
Modeling Disease Incidence Data with Spatial
and Spatio-Temporal Dirichlet Process Mixtures

Athanasios Kottas*, 1, Jason A. Duan2, and Alan E. Gelfand3

1 Department of Applied Mathematics and Statistics, 1156 High Street, University of California,
Santa Cruz, CA 95064, USA

2 School of Management, 135 Prospect Street, Yale University, New Haven, CT 06520, USA
3 Institute of Statistics and Decision Sciences, Box 90251, Duke University, Durham, NC 27708, USA

Received 1 November 2006, revised 12 June 2007, accepted 27 June 2007

Summary

Disease incidence or mortality data are typically available as rates or counts for specified regions,
collected over time. We propose Bayesian nonparametric spatial modeling approaches to analyze such
data. We develop a hierarchical specification using spatial random effects modeled with a Dirichlet
process prior. The Dirichlet process is centered around a multivariate normal distribution. This latter
distribution arises from a log-Gaussian process model that provides a latent incidence rate surface,
followed by block averaging to the areal units determined by the regions in the study. With regard to
the resulting posterior predictive inference, the modeling approach is shown to be equivalent to an
approach based on block averaging of a spatial Dirichlet process to obtain a prior probability model for
the finite dimensional distribution of the spatial random effects. We introduce a dynamic formulation
for the spatial random effects to extend the model to spatio-temporal settings. Posterior inference is
implemented through Gibbs sampling. We illustrate the methodology with simulated data as well as
with a data set on lung cancer incidences for all 88 counties in the state of Ohio over an observation
period of 21 years.

Key words: Areal unit spatial data; Dirichlet process mixture models; Disease mapping; Dy-
namic spatial process models; Gaussian processes.

1 Introduction

Data on disease incidence (or mortality) are typically available as rates or summary counts for contig-
uous geographical regions, e.g., census tracts, post or zip codes, districts, or counties, and collected
over time. Hence, though cases occur at point locations (residences), the available responses are asso-
ciated with entire subregions in the study region. We denote the disease incidence counts (number of
cases) by yit, where i ¼ 1; . . . ; n indexes the regions Bi, and t ¼ 1; . . . ; T indexes the time periods. In
practice, we may have covariate information associated with the region, e.g., percent African Ameri-
can, median family income, percent with some college education. In some cases, though we only
know the areal unit into which a case falls, we may have covariate information associated with the
case, e.g., sex, race, age, previous comorbidities. Moreover, any of this covariate information could be
time dependent. We devote Section 2.3 below to a discussion of how to accommodate such informa-
tion in our modeling framework. However, the focus here is on flexible modeling of areal unit spatial
random effects and so, to avoid obscuring our primary contribution, we do not consider covariates
elsewhere.
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A primary inferential objective in the analysis of disease incidence data is summarization and ex-
planation of spatial and spatio-temporal patterns of disease (disease mapping); also of interest is spa-
tial smoothing and temporal prediction (forecasting) of disease risk. The field of spatial epidemiology
has grown rapidly in the past fifteen years with the introduction of spatial and spatio-temporal hier-
archical models; see, e.g., Elliott et al. (2000), and Banerjee, Carlin and Gelfand (2004) for reviews
and further references.

Working with counts, the typical assumption (for rare diseases) is that the yit, conditionally on
parameters Rit, are independent Po ðyit j EitRitÞ (we will write Po ð� j mÞ for the Poisson probability
mass function/distribution with mean m). Here, Eit is the expected disease count, and Rit is the relative
risk, for region i at time period t. (Below we will use an alternative and, we assert, preferable, specifi-
cation, writing nitpit for the Poisson mean, where nit is the specified number of individuals at risk in
region i at time t and pit is the corresponding disease rate.) With R� denoting an overall disease rate,
Eit is obtained as R�nit, using either external or internal standardization, the former developing R�

from reference tables, the latter computed from the given data set, e.g., R� ¼
P

i;t yit=
P

i;t nit. The
relative risks are explained through different types of random effects. For instance, a specification
with random effects additive in space and time is log Rit ¼ mit þ ui þ vi þ dt, where mit is a compo-
nent for the regional covariates (e.g., mit ¼ x0itb for regression coefficients b), ui are regional random
effects (typically, the ui are assumed i.i.d. Nð0; s2

uÞ), vi are spatial random effects, and dt are temporal
effects (say, with an autoregressive prior).

The most commonly used prior for the vi is based on some form of a conditional autoregressive
(CAR) structure (e.g., Clayton and Kaldor, 1987; Besag, York and Mollie, 1991; Bernardinelli, Clay-
ton and Montomoli, 1995; Waller et al., 1997; Knorr-Held and Besag, 1998). For instance, the widely-
used specification of Besag et al. (1991) is characterized through local dependence structure by con-
sidering for each region i a set, Ji, of neighbors, which, for example, can be defined as all regions
contiguous to region i. Then the (improper) joint prior density for the vi is built from the prior full
conditionals vi j fvj : j 6¼ ig. These are normal distributions with mean m�1

i

P
j2Ji

vj and variance
lm�1

i , where l is a precision hyperparameter and mi is the number of neighbors of region i.
A different hierarchical formulation, discussed in B�hning, Dietz and Schlattmann (2000), involves

replacing the normal mixing distribution with a discrete distribution taking values jj (that represent
the relative risks for k underlying time-space clusters) with corresponding probabilities pj, j ¼ 1; . . . ; k.
Hence, marginalizing over the random effects, the distribution for each region i and time period t
emerges as a discrete Poisson mixture,

Pk
j¼1 pj Po ðyit j EitjjÞ. See, also, Militino, Ugarte and Dean

(2001) for use of such discrete Poisson mixtures in the simpler setting without a temporal component.
In this setting, related is the Bayesian work of Knorr-Held and Rasser (2000) based on spatial parti-
tion structures, which divide the study region into a number of clusters (i.e., sets of contiguous re-
gions) with constant relative risk, assuming, in the prior model, random number, size, and location for
the clusters.

