negative).

She also claimed that older infants (around one year old) are

able to discriminate and then recognize the emotional states

(e.g., basic emotions) of others from their expressions because

perceptual development differentiates the affective information

from the others multimodal expressions.

Relatedly, researchers have explored the influence of percep-

tual development on category generalization [28], [29]. They

compared the tendencies in classifying new objects between

children at different ages. The results showed that younger

children (around five years old) classified new objects based

on holistic similarity, whereas older children (around ten years

old) used dimensional similarity (e.g., the size or color of

objects) for such classification. They claimed that these dif-

ferences in the tendency for object classification depended on

developmental changes in perceptual resolution.

In line with these past findings, we hypothesize that per-

ceptual improvement in multiple modalities also affects the
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Fig. 1. Example of a face-to-face infant–caregiver interaction. The infant
perceives emotional signals from the caregiver using three kinds of modalities:
visual, auditory, and tactile. The caregiver’s expressions are consistent among
the three modalities and induce the same emotional state in the infant as in
the caregiver.

development of emotion perception. Specifically, changes in

infant’s perceptual ability might induce gradual differentia-

tion of emotion perception from ambiguous emotion (e.g.,

emotional valences) to categorical emotions (e.g., basic emo-

tions [1]).

III. COMPUTATIONAL MODEL FOR DEVELOPMENT OF

EMOTION PERCEPTION

In this section, we first introduce our assumptions for

modeling the development of emotion perception in infancy.

Then, we describe the basic idea, the proposed model and its

computational architecture with the learning process. Finally,

the dataset of multimodal emotional expressions simulating

infant–caregiver interactions is explained.

A. Assumptions of the Interaction

We focus on face-to-face multimodal interactions between

an infant and a caregiver. Fig. 1 illustrates such an interaction,

where the infant perceives stimuli from three kinds of modal-

ities: 1) vision (focusing on the caregiver’s face); 2) audition

(receiving the caregiver’s voice); and 3) touch (detecting the

caregiver’s touch). For instance, when the caregiver tries to

make her/his infant happy, the infant will see the smiling

face of the caregiver, hear her happy voice, and feel her

gentle touch. Here, we assume that multimodal expressions

of the caregiver are consistent among the three modalities.

Furthermore, for the sake of simplicity, we suppose that the

infant is receiving interaction signals only from the caregiver.

B. Proposed Model

Fig. 2(a) shows the structure of each RBM, which is a

component of the proposed model, and Fig. 2(b) provides

an overview of the proposed model. The model comprises

two types of modules: sensory and emotion [see Fig. 2(b)].

There are three sensory modules relating to three different

sensory modalities (i.e., visual, auditory, and tactile), and

these modules process low-level sensory signals observed in

(a)

(b)

Fig. 2. Computational model for the development of emotion perception
based on tactile dominance and perceptual improvement in infancy. vi and hj
are the activations of the ith visible layer and the jth hidden layer, respectively,
and wij is connection weight of their relative weight in (a). The three lower
RBMs denoted by blue connections (i.e., the region enclosed in broken lines)
in (b), constitute sensory modules, which process different modality signals
independently. The region enclosed within the red solid line in (b) denotes
the emotion module. The red arrows with BP character indicate that the con-
nection weights were modulated by back propagation in the model training
(see Section III-C).

infant–caregiver interactions. The emotion module acquires the

representation of emotional states by integrating multimodal

signals observed in the sensory modules. Our challenge is to

propose a biologically and neurologically plausible mecha-

nism for the development of emotion perception. To address

this issue, we constructed each module by adopting stochas-

tic neural networks called RBMs [30], [31]. The reason why

we employed the RBM is that its learning mechanism corre-

sponds to a well-known theory of the human brain mechanism

called free-energy principle [32]. The free-energy principle

proposed by Friston hypothesized that the fundamental mech-

anism of the human brain is the reduction of prediction error

by the free-energy minimization. To propose the computational

model based on the theory might help us to comprehend the

mechanism of the development of emotion perception.

First, we introduce two types of RBM below: the

conventional RBM, which deals with binary signals

(i.e., Bernoulli–Bernoulli RBM), and another type dealing with

continuous signals (i.e., Gaussian–Bernoulli RBM). These two

types of RBMs were adopted for the emotion and sensory

modules, respectively.

1) Restricted Boltzmann Machines: An RBM [30], [31] is

a kind of artificial neural network, and consists of two lay-

ers [Fig. 2(a)]. One is a visible layer, which receives input

signals, and the other is a hidden layer, which represents the

latent signals of the input signals. The RBM is able to extract

various features from input signals by acquiring latent signals,

which can then be used to reconstruct the input signals in an

unsupervised manner [33]–[36]. We used RBMs for our model
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because this characteristic allows the model to represent emo-

tional states by integrating and abstracting multimodal sensory

signals from the infant–caregiver interaction.

