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emergency braking (6). As these models continue to evolve and gain

in behavioral realism, a greater range of cognitive phenomena could

be incorporated. An important aspect missing from previous formu-

lations pertains to the modeling of the cognitive processes used by

drivers, such as perception, judgment, and execution while driving.

Previous studies that recognized these dimensions remained in a

qualitative framework, with limited mathematical specificity and

hence no calibration effort.

A wide spectrum of car-following and lane-changing models

has been presented in the literature and in some cases incorporated

in traffic simulation tools. Existing models aim to capture driver

behaviors under a variety of traffic conditions that range from free-

flow conditions to extreme situations. However, few models can claim

to fully capture driver behavior in these different driving environ-

ments, especially in phase transitions, traffic breakdowns, and incident

occurrences. These conditions call for a richer representation of the

cognitive processes underlying driver behavior. In particular, explicit

representation of drivers’ risk attitudes is expected to provide greater

insight into the role of risk-taking behaviors in accident-prone and

other extreme situations.

This paper explores and evaluates a car-following model that

reflects the psychological and cognitive aspects of the phenomenon

and captures risk-taking behavior under uncertainty. In this model,

Kahneman and Tversky’s prospect theory provides a theoretical and

operational basis with which to weigh a driver’s alternatives (7 ).

BACKGROUND REVIEW

Major developments in human decision-making research offer a solid

base for many models in the domains of psychology, marketing, and

economics. However, the influence of these theories on modeling

traffic and driver behavior has been limited. This may be because of

the initial normative intent of early decision theories, that is, to help

decision makers reach better decisions rather than seeking to describe

the often suboptimal ways in which people actually make decisions

in everyday situations. Following the pioneering theoretical contri-

butions of Bernoulli to classical utility theory (8), Von Neumann

and Morgenstern introduced a rigorous axiomatiation (vNM’s axioms)

that provided the formal basis for expected utility theory (9). The

latter lies at the core of modern decision theory, the primary technical

approach for operational decision aiding under risk. Inconsistencies

between choices actually made by humans and those predicted by

the theories led to recognition of the limitations of strict utility theory

for describing many practical decision situations (10, 7). Refinements

of utility theories, including subjective variants and prospect theory,

advanced by Kahneman and Tversky as a descriptive model of how

humans make decisions under risk, have been proposed. Attempts to

identify and formalize these cognitive and decision processes have
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Acceleration models are at the core of operational driving behaviors and

include car-following models that capture interactions between a lead

and following vehicles. The main assumption in these models is that the

behavior of the following vehicle (e.g., change in acceleration) is related

directly to a stimulus observed or perceived by the driver, defined relative

to the lead vehicle (e.g., difference in speeds or headways). An important

aspect missing from previous formulations pertains to the stochastic

character of the cognitive processes used by drivers, such as perception,

judgment, and execution while driving. A car-following model that reflects

the psychological and cognitive aspects of the phenomenon and captures

risk-taking behavior under uncertainty is explored and evaluated. In

this model, Tversky and Kahneman’s prospect theory provides a theo-

retical and operational basis for weighing a driver’s different alternatives.

The model is implemented and tested to assess its properties and those

of the resulting traffic stream behavior.

Acceleration models are at the core of operational driving behaviors

and include car-following models that capture interactions between

a lead and following vehicles. The main assumption in these models

is that the behavior of the following vehicle (e.g., change in accel-

eration) is directly related to a stimulus observed or perceived by the

driver, defined relative to the lead vehicle (e.g., difference in speeds

or headways). This idea was adopted in the car-following models of

Chandler et al. (1), Gazis et al. (2), and Herman et al. (3), known as

the General Motor (GM) models. These first models are not complete

in the sense that they are applicable to all traffic situations. Later

investigations proposed improved models by introducing a safe

time headway and a desired velocity. The Gipps model (4) and the

intelligent-driver model (IDM) (5) contain intuitive parameters that

can be related to the driving style, such as desired accelerations,

comfortable decelerations, and a desired safe time gap. Furthermore,

they include braking strategies that prevent accidents under a given

heuristic. Subsequent studies have extended these models by intro-

ducing additional parameters intended to capture dimensions such

as anticipation, learning, and response to several vehicles ahead.