When spatio-temporal interaction is sought, the additive form vi þ dt is replaced by vit. The latter
has been modeled using independent CAR models over time, dynamically with independent CAR
innovations, or as a CAR in space and time (see, e.g., Waller et al., 1997; Knorr-Held, 2000).

Rather than modeling the spatial dependence through the finite set of spatial random effects, one
for each region, an alternative prior specification arises by modeling the underlying continuous-space
relative risk (or rate) surface and obtaining the induced prior models for the relative risks (or rates)
through aggregation of the continuous surface. This approach is less commonly used in modeling for
disease incidence data (among the exceptions are Best, Ickstadt and Wolpert, 2000, and Kelsall and
Wakefield, 2002). However, it, arguably, offers a more coherent modeling framework, since by model-
ing the underlying continuous surfaces, it avoids the dependence of the prior model on the data collec-
tion procedure, i.e., the number, shapes, and sizes of the regions chosen in the particular study. It
replaces the specification of a proximity matrix, which spatially connects the subregions, with a covar-
iance function, which directly models dependence between arbitrary pairs of locations (and induces a
covariance between arbitrary subregions using block averaging).
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In this paper, we follow this latter approach, our main objective being to develop a flexible nonpa-
rametric model for the needed risk (or rate) surfaces. In particular, denote by D the union of all regions
in the study area and let zt;D ¼ fztðsÞ : s 2 Dg be the latent disease rate surface for time period t, on
the logarithmic scale. Hence, ztðsÞ ¼ log ptðsÞ, where ptðsÞ is the probability of disease at time t and
spatial location s. (With rare diseases, the logarithmic transformation is practically equivalent to the
logit transformation). We propose spatial and spatio-temporal nonparametric prior models for the vec-
tors of log-rates zt ¼ ðz1t; . . . ; zntÞ, which we define by block averaging the surfaces zt;D over the
regions Bi, i.e., zit ¼ jBij�1Ð

Bi
ztðsÞ ds, where jBij is the area for region Bi. We develop the spatial prior

model by block averaging a Gaussian process (GP) to the areal units determined by the regions Bi,
and then centering a Dirichlet process (DP) prior (Ferguson, 1973) around the resulting n-variate
normal distribution. We show that the model is equivalent to the prior model that is built by block
averaging a spatial DP (Gelfand, Kottas and MacEachern, 2005). To model the zt, we can specify
them to be independent replications under the DP or we can add a further dynamic level to the model
with zt evolving from zt�1 through independent DP innovations. We use the former in our simulation
example in Section 4.1; we use the latter with our real data example in Section 4.2.

With regard to the existing literature, our approach is, in spirit, similar to that of Kelsall and Wake-
field (2002) where an isotropic GP was used for the log-relative risk surface. However, as exemplified in
Section 2.2, we relax both the isotropy and the Gaussianity assumptions. In addition, we develop model-
ing for disease incidence data collected over space and time. Moreover, as we show in Section 2.1,
our nonparametric model has a more general mixture representation than that of B�hning et al. (2000)
as it incorporates spatial dependence and it allows, through the DP prior, a random number of mixture
components.

The plan of the paper is as follows. Section 2 develops the methodology for the spatial and spatio-
temporal modeling approaches. Section 3 discusses methods for posterior inference with more details
given in the Appendix. Section 4 includes illustrations motivated by a previously analyzed dataset
involving lung cancers for the 88 counties in Ohio over a period of 21 years. In fact, in Section 4.1
we develop a simulated dataset for these counties which is analyzed using both our modeling specifi-
cation as well as a GP model, revealing the benefit of our approach. We also reanalyze a subset of the
original data in Section 4.2. Finally, Section 5 provides a summary and discussion of possible exten-
sions.

2 Bayesian Nonparametric Models for Disease Incidence Data

The spatial model is discussed in Section 2.1. Section 2.2 reviews spatial DPs and demonstrates how
their use provides foundation for the modeling approach. Section 2.3 discusses how to include differ-
ent types of covariate information. Lastly, Section 2.4 develops a nonparametric spatio-temporal mod-
eling framework.

2.1 The spatial prior probability model

Here, we treat the log-rate surfaces zt;D as independent realizations (over time) from a stochastic
process over D. We build the model by viewing the counts yit and the log-rates zit as aggregated
versions of underlying (continuous-space) stochastic processes. The finite-dimensional distributional
specifications for the yit and the zit are induced through block averaging of the corresponding spatial
surfaces.

For the first stage of our hierarchical model, we use the standard Poisson specification working
with the nitpit form for the mean. We note that this parametrization seems preferable to the EitRit

form, since it avoids the need to develop the Eit through standardization; the overall log-rate emerges
as the intercept in our model. Inference for the Rit is readily available from our models using posterior
samples of the pit with any particular choice of Eit.
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Hence, the yit are assumed conditionally independent, given zit ¼ log pit, from Po ðyit j nit exp ðzitÞÞ.
This specification can be derived through aggregation of an underlying Cox process under the follow-
ing assumptions and approximations. For the time period t, assume that the disease incidence cases,
over region D, are distributed according to a Cox process with intensity function ntðsÞ ptðsÞ, where
fntðsÞ : s 2 Dg is the population density surface and ptðsÞ is the disease rate at time t and location s.
If we assume a uniform population density over each region at each time period (this assumption is,
implicitly, present in standard modeling approaches for disease mapping), we can write ntðsÞ ¼
nit jBij�1 for s 2 Bi. Hence, aggregating the Cox process over the regions Bi, we obtain, conditionally
on zt;D, that the yit are independent, and each yit follows a Poisson distribution with meanÐ

Bi
ntðsÞ ptðsÞ ds ¼ nitp�it, where p�it ¼ jBij�1Ð

Bi
ptðsÞ ds. If we approximate the distribution of the p�it

with the distribution of the exp ðzitÞ, we can write yit j zit �ind:
Po ðyit j nit exp ðzitÞÞ for the first stage

distribution. We note that the stochastic integral for p�it is not accessible analytically. Moreover, using
Monte Carlo integration to approximate the p�it is computationally infeasible (Short, Carlin and Gel-
fand, 2005). Also, Kelsall and Wakefield (2002) use a similar approximation working with relative risk
surfaces. Brix and Diggle (2001) do so as well, using a stochastic differential equation to model ptðsÞ.