Fig. 2(a) illustrates the structure of the RBM. vi is the acti-

vation of the ith unit in the visible layer, which receives input

signals, while hj is the activation of the jth unit in the hidden

layer, which represents the latent signals of the input. Each

unit has connections to all other units except for those in the

same layer, and all connection weights wij are symmetrical

(i.e., wij = wji). A Bernoulli–Bernoulli RBM handles only

binary signals for both visible (i.e., vi ∈ {0, 1}) and hidden

units (i.e., hj ∈ {0, 1}). The activation probabilities for these

units are given by

p
(

hj = 1|v
)

= g

(

bj +
∑

i

viwij

)

(1)

p(vi = 1|h) = g

⎛

⎝ai +
∑

j

hjwij

⎞

⎠ (2)

where g(x) is a logistic sigmoid function 1/(1+exp(−x)), and

ai and bj are biases corresponding to the ith visible and jth

hidden units, respectively. Thus, the RBM not only can extract

features from input signals as hidden activations [as per (1)]

but also can reconstruct the input signals from the extracted

features [as per (2)].

The parameters θ = {a, b, w} of the RBM are trained

through the minimization of reconstruction error between

actual input signals and reconstructed input signals calculated

in (1) and (2), respectively. This process is replaced by the

minimization of cross entropy, denoted by L, between two

probability distributions: p(v) and p(v|h, θ)

L = −
∑

x

p(v) log p(v|h, θ). (3)

Cross entropy corresponds to the distance between two prob-

ability distributions, where p(v) and p(v|h, θ) are the distri-

butions of actual and reconstructed input signals, respectively.

In fact, the minimization of cross entropy in the RBM cor-

responds to the minimization of the free-energy (i.e., this

objective function relates to free-energy principle [32]).

In order to derive update rules for the model parameters, we

differentiate cross entropy using the traditional gradient-based

method. The update rules for the parameters are given by

�wij = ǫw

(

〈vihj〉data − 〈vihj〉recon

)

(4)

�ai = ǫa(〈vi〉data − 〈vi〉recon) (5)

�bj = ǫb

(

〈hj〉data − 〈hj〉recon

)

(6)

where the angle brackets 〈·〉data and 〈·〉recon denote the expecta-

tions under the distributions of actual and reconstructed input

signals, respectively, and ǫw, ǫa, and ǫb are the learning rates

for the corresponding model parameters. We update the param-

eters by adding their values to subsequent ones in the training

(i.e., wt+1
ij = wt

ij + �wt
ij; here, t is a learning step). For a

detailed account of the learning process of RBMs, see [31].

In order to represent the continuous values of sensory sig-

nals, we replaced the binary visible units of the RBMs with

Gaussian units [37]. The activation probabilities for the visi-

ble and the hidden units of this Gaussian–Bernoulli RBM are

given as

p
(

hj = 1|v
)

= g

(

bj +
∑

i

1

σ 2
i

viwij

)

(7)

p(vi = v|h) = N

⎛

⎝v|ai +
∑

j

hjwij, σ
2
i

⎞

⎠ (8)

where N (·|µ, σ 2) denotes the probability of a normal distribu-

tion with a mean µ and a variance σ 2, and σi is the standard

deviation associated with the ith Gaussian visible unit. The

probability function of the hidden units is different from that

of (1), because of inclusion of the variance of the visible units.

More specifically, visible activation with a small variance is

more weighted toward the hidden activations than that with a

large variance in (7).

Furthermore, the update rules must be modified

because the data probabilities, p(v) and p(v|h, θ), of

the Gaussian–Bernoulli RBM are different from those

of the Bernoulli–Bernoulli RBM. The rules for the

Gaussian–Bernoulli RBM are given by

�wij = ǫw

(〈

1

σ 2
i

vihj

〉

data

−

〈

1

σ 2
i

vihj

〉

recon

)

(9)

�ai = ǫa

(〈

1

σ 2
i

vi

〉

data

−

〈

1

σ 2
i

vi

〉

recon

)

(10)

�bj = ǫb

(〈

hj

〉

data
−

〈

hj

〉

recon

)

. (11)

In addition to model parameters wij, ai, and bj, we need

to update another parameter σi to minimize the cross entropy

between p(v) and p(v|h, θ), because these probabilities are

modulated by the variance. σi is updated via a surrogate param-

eter zi, which is defined as zi = log σ 2
i because the variance σ 2

i

takes only positive values. The update rule for zi is given by

�zi = ǫze
−zi

⎛

⎝

〈

1

2
(vi − ai)

2 −
∑

j

vihjwij

〉

data

−

〈

1

2
(vi − ai)

2 −
∑

j

vihjwij

〉

recon

⎞

⎠. (12)

Through this modulation, each variance is expected to be

closer to the actual variance of the input signals. As the

variance becomes closer to 0.0, the more strongly the input

signals contribute to the probabilities of the hidden activations.

Similarly, the noise in the reconstructed signals decreases with

the variance.