The Wiedemann model captures the indifference of drivers to small

changes in stimuli. It also allows different execution modes, including
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resulted in the identification of a large range of heuristics and biases

that appear to be prevalent in human decision making.

Prospect Theory

Prospect theory postulates two phases while making decisions in

complex situations: a framing and editing phase followed by an

evaluation phase (7 ). The first phase is a preliminary analysis of the

decision problem to subjectively frame the effective alternatives.

The decision maker may mentally edit the alternatives, resulting in

assigning subjective utilities to the outcomes, which reflect asymme-

tries between attitudes toward losses versus gains. Figure 1a shows

a typical subjective utility function used in prospect theory.

The evaluation phase produces a prospect index calculated in a

similar manner to an expected utility, albeit with the major difference

that the probabilities of the different possible outcomes are replaced by

subjective decision weights assumed by decision makers (Figure 1b).

The weighting function is characterized by overweighing probability

differences near certainty and impossibility, relative to comparable

differences in the middle of the scale (overestimation during extreme

situations) (11). At the end, the alternative with the highest prospect

(not expectation) is selected. In general, the probability weighing

function corresponds to an inverse S-shaped function with steep

gradients near the beginning and near the end of the curve. However,

in Figure 1b, these steep gradients are replaced by discontinuities or

probability jumps near 0 and 1. This kind of curve is favorable for

lotteries and insurance companies. These companies are considered

as utility distribution transformers, either by accumulating a given

amount of utility to an extremely rare event (lottery) or by redistrib-

uting an extremely rare big disutility to a small but certain disutility

(the insurance payment).

Heuristics and Information Processing

In decision theory, heuristics are simplified models of the world or

shortcuts that can produce decisions efficiently. Because of humans’

limited information processing abilities, heuristics were considered

as a strategy to adapt to a complex environment. In seminal works,

Tversky and Kahneman pointed to the prevalence of heuristics in

everyday decisions and grouped heuristic rules into three main cate-

gories, identifying common biases associated with each category, as

follows (12):

• Representativeness. In estimating the probability that Object A

is part of B, the degree to which A is representative of B or the degree

to which A resembles B affects the assessment. The biases resulting

from this heuristic include

– Insensitivity to prior probability of outcomes or base-rate

frequency of the outcomes,

– Insensitivity to sample size,

– Misconception of chance,

– Insensitivity to predictability,

– Illusion of validity, and

– Misconception of regression (to the mean).

• Availability. This judgment heuristic is represented by the ten-

dency of people to assess the probability of occurrence of an event

by the “ease with which instances or occurrences can be brought to

mind” (13). The biases associated with this heuristic are caused by

the following:

– Retrievability of instances (familiarity),

– Effectiveness of a search set where different tasks will give

different search sets,

– Imaginability, and

– Illusion of correlation.

• Adjustment and anchoring. In estimating probabilities (values

in general), different starting points will lead to different estimates,

biased toward the initial estimates. This is called anchoring. The

associated biases are

– Insufficient adjustment,

– In evaluation of conjunctive and disjunctive events, and

– Anchoring in the assessment of subjective probability distri-

butions.

Accordingly, these heuristics have helped explain the so-called fal-

lacies contrasting human judgment with probability theory. However,

they do not individually or collectively define a comprehensive theory
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of decision making, nor do they provide a sufficient basis for for-

mulating decision mechanisms for a variety of general decision

situations (14).

In the model of driver behavior formulated in the next section, the

prevalence of such heuristics is reflected implicitly, with the main

focus on explicitly incorporating prospect theoretic concepts in the

model formulation. This allows a comprehensive inclusion of major

characteristics found in the human decision-making research to the

field of traffic modeling. Such characteristics contain (a) stochastic

behavior under uncertain conditions and (b) disrespect of safe rational

rules in the form of risk taking.