To build the prior model for the log-rates zt, we begin with the familiar form, ztðsÞ ¼ mtðsÞ þ qtðsÞ,
for the log-rate surfaces zt;D. Here, mtðsÞ is the mean structure and qt;D ¼ fqtðsÞ : s 2 Dg are spatial
random effects surfaces. As discussed in Section 2.3, the surfaces fmtðsÞ : s 2 Dg can be elaborated
through covariate surfaces over D. In the absence of such covariate information, we might set mtðsÞ ¼
m0, for all t, and use a normal prior for m0. Alternatively, we could set mtðsÞ ¼ m0 þ mt, where the mt
are i.i.d. Nð0; s2

mÞ with random hyperparameter s2
m. In what follows for the spatial prior model, we

illustrate with the common m0 specification.
To develop the model for the spatial random effects, first, let the qt;D, t ¼ 1; . . . ; T , given s2 and f,

be independent realizations from a mean-zero isotropic GP with variance s2 and correlation function
qðjjs� s0jj; fÞ (say, qðjjs� s0jj; fÞ ¼ exp ð�f jjs� s0jjÞ as in the examples in Section 4). Hence by
aggregating over the regions Bi, we obtain zit ¼ m0 þ qit, where qit ¼ jBij�1 Ð

Bi
qtðsÞ ds is the block

average of the surface qt;D over region Bi. The induced distribution for qt ¼ ðq1t; . . . ; qntÞ is a mean-
zero n-variate normal with covariance matrix s2RnðfÞ, where the (i, j)-th element of RnðfÞ is given
by jBij�1 jBjj�1Ð

Bi

Ð
Bj
qðjjs� s0jj; fÞ ds ds0. Next, consider a DP prior for the spatial random effects qt

with precision parameter a > 0 and centering (base) distribution Nnð� j 0; s2RnðfÞÞ (we will write
Npð� j l;SÞ for the p-variate normal density/distribution with mean vector l and covariance matrix S).
We denote this DP prior by DP ða;Nnð� j 0; s2RnðfÞÞÞ. The choice of the DP in this context yields
data-driven deviations from the normality assumption for the spatial random effects.

Note that the above structure implies for the vector of counts yt ¼ ðy1t; . . . ; yntÞ a nonparametric
Poisson mixture model given by

Ð Qn
i¼1 Po ðyit j nit exp ðm0 þ qitÞÞ dGðqtÞ, where the mixing distribu-

tion G � DP ða;Nnð� j 0; s2RnðfÞÞÞ. Under this mixture specification, the distribution for the vectors
of log-rates, zt ¼ m01n þ qt, is discrete (a property induced by the discreteness of DP realizations), a
feature of the model that could be criticized. Moreover, although posterior simulation is feasible, it
requires more complex MCMC algorithms than the standard Gibbs sampler for DP-based hierarchical
models (e.g., Escobar and West, 1998). Thus, to overcome both concerns above, we replace the DP
prior for the zt with a DP mixture prior,

zt j m0; t
2;G �ind: Ð

Nnðzt j m01n þ qt; t
2InÞ dGðqtÞ; G � DP ða;Nnð� j 0; s2RnðfÞÞÞ :

That is, we now write zit ¼ m0 þ qit þ uit, with uit i.i.d. Nð0; t2Þ. Introduction of a heterogeneity effect
in addition to the spatial effect is widely employed in the disease mapping literature dating to Besag
et al. (1991), though with concerns about balancing priors for the effects (see, e.g., Banerjee et al.,
2004, and references therein). Here, in responding to the above concerns, we serendipitously achieve
this benefit.

The mixture model for the yt now becomes f ðyt j m0; t
2;GÞ ¼

Ð Qn
i¼1 pðyit j m0; t

2; qitÞ dGðqtÞ,
where pðyit j m0; t

2; qitÞ ¼
Ð

Po ðyit j nit exp ðzitÞÞ Nðzit j m0 þ qit; t
2Þ dzit is a Poisson-lognormal mix-
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ture. Equivalently, the model can be written in the following semiparametric hierarchical form

yit j zit �ind:
Po ðyit j nit exp ðzitÞÞ; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T

zit j m0; qit; t
2 �ind:

Nðzit j m0 þ qit; t
2Þ; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T

qt j G �i:i:d: G; t ¼ 1; . . . ; T
G j s2;f � DP ða;Nnð� j 0; s2RnðfÞÞÞ :

ð1Þ

The model is completed with independent priors pðm0Þ, pðt2Þ and pðs2Þ, pðfÞ for m0, t2, and for the
hyperparameters s2, f of the DP prior (the precision parameter a is fixed). Note that the spatio-
temporal extension of model (1), developed in Section 2.4, involves temporal effects mt, which are
added to m0 þ qit in the second-stage specification.