2) Sensory Module: Each sensory module comprises a

Gaussian–Bernoulli RBM because the input signals from the

sensors are continuous values. The visible layers receive

sensory signals from the corresponding sensors (i.e., visual,

auditory, and tactile). Each module processes these signals

independently.

Perceptual development, which is one of the factors we

proposed to drive the development of emotion perception, was
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modeled as modulations in the variance of the visible units.

More specifically, the variance σ 2
i is refined through the corre-

sponding parameters zi [see (12)] in order to reduce the error

between the actual input signals and the reconstructed input

signals from the hidden activations. Early in the model train-

ing, the variance of the visible units is large, which causes

several Gaussian distributions to cover many input signals

[Fig. 3(a)]. Therefore, the hidden layer initially represents

rough clusters of input data, which makes the reconstruction

signals coarse. Later on in the training, however, the variance

is refined, and the region covered by the Gaussian distributions

decrease. Such a smaller variance leads to more precise recon-

structions compared to when the variance is large [Fig. 3(c)].

In parallel with this, the mean values of the Gaussian dis-

tribution should also be updated to become closer to the

actual value of the input signals to improve the accuracy. To

sum up, the refinement of both variance and mean value of

Gaussian distributions reproduces perceptual development, just

as in [38]. In Section IV-E, we illustrate the developmental

changes in the variance and reconstructed signals in the visual

sensory module as an example.

Following the training, the hidden activations of the sensory

modules represent abstracted features of the corresponding

sensory signals. These activations are then used as input

signals for the RBM in the emotion module.

3) Emotion Module: The Bernoulli–Bernoulli RBM used

in the emotion module is called the multimodal RBM in the

proposed model, given that it uses the combined hidden activa-

tions of the three sensory modules as input signals. The hidden

neurons of the multimodal RBM are connected to the emo-

tion valence layer. The emotion valence layer was introduced

into the model to represent tactile dominance. In Section II-A,

we mentioned that human skin is equipped with specific nerve

fibers (C-fibers) that can detect the emotional valence of touch.

C-fibers are activated by specific tactile stimuli (e.g., a gentle

stroke with slow velocity or pinch) and transmit the emotional

valence of the stimuli (i.e., positive or negative) to the brain

regions that process emotion. To emulate this function, we

implemented two units in the emotion valence layer that detect

and transmit the positive and negative valence to the emotion

layer. For example, when stroke stimuli were presented, the

activation value of the positive unit was set to one, while that

of the negative unit was set to zero. On the other hand, any

unpleasant contact set the negative unit to one. When the con-

tact had no emotional valence (e.g., weak pat and touch), both

units were set to zero. How emotional valence is detected from

various tactile stimuli was defined according to physiological

evidence from past studies [22]–[24], [39].

In this module, the multimodal RBM was trained ini-

tially by using output signals from whole sensory modules.

It updates the parameters of the RBM in order to reduce

the reconstruction error in the abstraction layer. The module

eventually learns the relationships between the hidden layers

of the multimodal RBM and emotional valence in a super-

vised manner through a back propagation algorithm. In our

model, the back propagation mechanism modulates the con-

nection weights not only between the hidden layer and emotion

valence nodes but also the hidden and visible layers of the

(a)

(b)

(c)

Fig. 3. Examples of the sensory module’s behavior through training. The
vertical axis and color variation of the circles represent feature value of the
sensory signals (e.g., intensity) and the different emotions, respectively. The
boxes with black and white circles show the active and inactive hidden units,
respectively, and the Gaussian curves represent the Gaussian distributions that
correspond to the hidden activations. The variances are refined and the acti-
vation patterns of the hidden layer increase as the model training progresses
over the (a) early, (b) middle, and (c) later stages.

multimodal RBM. We expected that the emotion layer (i.e., the

hidden layer of the multimodal RBM) acquires representations

of emotional states of multimodal signals.

C. Learning Process of the Proposed Model

We trained the proposed model by proceeding through ten

sequences of the following three phases.

1) The parameters of the RBMs in the sensory modules

were trained by using (9)–(12). This phase is illustrated

by blue arrows in Fig. 2(b).

2) The multimodal RBM in the emotion module was

trained using (4)–(6). This phase is illustrated by the

green arrow in Fig. 2(b).

3) The connection weights of the emotional valence units

and the multimodal RBM as well as in the multimodal

RBM were modulated by back propagation. This phase

is illustrated by red arrows in Fig. 2(b).

We continued each training phase for 1000 steps. After the

third phase, we began the first phase again. This sequence

was repeated ten times.

The model structure and learning method are based on a

deep belief net [30] and a multimodal deep belief net [35].

However, these previously used models only executed one
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TABLE I
DESCRIPTION OF DATASET SIMULATING INFANT–CAREGIVER INTERACTION

sequence of the training phases; in contrast, we partitioned

the training phases because we would like to examine and

illustrate the developmental changes in the proposed model.