CAR-FOLLOWING MODEL FORMULATION

In the car-following process, three behaviors are possible:

1. Drivers accelerate,

2. Drivers decelerate, and

3. Drivers keep the same speed.

It is assumed that time is divided into different acceleration

instances i = 1, 2, . . . . car-following model formulation is currently

defined by the reaction time where a driver considers accelerating,

decelerating, or keeping the same speed. The main variable of interest

is the subjective probability of being involved in a rear-end collision

with the car in front.

The main assumptions are as follows:

1. Decision makers believe that—at all instances—they will follow

the same stochastic process: given an assumed distribution of the

future velocity of the leader, a driver will have a probability density

function of the acceleration he or she will adopt.

2. The subjective probabilities are updated optimally to increase

the velocity (up to a given desired value)—thus decreasing the travel

time—while taking into consideration the risk of being involved in

a collision.

Following the logic in an earlier work (15), the n’s decision

maker’s representation of the probability of being involved in a

rear-end collision in the acceleration instance i is denoted by pn,i.

This representation is not equal to the objective collision probability

On,i that is not known at this stage. In other words, pn,i represents the

decision maker’s representation of the task and depends on his or

her prior distribution of pn,1 and how he or she updates that prior

distribution with experience (driving history). On the other hand,

On,i represents how the environment behaves and is structured for the

car-following task. Linking pn,i to the surrounding driving conditions

is a current object of investigation.

Four possible submodels can be considered in this framework:

1. Nonstationary submodel with decreasing probability. In this

model, pn,i decreases as i increases, that is, the longer one follows a

car, the less likely one is to be involved in a rear-end collision. This

model is not adopted here because it does not consider possible

driver fatigue.

2. Stationary submodel: pn,i remains constant when i increases. This

model lacks consideration of the driving process and the inconsistency

of drivers and therefore is not considered further.

3. Nonstationary submodel with increasing probability: there are

infinitely many possibilities in which pn,i might increase with i. How-

ever, the driver’s perception of being involved in a rear-end collision

is unlikely to be monotonically increasing since it depends on the

acceleration state of the leading drivers. This volatility is the main

reason the next submodel is introduced.

4. Nonstationary submodel with mixed-behavior probability:

there is a large number of mechanisms in which pn,i might increase

or decrease with i.

Submodel 4 is the one considered in this paper. A prior probability

of collision is assumed to be held by the driver ( pn,1). This probability

is updated while conditioned on the behavior (acceleration, deceler-

ation, etc.) of the leader and the follower. This probability is also

conditioned on the fact that a driver is not involved in a crash in the

previous acceleration instance. Note that the behavior of the leading

driver is not known at the beginning (type of the driver assumed

at beginning, like n), and it is assumed that it is related to the driver

population in which a given study is being conducted. The term pn,i

is formulated in the following.

Estimation of Collision Probability

Assume that at time t the subjective representation of driver n for the

future speeds of the leader n − 1 (Figure 2) during the anticipated

time span τn follows a normal distribution with a given standard

deviation σ(vn−1), and the mean is given by the actual velocity of the

leader. This means that the estimated velocity v est
n−1(t) of the leader

has a probability density f(v � t) given by

For the leading vehicle, a constant velocity heuristic is adopted,

that is, its velocity distribution given by Equation 1 is assumed to be

valid during the entire anticipated time interval between t and t + τn.

The driver under consideration (i.e., the follower) estimates the

probability of a rear-end collision at the end of the anticipation

time horizon t + τn for candidate accelerations an in a range amax to

amin. See Table 1, where the parameters above the line are actual

model parameters, and those below the line are secondary parameters

needed only for numerical implementation. Since the driver is in

control of his or her acceleration, a constant acceleration heuristic is

assumed for determining the crash probability: once chosen, the

acceleration an will not be changed during the anticipation time

horizon. The crash probability pn(t + τn) is given by the probability

that the gap (sn(t) = xn−1(t) − xn(t) − Ln−1) is negative at time t + τn, that

is, pn(t + τn) = P(sn(t + τn) < 0).
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On the basis of the constant-velocity heuristic for the leader, it is