In practice, we work with a marginalized version of model (1),

pðm0Þ pðt2Þ pðs2Þ pðfÞ pðq1; . . . ; qT j s2;fÞ
Yn

i¼1

YT

t¼1

Po ðyit j nit exp ðzitÞÞ Nðzit j m0 þ qit; t
2Þ ;

ð2Þ
which is obtained by integrating the random mixing distribution G over its DP prior (Blackwell and
MacQueen, 1973). The resulting joint prior distribution for the qt, pðq1; . . . ; qT j s2;fÞ, is given by

Nnðq1 j 0; s2RnðfÞÞ
YT
t¼2

a

aþ t � 1
Nnðqt j 0; s2RnðfÞÞ þ

1
aþ t � 1

Pt�1

j¼1
dqjðqtÞ

( )
; ð3Þ

where da denotes a point mass at a. Hence, the qt are generated according to a P�lya urn scheme; q1

arises from the base distribution, and then for each t ¼ 2; . . . ; T , qt is either set equal to qj, j ¼
1; . . . ; t � 1, with probability ðaþ t � 1Þ�1 or is drawn from the base distribution with the remaining
probability.

Note that we have defined the prior model for the spatial random effects qt by starting with a GP
prior for the surfaces qt;D, block averaging the associated GP realizations over the regions to obtain
the Nnð0; s2RnðfÞÞ distribution, and, finally, centering a DP prior for the qt around this n-variate
normal distribution. This approach might suggest that the DP prior is dependent, in an undesirable
fashion, on the specific choice of the regions (e.g., their number and size). The next section addresses
this potential criticism by connecting the model in (1) with the spatial DP (SDP) from Gelfand et al.
(2005).

2.2 Formulation of the model through spatial Dirichlet processes

We first review SDPs, which provide nonparametric prior models for random fields WD ¼
fWðsÞ : s 2 Dg over a region D � Rd. Central to their development is the DP constructive definition
(Sethuraman, 1994). According to this definition, a random distribution arising from DP ða;G0Þ,
where G0 denotes the base distribution, is almost surely discrete and admits the representationP1

‘¼1 w‘dj‘
, where w1 ¼ z1, w‘ ¼ z‘

Q‘�1
r¼1 (1� zr), ‘ ¼ 2; 3; . . . , with {zr; r ¼ 1; 2; . . .g i.i.d. from

Beta(1;a), and, independently, {j‘; ‘ ¼ 1; 2; . . .g i.i.d. from G0. Under the standard setting for DPs,
j‘ is either scalar or vector valued.

To model WD, j‘ is extended to a realization of a random field, j‘;D ¼ fj‘ðsÞ : s 2 Dg, and thus
G0 is extended to a spatial stochastic process G0D over D. A stationary GP is used for G0D. The
resulting SDP provides a (random) distribution for WD, with realizations GD given by

P1
‘¼1 w‘dj‘;D

.
The interpretation is that for any collection of spatial locations in D, say, ðs1; . . . ; sMÞ, GD induces a
random probability measure GðMÞ on the space of distribution functions for ðWðs1Þ; . . . ;WðsMÞÞ. In
fact, GðMÞ � DP ða;GðMÞ0 Þ, where GðMÞ0 is the M-variate normal distribution for ðWðs1Þ; . . . ;WðsMÞÞ
induced by G0D. It can be shown that the random process GD yields non-Gaussian finite dimensional
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distributions, has nonconstant variance, and is nonstationary, even though it is centered around a sta-
tionary GP G0D.

In practice, modeling with SDPs requires some form of replication from the spatial process
(although missingness across replicates can be handled). Assuming T replicates, the data can be col-
lected in vectors yt ¼ ðytðs1Þ; . . . ; ytðsnÞÞ0, t ¼ 1; . . . ; T , where ðs1; . . . ; snÞ are the observed locations.
Working with continuous real-valued measurements, the SDP is used as a prior for the spatial random
effects surfaces, say, zt;D ¼ fztðsÞ : s 2 Dg, in the standard hierarchical spatial modeling framework,
YtðsÞ ¼ mtðsÞ þ ztðsÞ þ etðsÞ. Here, etðsÞ are i.i.d. Nð0; t2Þ, and mtðsÞ is the mean structure. For in-
stance, with Xt a p� n matrix of covariate values (whose (i, j)-th element is the value of the i-th covariate
at the j-th location for the t-th replicate) and b a p� 1 vector of regression coefficients, we could
write X0tb for the mean structure associated with yt. Hence, the yt, given b, t2, and GðnÞ, are indepen-
dent from the DP mixture model

Ð
Nnðyt j X0tbþ zt; t

2InÞ dGðnÞðztÞ, where zt ¼ ðztðs1Þ; . . . ; ztðsnÞÞ,
GðnÞ � DPða;GðnÞ0 Þ (induced by the SDP prior for the zt;D), with GðnÞ0 an n-variate normal (induced at
ðs1; . . . ; snÞ by the base GP of the SDP prior). Details for posterior inference and spatial prediction
can be found in Gelfand et al. (2005).

The hierarchical nature of the modeling framework enables extensions by replacing the first stage
Gaussian distribution (the kernel of the DP mixture) with any other distribution. In this spirit, and
returning to the setting for disease incidence data, the SDP can be proposed as the prior for the spatial
random effects surfaces qt;D to replace the isotropic GP prior that we used to build the DP model in
Section 2.1. Therefore, now the model is developed by assuming that the qt;D, t ¼ 1; . . . ; T , given GD,
are independent from GD, where GD, given s2 and f, follows a SDP prior with precision parameter a
and base process G0D ¼ GPð0; s2qðjj s� s0 jj; fÞÞ (i.e., the same isotropic GP used in Section 2.1).