D. Multimodal Sensory Signals

We evaluated our model by using an interaction dataset

that simulated infant–caregiver interactions. Each interaction

datum contains sensory signals from the three modalities (i.e.,

visual, auditory, and tactile modalities) which may express

one of the seven basic emotions (i.e., joy, surprise, anger,

disgust, sadness, fear, and neutral). The data were collected

by using a robotic system, which consisted of a USB cam-

era, a microphone, and a soft tactile sensor. An experimenter

faced the system and expressed emotional expressions, not

like generic face-to-face interactions but like infant–caregiver

interactions, namely, exaggerated expressions by the caregiver.

For instance, auditory signals, especially called infant-directed

speech, have salient acoustic features [40], [41] (e.g., wide-

range of pitch and fundamental frequency), and tactile signals

also have wide-range features [11]. Our dataset includes these

characteristics of multimodal signals. We assumed that the

caregiver’s expressions of emotional states to the infant were

consistent across all three modalities in each interaction, and

that a given expression would evoke the same emotional

state in the infant. That is, one to one correspondence. For

example, we assumed that when a caregiver showed the

infant a smiling face, the infant would experience joy; fur-

thermore, caregiver’s auditory and tactile expressions in that

same interaction would also make the infant experience joy.

It should be noted that the proposed model is not given with

the emotional labels of the input signals (i.e., the seven basic

emotional states); instead, the model estimates the emotional

states with a help of the emotional valences of the signals

(i.e., positive, negative, or zero emotional valence) via tactile

dominance.

Table I describes the infant–caregiver interaction dataset,

while Fig. 4 shows a sample of the actual multimodal

signals in the dataset. The first row of the figure [i.e.,

Fig. 4(a), (d), and (g)] illustrates the visual, auditory, and tac-

tile sensory signals for joyful emotion. The second and third

rows show the signals for angry and neutral emotions, respec-

tively. In the following sections, we provide further the details

on the multimodal sensory signals and their features for the

sensory modules.

1) Visual Stimuli: The visual stimuli used were facial

expressions produced by an experimenter playing a parent.

We cropped the face region from images captured using

a USB camera, and each face image was converted to a

gray scale image of size 30 × 30 pixels. The experimenter

expressed facial expressions of the seven basic emotions,

and each emotional face had ten variations. Fig. 4(a)–(c)

shows examples of the converted facial images for joyful,

angry, and neutral emotions, respectively. The shapes of the

eyebrow, eye, and mouth represented emotional characteris-

tics of facial images. For instance, in many of the facial

images of joy and surprise in our dataset, the mouth was

opened. By contrast, for the other emotional states, the mouth

was closed. The first 20 principal components (PCs) with

contribution rates above 98% were extracted from all of

the converted images by the PC analysis (PCA) method in

order to reduce the dimensions of the facial data. We uti-

lized these 20 PCs as input signals for the visual sensory

module.

2) Auditory Stimuli: Auditory stimuli were single mora

voices expressed as “Maa” corresponding to the seven basic

emotions recorded from the same experimenter as for the

visual stimuli, and each emotional voice had ten variations.

The reason that we used a single mora voice was that the

acoustic characteristics were enhanced by simple utterances as

well as infant-directed speech [41], and we wanted to simplify

the stimuli as much as possible for the experimental setting.

The graphs in the center column of Fig. 4 show the raw sig-

nals (i.e., sound waves) of voices corresponding to joyful,

angry, and neutral emotions. To extract features from these

signals, we divided each signal into ten even sections and

calculated acoustic features namely, the change in the fun-

damental frequency (F0) and the power of the F0 for those

signals for each section (i.e., there are 20 features). All features

were normalized in each section to fit the Gaussian distribution

at a zero mean and a unit variance. We used these 20 features

of audio signals as input values for the auditory sensory mod-

ule. Fig. 5 shows the example of extracted acoustic features

from audio signals in Fig. 4. As evident in Fig. 5, joyful and

angry voices were shorter than were neutral voices. The power

of F0 indicated by blue bars was detected only during two con-

secutive sections. Joyful and angry voices, on the other hand,

had similar characteristics such as a short duration and high-

intensity sounds as seen in Figs. 4 and 5. This implies that

only some emotional voices can be discriminated in low-level
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 4. Samples of multimodal signals in our interaction dataset. (a)–(c) Visual stimuli. (d)–(f) Auditory stimuli. (g)–(i) Tactile stimuli.

acoustic characteristics, whereas others are difficult to be

discriminated.