known that xn−1(t + τn) = xn−1(t) + τn v est
n−1(t). The constant-acceleration 

heuristic for the follower gives 

xn(t + τn) = xn(t) + vn(t)τn + anτ2
n

The crash probability can be written as

In the last step, the stochastic variable v est
n−1(t) is written in terms

of the standardized normal distribution by setting v est
n−1(t) = vn−1(t) +

σ(vn−1)Z, where Z is the standardized Gaussian stochastic variable

(mean 0, variance 1):

where Δ = duration and Δvn(t) = vn(t) − vn−1(t) denotes the approaching

rate and Φ(z) is the tabulated cumulative distribution function for

the standardized Gaussian.

Evaluation Process

Once the pn,i are known, a driver enters the evaluation process.

Prospect theory is adapted for this purpose. The gain and losses are

expressed here in term of gains and losses in speed from the previ-

ous acceleration instance i − 1. The gain is, however, limited by the

maximum desired velocity of the driver, and the losses are limited

by the nonnegative velocity constraint. If the gain and losses are

expressed in terms of an abscissa Δx
. = Δv = an × τn, the value function

UPT (an) is defined as follows:
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where 0 < γ and w− are parameters to be estimated and a0 is used for

normalizing purposes only. Without loss of generality, a0 = 1 m/s2

(see Table 1); other values for a0 would only rescale the crash weight-

ing factor wc. The value function used in the initial model (based on

the values of parameters shown in Table 1) is illustrated in Figure 3.

The value function captures three characteristics: (a) loss aversion

seen in the steeper slope with losses than with gains, (b) diminishing

sensitivity to increasing gains and losses, and (c) evaluation of out-

comes relative to a reference point, taken as the speed in the previous

acceleration instance.

How a driver determines his or her behavior is by sequentially eval-

uating the outcome of a candidate acceleration before each accelera-

tion or deceleration opportunity. If driver n decides to use a positive an

at instance i, he may either be able to increase his velocity by (an × τn)

(gain) or will be involved in a rear-end collision. In a collision, the loss

is assumed to be related to a seriousness term k(v, Δv) weighted by wc:

when the seriousness of the driver increases, k(v, Δv) increases. As for

wc, it represents the sensitivity to the loss caused by an accident. A

higher wc corresponds to conservative individuals, whereas a lower wc

corresponds to drivers willing to take a higher risk with little concern

for crashing their vehicles. Conversely, if the driver decelerates, he will

lose a corresponding amount of speed (an × τn) (<0). That is,

where UPT (an) is the value function derived from Equation 4 and pn,i

is the probability of colliding with the rear-end bumper of the lead

vehicle given that no collision took place in the i − 1th acceleration

instance.

To reflect the stochastic response adopted by the drivers, the

acceleration of vehicle n an,car-following(t + Δti) is retrieved from the

following probability density function:

where β is a free parameter (β > 0) that reflects the sensitivity of

choice to the utility U(an). It can also reflect different preferences
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TABLE 1 Parameters and Typical Values of Model

Parameter Typical Value

Maximum anticipation time horizon τmax = 5 s

Velocity uncertainty variation coefficient α = 0.1

Logit uncertainty parameter β = 3
(higher for smaller uncertainty)

Accident weighing factor wc = 40

Exponents of the PT utility γ = 0.5

Weighing factor for the negative PT utility w− = 2

Minimum acceleration amin = −8 m/s2

Maximum acceleration amax = 4 m/s2

Acceleration normalizing factor a0 = 1 m/s2
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of the drivers or estimating uncertainties other than that of the

velocity of the leader. It should be noted that β can change with the

experience i, reflecting a given learning process. For example, β can

be higher for more experienced drivers, thereby reflecting a more

stable driving style.