Next, we block average the qt;D over the regions Bi with respect to their distribution that results by
marginalizing GD over its SDP prior. Recall that for any set of spatial locations sr, r ¼ 1; . . . ;M, over
D, the random distribution GðMÞ induced by GD follows a DP with base distribution GðMÞ0 induced by
G0D. Because we can choose M arbitrarily large and the set of locations sr to be arbitrarily dense over
D, using the P�lya urn characterization for the DP, we obtain that, marginally, the qt;D arise according
to the following P�lya urn scheme. First, q1;D is a realization from G0D, and then, for each
t ¼ 2; . . . ; T , qt;D is identical to qj;D, j ¼ 1; . . . ; t � 1, with probability ðaþ t � 1Þ�1 or is a new reali-
zation from G0D with probability aðaþ t � 1Þ�1. Hence, if we block average q1;D, we obtain the
Nnð0; s2RnðfÞÞ distribution for q1. Then, working with the conditional specification for q2;D given
q1;D, if we block average q2;D, q2 arises from Nnð0; s2RnðfÞÞ with probability aðaþ 1Þ�1 or q2 ¼ q1

with probability ðaþ 1Þ�1. Analogously, for any t ¼ 2; . . . ; T, the induced conditional prior
pðqt j q1; . . . ; qt�1; s

2;fÞ is a mixed distribution with point masses at qj, j ¼ 1; . . . ; t � 1, and continu-
ous piece given by the Nnð0; s2RnðfÞÞ distribution; the corresponding weights are ðaþ t � 1Þ�1,
j ¼ 1; . . . ; t � 1, and aðaþ t � 1Þ�1.

Thus, the prior distribution for the qt in (3) can be obtained by starting with a SDP prior for the
qt;D (centered around the same isotropic GP prior used in Section 2.1 for the qt;D), and then block
averaging the (marginal) realizations from the SDP prior over the regions. As in Section 2.1, we
extend zt ¼ m01n þ qt to zt ¼ m01n þ qt þ ut, where the ut are independent Nnð0; t2InÞ. Hence, model (2)
is equivalent to the marginal version of the model above, i.e., with GD marginalized over its SDP prior.

This argument provides formal justification for model (1)–(3). The SDP is a nonparametric prior
for the continuous-space stochastic process of spatial random effects; regardless of the number and
geometry of regions chosen to partition D, it induces the appropriate corresponding version of the
model in (2).

2.3 Introducing covariates

Here, we indicate how covariate information can be incorporated in the context of the model given in
(1). Our approach is to consider how we would handle the idealized situation of point-referenced case/
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non-case data and then propagate the effect of the assumptions and approximations in Section 2.1 (the
approach is similar in spirit to that of Wakefield and Shaddick, 2006). In particular, illustrating with a
single covariate surface fXtðsÞ : s 2 Dg, suppose ztðsÞ ¼ b0t þ b1tXtðsÞ þ qtðsÞ. If XtðsÞ is an areal unit
level covariate, i.e., XtðsÞ ¼ Xit, for all s 2 Bi, then p�it ¼ exp ðb0t þ b1tXitÞ jBij�1Ð

Bi
exp ðqtðsÞÞ ds. So,

for such covariates, no approximation beyond that of Section 2.1 is required.
Next, associate with each of the nit individuals at risk in areal unit i at time t an (unknown) loca-

tion sij, j ¼ 1; 2; . . . ; nit, and covariate level XtðsijÞ (suppressing time t in the notation for sij). At each
location there is a Bernoulli trial with probability ptðXtðsijÞÞ. (Here, we write ptðXtðsijÞÞ, instead of
ptðsijÞ, to emphasize the dependence on the covariate.) Since incidence rates are usually very small,
we can envision a Poisson approximation to the sum of the nit Bernoulli trials in areal unit i at time t
with expectation equal to pit ¼

Pnit
j¼1 ptðXtðsijÞÞ.

Suppose that XtðsÞ is categorical, in fact, for convenience, binary. Then, though we do not know where
they occur, we do know that n0it of the XtðsijÞ are 0 and n1it of the XtðsijÞ are 1. So, in the absence of
spatial effects,

Pnit
j¼1 ptðXtðsijÞÞ ¼ n0itptð0Þ þ n1itptð1Þ ¼ nitp�it where p�it ¼ n�1

it ðn0itptð0Þ þ n1itptð1ÞÞ.
With spatial effects and with locations assigned at random, we obtain

Pnit
j¼1 ptðXtðsijÞÞ ¼P

fsij:XtðsijÞ¼0g exp ðb0t þ qtðsijÞÞ þ
P
fsij:XtðsijÞ¼1g exp ðb0t þ b1t þ qtðsijÞÞ. Again, we know the number

of 0 s and 1 s but can only assume they are randomly assigned to the sij. Hence, for ‘ ¼ 0; 1,P
fsij:XtðsijÞ¼‘g exp ðqtðsijÞÞ � n�1

it n‘it
Pnit

j¼1 exp ðqtðsijÞÞ � n‘it jBij�1Ð
Bi

exp ðqtðsÞÞ ds, and, thus,Pnit
j¼1 ptðXtðsijÞÞ � nitp�it, with

p�it ¼
n0it

nit
exp ðb0tÞ jBij�1Ð

Bi
exp ðqtðsÞÞ dsþ n1it

nit
exp ðb0t þ b1tÞ jBij�1Ð

Bi
exp ðqtðsÞÞ ds :

Finally, making the same approximation (i.e., exp ðqitÞ � jBij�1Ð
Bi

exp ðqtðsÞÞ dsÞ, we can
write p�it � exp ðb0t þ qitÞf1þ n�1

it n1it½exp ðb1tÞ � 1�g � exp ðb0t þ qitÞ½1þ n�1
it n1itb1t� �

exp ðb0t þ n�1
it n1itb1t þ qitÞ.

Lastly, with a continuous covariate, we may envision two scenarios – (i) that it is available for each
of the nit individuals at risk in areal unit i at time t or (ii) more generally, that it is available as a
surface known over the entire study region. Again, the quantity of interest is

Pnit
j¼1 ptðXtðsijÞÞ ¼Pnit

j¼1 exp ðb0t þ b1tXtðsijÞ þ qtðsijÞÞ ¼ nitp�it where p�it ¼ n�1
it exp ðb0tÞ

Pnit
j¼1 exp ðb1tXtðsijÞ þ qtðsijÞÞ. In

case (i), let Vit ¼ n�1
it

Pnit
j¼1 XtðsijÞ while in case (ii) let Vit ¼ jBij�1Ð

Bi
XtðsÞ ds; under our assumptions,

in either case, Vit can be calculated. Then, as earlier, we approximate the distribution of p�it by the
distribution of exp ðzitÞ. In either case, we obtain p�it � exp ðb0t þ b1tVit þ qitÞ.