3) Tactile Stimuli and Emotional Valence: Tactile stimuli

and emotional valence were some of the most important sig-

nals in this experiment, as they were used to verify one of

our hypotheses. We collected tactile stimuli simulating those

used in infant–caregiver interaction via a human-skin-like tac-

tile sensor. The tactile sensor, which was developed based

on [42], is composed of two materials: 1) polyvinylidene

difluoride (PVDF) films and 2) elastomer. More specifically,

nine PVDF films (i.e., nine channels of the tactile sensor),

which output voltage depending on the change rate of defor-

mation (i.e., velocity of contact force), were sandwiched

between two layers of human-skin-like elastomers (EXSEAL

Company Ltd). Fig. 4(g)–(i) provides examples of nine sensor

output signals corresponding to joyful (stroke), angry (pinch),

and neutral (touch) tactile stimuli, respectively. Each sensory

signal was smoothed with a moving average filter based on

the previous 100 samples to reduce the noise. For instance,

the stroke stimulus activated sensors for a longer duration

than did other forms of contact, and the sensor output sig-

nals did not synchronize with each other [Fig. 4(g)] because

the contact point moved over large areas very slowly. On

the other hand, the pinch and touch stimuli activated sen-

sors synchronously because their contact points did not move.

Furthermore, the dynamic deformation of the sensor during the

pinch stimulus was evident by the large values for the sensors’

signals.

We calculated nine features from the sensory signals to

extract the characteristics of tactile stimuli. Fig. 6 shows the

relationships between a single sensory signal and the calcu-

lated features from a stroke stimulus. First, we extracted five

features: (i) the maximum absolute velocity of contacts; (ii) the

number of code (i.e., a direction of the signal) changes in the

signals; and the intensity of (iii) low, (iv) middle, and (v) high

frequency bands (low: 1–60 Hz; middle: 61–100 Hz; and high:

101–200 Hz) from the raw signal. Next, we calculated the inte-

gral values of the signal in terms of time to estimate the contact

force and extracted the remaining four features: (vi) the dura-

tion of contact; (vii) the duration of contact with a strong force;

(viii) the maximum force of the contact; and (ix) the number of

sensors that detected contact. The maximum features [i.e., (i)

and (viii)] were calculated from the whole channel (i.e., nine

channels) values. The number of sensors that detected con-

tact [i.e., (ix)] was determined by counting the sensors where

the integral value exceeded a threshold. The duration features

[i.e., (vi) and (vii)] were logical disjunction operated between

all channels. The thresholds for contact detection and strong

contact detection were 0.8 and 1.5, respectively. The other

features [i.e., (ii)–(v)] were averaged across the whole chan-

nel, individually. These nine features were determined based

on our knowledge of tactile receptors and the most important
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(a)

(b)

(c)

Fig. 5. Extracted auditory features from Fig. 4(d)–(f) (i.e., joyful, angry,
and neutral voices). The horizontal axis represents the divided sections, and
the vertical axis shows the normalized value of each feature. The red and
blue bars indicate the change of the F0 between the current section and the
previous section and the power of the F0 in each section, respectively. (a) Joy.
(b) Anger. (c) Neutral.

properties of touch [11], [43], and they were used as input

signals for the tactile sensory module (i.e., the tactile sensory

module has nine input nodes).

In this experiment, we used three kinds of emotional

valence: 1) positive; 2) negative; and 3) zero. Emotional

valences were predetermined for each tactile stimulus by the

designer based on the inherent properties of C-fibers in the

human skin [22], [24], [39]. Specifically, the stroke stimuli

induced a positive emotional valence, while the touch and

weak pat stimuli corresponded to zero emotional valence. The

pinch and pat stimuli were considered to generate a negative

emotional valence because the high pressure is known to acti-

vate C-fibers and evoke pain in humans. Table I indicates all

relations between tactile stimuli and emotional valences. These

emotional valence signals were represented as neuron activa-

tions of the emotion valence layer in the emotion module. As

(a)

(b)

Fig. 6. Relationships between sensor signals and extracted features.
(a) Smoothed sensor signal (using the moving average filter) with fea-
tures (i) and (ii). (b) Integrated values of sensor signal (a) with features (vi),
(vii), and (viii).

described in Section III-B3, positive emotional valence set the

positive unit of the emotion valence layer to one while set

the negative unit of that to zero. On the other hand, nega-

tive valence set the negative unit to one. When the emotional

valence signal was zero valence, both units were set to zero.

IV. EXPERIMENT AND RESULT

Section IV-A outlines the experimental conditions used to

verify our hypotheses regarding tactile dominance and percep-

tual development. Four conditions were designed to investigate

the roles of these two functions. Then, in Sections IV-B–IV-E,

we demonstrate the influences of these functions on the

development of emotion perception by comparing emotion

differentiation under the four conditions.

A. Experimental Conditions and Settings

We conducted experiments under the following four condi-

tions to investigate how emotion develops differently with or

without each or both of these two functions of interest.

1) A model with tactile dominance and perceptual devel-

opment (i.e., wTD-wPD condition).

2) A model with only perceptual development (i.e., w/oTD-

wPD condition).
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3) A model with only tactile dominance (i.e., wTD-w/oPD

condition).

4) A model without either function (i.e., w/oTD-w/oPD

condition).