Free-Flow Model

For driver behavior during free-flow conditions, the logic adopted

in the Gipps model is adopted here (4). Each driver has a desired

velocity Vn,desired. In each time step of duration Δt, the acceleration

applied by the driver n to reach this velocity is given by

Finally, the chosen acceleration is

MODEL IMPLEMENTATION

Before being calibrated against empirical data, the unconventional

structural form of the model requires a thorough study of its physi-

cal characteristics. This study includes implementing the model and

testing its asymptotic properties so it can be assessed for feasibility.

The findings of the testing process in terms of sensitivity analysis

allow one to conclude if the model is valid.

At this stage, all N + 1 drivers (n = 0, 1, . . . , N) are assumed to

have identical parameters where s is the corresponding gap and Δv

is the relative speed (Δv > 0 when approaching). The basic model

developed in the previous section is implemented by making the

following specifications:

1. The estimation uncertainty σ(v1) = αvl of the velocity of the

leader is proportional to the velocity itself, that is, the relative error

(variation coefficient) α is constant (see Table 1).

2. The anticipation time horizon τ is assumed to be the mini-

mum between the time to collision τTTC = (s/Δv) and some maximum

value τmax:

Initial Plots

The model was tested by using the parameter values presented in

Table 1. The resulting plots are shown in Figures 4 and 5. Remarkably,

in stochastic equilibrium, approximate time headways of 1.5 s are kept

constant in the car-following regime. These headway values are mainly

influenced by the term ατmax, where higher values of this quotient

lead to higher time headways (Figures 4a and 4b). The sensitivity to

relative speeds is influenced by α alone (the higher α is, the higher

the sensitivity, the string stability, and the acceleration variations)

(Figure 4c). Accordingly, the time headway and the sensitivity to the

velocity differences can be influenced separately.
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Conversely, if lower acceleration uncertainties are desired, the value

of β ∝ 1/σa should be decreased (Figure 5). Moreover, to increase

the skewness (third normalized moment), the crash weight wc has to

be increased. This can be also accomplished by slightly decreasing β
for a constant variance. However, values of the order wc < 20 lead to

bimodal and unrealistic distributions: a new peak appears for very

high accelerations leading to crashes, and the prospect theory utility

can outweigh the crash penalty even for a crash probability pc = 1.

Asymptotic Expansion

To illustrate better the behavior of the model, an asymptotic expan-

sion of the acceleration probability distribution (Equation 6) of this

model is useful. A series of straightforward steps leads to

that is, the distribution of accelerations is approximately given by a

Gaussian distribution whose moments are

a* arg (max [U(a)])

U ′(a) (necessary for determining a* by the condition U(a*) = 0),

and U″(a) can be calculated analytically since this implies the deriva-

tive of Φ(z), which is just the density of a Gaussian. The value a* itself

needs to be calculated numerically. Because of the nonlinearities of

the utility UPT (a), it is not guaranteed that a* is unique. However,

all investigations presented in this paper show that it is unique for

the parameters of Table 1.

Efficient Implementation of Asymptotic Expansion

The major aim here is to calculate the acceleration a* for which the

utility is maximal conditioned to given values of s, v, and Δv.

Initial Estimate

At this early stage, it is useful to take the value of a* for γ + =
γ − = w − = 1, where it can be calculated analytically as follows. For

γ = w− = 1, the total utility (Equation 5) can be written as

where

and the prediction horizon is given by the minimum of the maximum

prediction time τmax and the time to collision:
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As a necessary condition for maximization and minimization

problems, U′(a) needs to be zero. Accordingly,

with the density of the standardized normal distribution:

and

It is essential to the analytical solution that U′ depends on a only

by means of the argument z(a) of the standardized Gaussian whereas

z′(a) does not depend on a at all. At maximum utility, one obtains

for z value,

z U z
a w zc* argmax ln ( )= ( )( ) = −

′⎛
⎝⎜

⎞
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2
2

180

π
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where z′ is taken from Equation 17. Note that the negative square

root is eliminated since this corresponds to the crashing probabilities

smaller than 0.5, which is plausible in all cases. The positive root

corresponds to a minimum of the utility. Inserting Equation 18 in

Equation 15 finally gives the following expression for the initial

estimate of the optimal acceleration a* = arg max(U(a)):

This equation is exact for a linear prospect theory utility or, in

other words, for a classical utility theory (γ + = γ − = w − = 1).