2.4 A spatio-temporal modeling framework

To extend the spatial model of Section 2.1 to a spatio-temporal setting, we cast our modeling in the
form of a dynamic spatial process model (see Gelfand, Banerjee and Gamerman, 2005, for parametric
hierarchical modeling in this context, and for related references). We now view the log-rate process
zt;D ¼ fztðsÞ : s 2 Dg as a temporally evolving spatial process.

To develop a dynamic formulation, we begin by writing ztðsÞ ¼ m0 þ mt þ qtðsÞ and add temporal
structure to the model through transition equations for the qtðsÞ, say, qtðsÞ ¼ nqt�1ðsÞ þ htðsÞ, where,
in general, jnj < 1, and the innovations ht;D ¼ fhtðsÞ : s 2 Dg are independent realizations from a
spatial stochastic process. We can now define the nonparametric prior for the block averages hit ¼
jBij�1Ð

Bi
htðsÞ ds of the ht;D surfaces following the approach of Section 2.1 or, equivalently, of Section

2.2. Proceeding with the latter, we assume that the ht;D, given GD, are independent from GD, and
assign a SDP prior to GD with parameters a and G0D ¼ GPð0; s2qðjj s� s0 jj; fÞÞ. Marginalizing GD

over its prior, the induced prior, pðh1; . . . ;hT j s2;fÞ, for the ht ¼ ðh1t; . . . ; hntÞ is given by (3) (with ht
replacing qt). Block averaging the surfaces in the transition equations, we obtain qt ¼ nqt�1 þ ht,
where qt�1 ¼ ðq1;t�1; . . . ; qn;t�1Þ. (We set q1 ¼ h1, i.e., q0 ¼ 0.) Adding, as before, the i.i.d. Nð0; t2Þ
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terms to the zit, we obtain the following general form for the spatio-temporal hierarchical model

yit j zit �ind:
Po ðyit j nit exp ðzitÞÞ; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T

zit j m0; mt; qit; t
2 �ind:

Nðzit j m0 þ mt þ qit; t
2Þ; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T

qt ¼ nqt�1 þ ht
h1; . . . ;hT j s2;f � pðh1; . . . ;hT j s2;fÞ :

ð4Þ

The specification for the mt will depend on the particular application. For instance, the mt could be
i.i.d., say, from a Nð0; s2

mÞ distribution (with random s2
m), or they could be explained through a para-

metric function, say, a polynomial trend,
Pm

j¼1 bjt
j. In what follows, we work with the former specifi-

cation, which is implemented in the example of Section 4.2.

3 Posterior Inference and Prediction

Regarding the spatial model of Section 2.1, as is evident from expression (3), the DP prior induces a
clustering in the qt (in their prior and hence also in the posterior for model (2)). Let T� be the
number of distinct qt in ðq1; . . . ; qTÞ and denote by q� ¼ fq�j : j ¼ 1; . . . ; T�g the vector of distinct
values. Defining the vector of configuration indicators, w ¼ ðw1; . . . ;wTÞ, such that wt ¼ j if and only
if qt ¼ q�j , ðq�;w; T�Þ yields an equivalent representation for ðq1; . . . ; qTÞ. Denote by w the vector that
includes ðq�;w; T�Þ and all other parameters of model (2). Draws from the posterior pðw j dataÞ,
where data ¼ fðyit; nitÞ : i ¼ 1; . . . ; n; t ¼ 1; . . . ; Tg, can be obtained using the Gibbs sampler dis-
cussed in the Appendix.

The multivariate density estimate for the vector of log-rates associated with the subregions Bi is
given by the posterior predictive density for a new z0 ¼ ðz10; . . . ; zn0Þ,

pðz0 j dataÞ ¼
Ð Ð

Nnðz0 j m01n þ q0; t
2InÞ pðq0 j q�;w;T�; s2;fÞ pðw j dataÞ dq0 dw : ð5Þ

Here, q0 ¼ ðq10; . . . ; qn0Þ is the vector of spatial random effects corresponding to z0, and

pðq0 j q�;w; T�; s2;fÞ ¼ a

aþ T
Nnðq0 j 0; s2RnðfÞÞ þ

1
aþ T

PT�
j¼1

Tjdq�j
ðq0Þ ; ð6Þ

where Tj is the size of the j-th cluster q�j . Hence, the model has the capacity to capture, through the
mixing in the q�j , non-standard features in the distribution of log-rates over the regions.

Turning to the spatio-temporal model of Section 2.4, let w ¼ ðm0; t
2; n; s2;f; s2

m; z;h;mÞ be the
parameter vector corresponding to model (4), where ðz;h;mÞ ¼ fðzt;ht; mtÞ : t ¼ 1; . . . ; Tg. We have

pðw j dataÞ / pðm0Þ pðt2Þ pðnÞ pðs2Þ pðfÞ pðs2
mÞ pðh j s2;fÞ

YT
t¼1

Nðmt j 0; s2
mÞ

�
YT

t¼1

Nn zt j ðm0 þ mtÞ 1n þ
Pt

‘¼1
nt�‘h‘; t

2In

� �Yn

i¼1

YT
t¼1

Po ðyit j nit exp ðzitÞÞ :

The Gibbs sampler given in the Appendix can be used to obtain draws from pðw j dataÞ. For instance,
of interest might be inference for the log-rates zit corresponding to specific time periods t and/or
regions i. Moreover, of interest is temporal forecasting for disease rates at future time points. In
particular, the posterior forecast density for the vector of log-rates zTþ1 at time T þ 1,

pðzTþ1 j dataÞ ¼
ð ð ð

NnðzTþ1 j ðm0 þ mTþ1Þ 1n þ
PTþ1

‘¼1 nTþ1�‘h‘; t
2InÞ NðmTþ1 j 0; s2

mÞ

� pðhTþ1 j h; s2;fÞ pðw j dataÞ dmTþ1 dhTþ1 dw ;

where pðhTþ1 j h; s2;fÞ can be expressed as in (6) by replacing q0 with hTþ1 and using the, analo-
gous to ðq�;w; T�Þ, clustering structure in the ðh1; . . . ;hTÞ.
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4 Data Illustrations

Our data consists of the number of annual lung cancer deaths in each of the 88 counties of Ohio from
1968 to 1988. The population of each county is also recorded. Figure 1 depicts the geographical loca-
tions and neighborhood structure of the 88 counties in Ohio.