The condition 1 (wTD–wPD) included both functions. Tactile

dominance was modeled using emotional valence units (which

represent positive, negative, and zero emotional valence sig-

nals based on tactile stimuli), whereas perceptual development

was achieved by refinement of the variance of the input nodes

in the sensory modules. The initial values of the variance were

set to 1.0 and modulated by (12). This modulation represented

the development of perceptual abilities from the immature sen-

sation to the mature one (see Section III-B2). This was the

main condition for verifying our hypotheses.

The condition 2 (w/oTD–wPD) omitted tactile dominance

from wTD–wPD condition. In this condition, we assumed that

the infant was not able to perceive positive or negative valences

from tactile stimuli; this disorder has been observed in infants

that are born without tactile nerves [44], [45]. To replicate this

situation, we removed the emotional valence units and their

connections from the emotion module, and therefore skipped

the third phase of the training process (see Section III-C).

We used this condition to assess the role of tactile dominance

in the development of emotion perception by comparing the

results with the first condition.

The condition 3 (wTD–w/oPD) excluded perceptual devel-

opment instead of tactile dominance. In this condition, we

assumed that the infant’s perception had matured at the start

of the developmental processes. To represent this we fixed the

variance of sensory modules’ input nodes to 0.01 and excluded

the modulation of the variance in (12). We used this condi-

tion to verify the influence of perceptual development on the

development of emotion perception.

In condition 4 (w/oTD–w/oPD), we excluded both func-

tions from wTD–wPD condition. In other words, the emotional

valence units and refinement process of the variance of the

input nodes were removed from the proposed model as in the

conditions 2 and 3, respectively.

We utilized the dataset of the simulated infant–caregiver

interaction described in Section III-D. All data were used for

the model learning and the visualization of results. The param-

eters for the proposed model are listed in Table II. We carried

out the model leaning for ten times with the different initial

values of network weights under four conditions.

B. Results

We first present the experimental results under all four con-

ditions. Then, in Section IV-C, we compare the results with a

focus on tactile dominance to test our first hypothesis, while

in Section IV-D, we compare the results with a focus on the

perceptual improvement to test the second hypothesis.

To visualize and evaluate the acquired representations of

emotion, we carried out the PCA on the activations of the

emotion layer. Fig. 7 shows one example of the PCA result

under the four conditions. We selected first three PCs and

illustrated the first and second PCs in Fig. 7(a), (c), (e), and (g)

and the first and third PCs in Fig. 7(b), (d), (f), and (h). All

TABLE II
PARAMETERS OF THE SENSORY MODULES AND EMOTION MODULE

plotted data are labeled using the emotional states of input

signals. Note that these labels were not used for the model

learning.

To quantitatively evaluate the representations of emotion in

the PC space, we calculated the separation metric, given by

Jσ =
s2

b

s2
w

(13)

s2
b =

1

n

C
∑

c=1

nc(mc − m)t(mc − m) (14)

s2
w =

1

n

C
∑

c=1

∑

x∈X c

nc(x − mc)
t(x − mc) (15)

where s2
b and s2

w are the between-class and within-class vari-

ance, respectively; C and c are the number and index of

classes; n and nc are the number of all data and the num-

ber of data belonging to class c; and x ∈ X c, mc, and m are

data belonging to class c, the mean of values of X c, and the

mean of all data, respectively. The larger the separation metric

is, the greater the separation of the cluster in the PC space is.

Fig. 8(a) and (b) summarizes the separation metrics for the cat-

egories of emotional valences (i.e., positive, negative, and zero

emotional valences) and the seven basic emotions under the

four experimental conditions. We calculated the averages and

standard deviations of the separation metrics over ten times of

experiments with different initial parameters of the network.

C. Influence of Tactile Dominance on Differentiation

of Emotion

We compared the results of the four conditions to demon-

strate the influence of tactile dominance on the development

of emotion perception. In the first and second PC space under

wTD–wPD condition [Fig. 7(a)], the positive (i.e., joy) and

the negative (i.e., anger, disgust, and fear) emotional valence
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Fig. 7. Acquired low-dimensional representations of emotional stimuli by PCA for the emotion layer activations in the proposed model under the four
conditions. (a), (c), (e), and (g) PC1-2 spaces, and (b), (d), (f), and (h) PC1-3 spaces for each condition.

(a)

(b)

Fig. 8. Separation metrics for the categories of (a) emotional valences (i.e.,
positive, negative, and zero) and the categories of the (b) seven basic emotions
under the four conditions.

clusters are separated by the first PC axis, while the second

PC represents the differentiation between the zero emotional

valence cluster and the others. Hence, the interaction data are

differentiated into fundamental emotional clusters (i.e., pos-

itive, negative, and zero emotional valence) in this space.