For both models (1) and (4) we work with an exponential correlation function, qðjj s� s0 jj; fÞ ¼
exp ð�f jjs� s0 jjÞ. For both data examples, we use a discrete uniform prior for f with values in
½0:001; 0:1�; s�2 and t�2 have gamma ð1; 1Þ priors; m0 is assigned a normal prior with mean 0 and
large variance (there was very little sensitivity to choices between 102 and 108 for the prior variance);
and a is set equal to 1 (results were practically identical under a ¼ 5 and a ¼ 10). Finally, the results
of Section 4.2 under model (4) are based on a gammað1; 1Þ prior for s�2

m , and a uniform prior for n
on ð�1; 1Þ.

4.1 Simulation example

We illustrate the fitting of our spatial model in (1)–(3) with a simulated data set. We use exactly the
same geographical structure with the 88 Ohio counties, but generate the areal incidence rate from a
two-component mixture of multivariate normal distributions whose correlation matrix is calculated by
block averaging isotropic GPs. The GPs cover the entire area of Ohio. The induced correlation matrix
of the 88 blocks is computed by Monte Carlo integration. The simulated counts are obtained as
follows. For i ¼ 1; . . . ; 88 and t ¼ 1; . . . ; T (with T ¼ 40), we first generate zit independent
Nðmþ qit; t

2Þ and, then, yit independent Po ðni exp ðzitÞÞ, where ni is the population of county i in
1988 (based on the aggregated data over all gender/race/age groups). The distribution of the spatial
random effects qt ¼ ðq1t; . . . ; qntÞ arises through a mixture of two block-averaged GPs. In particular,
for ‘ ¼ 1; 2, let qð‘Þ ¼ ðqð‘Þ1 ; . . . ; qð‘Þn Þ � Nnðð�1Þ‘ mq1n; s

2
‘RÞ, with the (i, j)-th element of the correla-

tion matrix R given by jBij�1jBjj�1Ð
Bi

Ð
Bj

exp ð�f jjs� s0jjÞ ds ds0. Then, each qt is independently
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sampled from 0:5qð1Þ þ 0:5qð2Þ. The values of the parameters are m ¼ �6:5, mq ¼ 0:5, s2
1 ¼

s2
2 ¼ 1=32, t2 ¼ 1=256, and f ¼ 0:05. Under these choices, marginally, each qit has a bimodal distri-

bution of the form 0:5 Nð�mq; s
2
1Þ þ 0:5 Nðmq; s

2
2Þ. This simulation experiment was designed to illus-

trate the inferential scope of our modeling framework, and to compare with a related parametric
model (discussed below). For real epidemiological data, such a scenario might arise due to unknown
or unobservable genetic predispositions, which could render a portion of the population more vulner-
able to a particular disease than the rest of the population.

The Bayesian goodness of fit is illustrated with posterior predictive densities for the log-rates,
which are estimated using (5). In Figure 2 (left and middle columns) we compare the true densities of
the model from which we simulated the data with the posterior predictive densities under model (1),
for four selected counties. They are “Delaware” and “Franklin” in central Ohio, “Hamilton” in south-
west, and “Stark” in northeast (see Figure 1). “Franklin” includes Columbus and “Hamilton” includes
Cincinnati so these are highly populated counties. “Delaware” is more suburban and “Stark” is very
rural. We also plot posterior predictive densities from a parametric model based on a
GP ð0; s2 exp ð�f jjs� s0jjÞÞ for the spatial random effects surfaces. This specification results as a
limiting version of model (1) (for a!1) where the qt, given s2 and f, are i.i.d. Nnð0; s2RnðfÞÞ.
The SDP model clearly outperforms the GP model.
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Figure 2 For the simulation example of Section 4.1, the left and middle columns include posterior
predictive densities for the log-rates corresponding to four counties, based on the SDP model (thick
curves) and the GP model (dashed curves). The true densities are denoted by the thin curves. The
right column includes contour plots of bivariate posterior predictive densities for log-rates associated
with two pairs of counties, overlaid on the corresponding observed log-rates. In all panels, the 40
observed log-rates, log ðyit=niÞ, are denoted by “þ”.
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Next, we pair the four counties above to show the posterior predictive joint densities, based on the
SDP model (see the right column in Figure 2). We note that, with only 40 replications, our model
captures quite well both marginal and joint densities for the log-rates.

4.2 Ohio lung cancer data

For our illustrative analysis of the Ohio lung cancer mortality data we consider the subset consisting
of observations for white males between 55 and 64 years; the same subset was analyzed in Knorr-
Held (2000). (See Kottas, Duan and Gelfand, 2006, for an analysis of the full data set, using a version
of model (4) with a linear trend bt replacing the mt.)

Time t is normalized to be from t ¼ 1 to 20 for years 1968 to 1987. To validate our model, we
leave year 1988 out in our model fitting. There was prior to posterior learning for all model hyper-
parameters. In particular, posterior point (posterior medians) and 90% equal-tail interval estimates for
m0, t2 and n are given by �6:281 ð�6:323, �6:246Þ, 0:501 ð0:479, 0:523Þ and 0:259 ð0:127, 0:401Þ,
respectively.