In the first and third PC space [Fig. 7(b)], the vertical axis

(i.e., PC3) subdivides the clusters of negative and zero emo-

tional valence into seven emotional states except joy. More

specifically, the cluster of negative emotional valence is dif-

ferentiated into subcategories of fear, anger, and disgust from

the top of the graph. The space composed of the first and

third PCs shows that the clusters of emotional valence were

subdivided into the seven basic emotions. The separation met-

rics for both emotional categories under wTD–wPD condition

showed significant differences between wTD-wPD and other

three conditions [in Fig. 8(a) and (b)]. In contrast to the above,

the results for the other conditions show unclear differentiation

of emotional categories in the PC spaces. Only the PCA results

of wTD–w/oPD condition demonstrated that the interaction

data weakly differentiated into clusters of emotional valences

in both spaces; however, the separation metric for categories of

emotional valences showed nonsignificant differences between

other conditions.

The comparison of these conditions overall demonstrates

that tactile dominance leads to better separation of the emo-

tional categories; however, it is necessary that perceptual

development also works in the proposed model as seen in

Fig. 7(a) and (b). When tactile dominance was excluded from

the model (i.e., w/oTD–wPD and w/oTD–w/oPD conditions),

the representation of emotional valence clusters could not be

obtained even using the same interaction data. A potential

reason is that visual and auditory signals contained ambigu-

ous features in terms of positive and negative valence. For

instance, joy and anger had similar auditory characteristics due
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to the intensity of those stimuli (Section III-D2). By contrast,

when tactile dominance was included, the emotional valence

inherent in the tactile stimuli disambiguated such situations.

D. Influence of Perceptual Development on Differentiation

of Emotion

We assessed the influence of perceptual improvement on

the development of emotion perception. From the comparison

of results between wTD–wPD and wTD–w/oPD conditions,

we found that the distribution of interaction data, which

weakly clustered based on the emotional valences in Fig. 7(f),

showed clearly differentiation of the seven basic emotions

in Fig. 7(b) owing to the perceptual development. It was

clear that perceptual development also facilitated the differ-

entiation of the clusters relevant to the emotional valences as

shown in Figs. 7(a) and 8(a), although this effect was not

clearly observed in the comparison between w/oTD–wPD and

w/oTD–w/oPD conditions.

Taken together, these results indicate that perceptual devel-

opment does enhance clearer differentiation of emotional

categories in terms of both emotional valences and the seven

basic emotions; however, the effect appears only when tac-

tile dominance is included together in the model. The result

suggests that the two functions facilitate the developmental

differentiation of emotion perception but their effects become

significant only when they exist in the model together.

E. Perceptual Development Produced by Modulation of RBM

Parameter σ 2
i

We then closely analyzed how perceptual development was

reproduced by the modulation of the variance parameters,

σ 2
i , in the sensory RBMs. Fig. 9 shows the transition of

σ 2
i (i = 0, . . . , 20) of the vision module over the learning pro-

cess as an example. All the variances of the visible nodes with

perceptual development were initialized at 1.0 and updated

using (12). The results showed that the variance parameter σ 2
i

was properly adjusted through training.

We also visualized the changes in reconstructed images

across the learning steps. Fig. 10(d) shows four randomly

selected input images depicting facial images of joy (left

top), neutral (right top), anger (left down), and sadness (right

down). Fig. 10(a)–(c) shows the reconstructed images from

those in Fig. 10(d). For some images, in the early stages of

learning [Fig. 10(a) and (b)], the reconstructed images were

unclear, making it hard to determine their emotional states.

Furthermore, some reconstructed images seemed to represent

different emotional states from the input images. For exam-

ple, the top left in Fig. 10(a) looks similar to an angry face

though the input was a happy face. We described the reason for

this result in Section III-B2. The Gaussian distribution with a

large variance covered many input signals and thus generated

highly ambiguous reconstructions. However, in the later stage

of learning [Fig. 10(c)], the reconstructed images became more

similar to the input images. These results indicate that the sen-

sory modules were able to simulate perceptual development by

updating the variance of their visible nodes.

Fig. 9. Transition of visual nodes’ variance for the vision sensory module.

(a) (b)

(c) (d)

Fig. 10. Examples of input stimuli and reconstructed images during learning
process in the visual sensory module. (a) Step 0. (b) Step 1000. (c) Step
10 000. (d) Input data.

V. DISCUSSION

We proposed a computational neural network model com-

prising two modules (i.e., the sensory module and the emotion

module) to verify our hypotheses regarding the development of

emotion perception in infancy. The sensory module processed

multimodal sensory signals individually, as in the sensory

area of the cerebral cortex (i.e., the visual, auditory, and

somatosensory cortices). The emotion module, which was on

a higher-level than the sensory modules, was used to inte-

grate the abstracted signals obtained from the sensory modules,

and the emotion layer in the module further integrated the

information of emotional valences based on tactile domi-

nance. It is known that the superior temporal sulcus (STS)

integrates visual, audio, and tactile signals [46] and engages

in multimodal information processing for emotion percep-

tion [47], [48]. The superior temporal gyrus (STG), which

is near the STS, also responds to various nonverbal emotional

stimuli [49], and the temporal area of infants’ brain perceives

and reacts to audiovisual emotional stimuli [50]. There are also

known neural connections between the STS and the amygdala,

Björnsdotter et al. [24] reported that tactile C-fibers deliver the

signals of positive and negative touches to a part of the limbic
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system, such as the amygdala and insular cortex. All of this