In Figure 3 we display posterior point (medians) and 95% interval estimates for the log-rates over
time for the four counties considered in Section 4.1, as well as counties “Clermont” and “Marion”
(see Figure 1). Results for years 1968 to 1987 are based on the posterior samples for the correspond-
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Figure 3 For the Ohio data of Section 4.2, posterior point estimates (solid lines) and 95% interval
estimates (dotted lines) of the log-rates over time for six counties. In each panel, the circles denote
the observed log-rates for years 1968 to 1987, the data of which were used in the model fitting, and
the “�” indicates the observed log-rate for year 1988, which was used to validate the model.
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ing zit, t ¼ 1; . . . ; 20, whereas the estimates for year 1988 are based on draws from the posterior
forecast distribution developed in Section 3. Histograms of these draws are plotted in Figure 4. Final-
ly, we also calculated 95% marginal posterior forecast intervals for the log-rates for all 88 counties in
1988 and found that 84 out of 88 observed log-rates (95.45%) are within their 95% interval; we do
not seem to be overfitting or underfitting.

5 Discussion

We have argued that, with regard to disease mapping, it may be advantageous to conceptualize the
model as a spatial point process rather than through more customary areal unit spatial dependence
specifications. Aggregation of the point process to suitable spatial units enables us to use it for the
observable data. Specifying a non-homogeneous point process requires a model for the latent risk
surface. Here, we have argued that there are advantages to viewing this surface as a process realiza-
tion rather than through parametric modeling. But then, the flexibility of a nonparametric process
model as opposed to the limitations of a stationary GP model becomes attractive. The choice of a
spatial DP finally yields our proposed approach.

Extensions in several directions may be envisioned. Two examples are the following. We often
study concurrent disease maps to try to understand the pattern of joint incidence of diseases. In our
setting, for a pair of diseases, this would take us to a pair of dependent surfaces from a bivariate
spatial process. We could envision modeling based upon a bivariate SDP centered around a bivariate
GP. Moreover, it would be of interest to extend our nonparametric modeling framework to handle
misalignment issues, i.e., data settings where the disease counts are observed for one set of areal units
while covariate information is supplied for a different set of units.
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Figure 4 For the Ohio data example, histograms of draws from the posterior
forecast distribution for the log-rate of six counties in the hold-out year (year
1988). The “�” in each panel indicates the value of the observed log-rate.
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Appendix: Posterior Simulation Methods

Spatial model: Under model (2), the posterior full conditional for each zit is proportional to
exp ð�nit exp ðzitÞÞ Nðzit j m0 þ qit þ t2yit; t

2Þ, and can be sampled by introducing an auxiliary variable
uit (> 0) such that pðzit; uit j . . . ; dataÞ / Nðzit j m0 þ qit þ t2yit; t

2Þ 1ð0<uit< exp ð�nit exp ðzitÞÞÞ. Now the
Gibbs sampler is extended to draw from pðuit j zit; dataÞ and pðzit j uit; . . . ; dataÞ. The former is a uni-
form distribution over ð0; exp ð�nit exp ðzitÞÞÞ. The latter is a Nðm0 þ qit þ t2yit; t

2Þ distribution trun-
cated over the interval ð�1; log ð�n�1

it log uitÞÞ. Alternatively, adaptive rejection sampling can be
used to draw from the full conditional for zit noting that its density is log-concave.

Having updated all the zit, the mixing parameters qt, t ¼ 1; . . . ; T , and hyperparameters m0, t2, s2,
f, can be updated as in the spatial DP mixture model (reviewed in Section 2.2), with zt playing the
role of the data vector yt. (We refer to the Appendix in Gelfand, Kottas and MacEachern, 2005, for
details.) All these updates require computations involving RnðfÞ. To approximate the entries of this
matrix, we use Monte Carlo integrations based on sets of locations distributed independently and
uniformly over each region Bi.

Spatio-temporal model: Parameters zit, s2 and f of model (4) are updated in a similar fashion as in
the spatial model. A random-walk Metropolis-Hastings step was used to update n. The full conditional
for m0 and for each of the mt is normal, while t2 and s2

m have inverse gamma full conditionals.
For t ¼ 1; . . . ; T, pðht j . . . ; dataÞ / pðht j fhj : j 6¼ tg; s2;fÞ

QT
‘¼t Nnðz‘ j d‘ þ n‘�tht; t

2InÞ, where
d‘ ¼ ðm0 þ m‘Þ1n þ

P‘
m¼1;m6¼t n‘�mhm, ‘ ¼ t; . . . ; T . The product above is proportional to a

Nnðht j mt;StÞ density, with mt ¼ ð
PT

‘¼t n2ð‘�tÞÞ�1 PT
‘¼t n‘�tðz‘ � d‘Þ, St ¼ t2ð

PT
‘¼t n2ð‘�tÞÞ�1 In. Let

T�� be the number of distinct hj in fhj : j 6¼ tg, h��j , j ¼ 1; . . . ; T��, the distinct values, and T�j the
size of the cluster corresponding to h��j . The prior full conditional pðht j fhj : j 6¼ tg; s2;fÞ is a mixed
distribution with point masses T�j ðaþ T � 1Þ�1 at the h��j and continuous mass aðaþ T � 1Þ�1 on
the Nnð0; s2RnðfÞÞ distribution. Hence, pðht j . . . ; dataÞ is also a mixed distribution with point masses,
proportional to T�j qj, at the h��j and continuous mass, proportional to aq0, on an n-variate normal
with covariance matrix Ht ¼ ðS�1

t þ s�2R�1
n ðfÞÞ

�1 and mean vector HtS
�1
t mt. Here, qj is the value of

the Nnðmt;StÞ density at h��j , and q0 ¼
Ð

Nnðu j 0; s2RnðfÞÞ Nnðu j mt;StÞ du, an integral that is avail-
able analytically.
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