prior knowledge suggests that the structure of the proposed

model reproduced rough neural connections between human

brain regions, at least in relation to emotional processing. In

other words, the sensory module corresponds to the sensory

areas of the brain, while the emotional valence layer emu-

lates the neural connection between the amygdala and tactile

C-fibers. The emotion layer in the emotion module emulates

the function, such as perception of categorical emotion in the

temporal region (i.e., the STS and the STG). Furthermore, we

consider that the proposed model would replicate not only the

development of emotion perception but also multimodal sen-

sory processing in general (e.g., object recognition). In fact,

our challenge was to design a biologically and neurologically

plausible mechanism for the development of emotion percep-

tion based on the latest knowledge about a theory of the human

brain mechanism (e.g., free-energy principle [32]).

In Section IV-C, we compared the experimental results

between the four conditions to investigate how emotion devel-

ops differently with and without tactile dominance, in order to

test our first hypothesis. The results demonstrated that tactile

dominance facilitated the differentiation of emotional cate-

gories when perceptual development was also included in the

model (i.e., wTD–wPD condition). There are two types of

C-fibers in the human skin that perceive emotional valence

produced by tactile stimuli. The first type of C-fibers, CT

afferents, specializes in the detection of the pleasurable touch.

This type of fiber tends to be distributed over hairy skin and

is activated by light strokes with a velocity of 1–10 cm/s [24].

The other type of C-fibers responds to chemical substances,

thermal stimuli, and otherwise negative stimuli such as tactile

stimuli pain. In addition to this second type of C-fibers, there

are Aδ-fibers, which transmit pain signals from the skin to the

brain, especially the somatosensory area. There is a condition

called congenital insensitivity to pain with anhidrosis (CIPA),

whereby individuals are born without the second type of C-

fibers and Aδ-fibers; in lacking these fibers, individuals with

CIPA are unable to feel pain. Past studies have also shown that

patients with CIPA have impairments in the perception, recog-

nition, and modulation of emotion [45]. Danziger et al. [44],

in an experiment designed to estimate others’ emotional states,

demonstrated that patients with a similar condition called con-

genital insensitivity to pain (CIP) inhibited differences in their

ratings of others’ painful situations or propensity to infer pain

from others’ facial expressions from control subjects. Note

that CIP patients lose only the Aδ-fibers and do not lack

the C-fibers in their skin; therefore, they are able to roughly

detect pain (i.e., negative sensations) through the C-fibers,

unlike CIPA patients. These past findings suggested that tac-

tile C-fibers play an important role in emotion perception and

understanding others’ emotion. In this paper, the experimen-

tal conditions where tactile dominance was excluded seemed

to simulate the characteristics of patients with CIPA, which

suggests that our results both demonstrate the effects of CIPA

and the importance of C-fibers for the development of emotion

perception.

In Section IV-D, we assessed the influence of sensory

improvement on the development of emotion perception. The

comparison results of the four conditions showed that the per-

ceptual development facilitated the differentiation of emotional

categories when tactile dominance was also included in the

proposed model (i.e., wTD–wPD condition). This result sup-

ports the claim of Walker-Andrew’s [5] study that perceptual

development increases the differentiation of information for

affect. The idea of perceptual development was modeled by

refining the variance of the input nodes in the sensory mod-

ules across the training process. The experimental results in

Section IV-E further demonstrated that the sensory modules

simulated perceptual development by modulating the variance

parameters.

In summary, the proposed model represented the develop-

ment of emotion perception through learning of caregivers’

visual, audio, and tactile expressions during interactions. The

experimental results demonstrated that both tactile dominance

and perceptual development have the role for facilitating the

development of emotional perception; however, its influence

appears only when both functions are integrated into the model

together. Connecting our results to behavioral studies in physi-

ology may help to elucidate the neural and social mechanisms

of the development of emotion perception. On the other hand,

humans’ emotion is affected not only by their external senses

but also by their behavior and internal, physiological systems

(e.g., the endocrine system). Note that we take such systems

into account as in other studies in cognitive developmental

robotics [6], [13], [14], [16]–[18] when modeling the develop-

ment of emotion perception. Additionally, it seems essential

to examine the development of emotion perception by inte-

grating physiological indices using nonparametric Bayesian

models [51]. To address these future issues, we need to

combine the results of our prior analyses for more accurate

modeling of emotion development.

VI. CONCLUSION

This paper presented a modeling study of the develop-

ment of emotion perception in infancy. We hypothesized that

tactile dominance and perceptual development contribute to

the development of emotion perception. The proposed model

learned the virtual infant–caregiver interaction, and the exper-

imental results were compared between the four conditions

(with and without tactile dominance and perceptual devel-

opment). Our results suggested that tactile dominance and

perceptual development facilitated the differentiation of emo-

tional states when both mechanisms were integrated into the

proposed model.
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