Numerical Approximation

Here, the maximum of the utility cannot be computed analytically.

Since the analytical derivatives are easy to calculate and a good initial

estimate is known for the optimal acceleration, one can use Newton’s

method to find the optimum; its n + 1th iteration is defined by
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where

and

where

fN(z) = Gaussian density (Equation 16);

z(a) = argument of the Gaussian, given by Equation 13;

z′(a) = given by Equation 17, and z″(a) = 0; and

U″PT (a) = second derivatives of the prospect theory utility UPT(a).

Figure 6 illustrates Newton’s method for fining an optimal acceleration.

Standard Deviation of Acceleration Function

With known analytical derivatives U ′(a) and U″(a), the standard

deviation of the acceleration is known if the acceleration at the

optimal utility is known (see Equation 11):

The results are plotted in Figure 7.

The approximation presented in this section provides a simplified

and efficient method for implementing the formulated model.

MODEL ANALYSIS AND ASSESSMENT

At this stage, the model is structured so that the stimuli influencing

driver behavior reflects the traffic conditions surrounding a given

vehicle. These stimuli are (a) the predicted velocity distribution of the

leading vehicle, (b) the relative speed between the leading vehicle and

the vehicle in question, and (c) the gap between the end bumper of

the leading vehicle and the front bumper of the vehicle in question. The

sensitivity of the response (acceleration) to these stimuli is reflected

by parameters that may be related to the driver’s personality or the

corresponding vehicle’s characteristics:

σ
βa s v v

U a s v v

2 1
23, ,

* , ,
( )Δ

Δ
( ) =

−
′′ ( )( )
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2

′′( )( )z a ( )22

F a U a U a w f z z ac N( ) = ′( ) = ′′ ( ) − ( ) ′( )PT ( )21

1. The parameters that may be related to the driver’s personality

are maximum anticipation time horizon, velocity uncertainty varia-

tion coefficient, logit uncertainty parameters (higher for higher

uncertainty), accident weighing factor, prospect utility exponents,

weighing factor for the negative prospect theory utility, and desired

velocity (see Table 1).

2. The parameters that may be related to the vehicle’s charac-

teristics are maximum acceleration and maximum deceleration

(see Table 1).

This structure reflects a trade-off between a simplicity facilitat-

ing the calibration task and a complexity imitating the stochastic and

uncertain decision-making process adopted by drivers. If this structure

is to be further complicated, additional stimuli can be added. For

example, the model does not take into account the road geometry

explicitly. However, this type of stimuli can be included implicitly by

modifying some model parameters (maximum acceleration, maxi-

mum deceleration, desired velocity, etc.) on the basis of geometric

factors (road curvature and smoothness, lane width, etc.).

Moreover, the stimuli emanating from the behavior of the leading

drivers are only considered in this model. To consider the behavior

of the following drivers, the collision probability of a given vehicle

with its follower can be computed on the basis of Equation 2. The

probability density function of the acceleration can then be calculated

on the basis of the probability of colliding with the leading vehicle

or with the back vehicle (Equation 6). Furthermore, clues for the

deceleration of the leader given by braking lights or by the traffic

situation several vehicles ahead are not considered.

The properties of the model for real-life driver behavior can be

retrieved from Figures 4, 5, and 7. The model shows that during

equilibrium, the time headway is kept constant at a value of 1.5 s,

which is the value reported in different studies on headway distribu-

tions (16, 17). These headways increase when the drivers use higher

anticipation time τmax, thus taking more safety precautions. The intu-

itive relationships between different driving parameters expressed

in Figure 4 can be summarized by Equation 19: higher acceleration

values correspond to higher-distance headways and lower anticipa-

tion times (myopic view). Moreover, as a driver approaches a lead-

ing vehicle at a higher speed (Δv > 0), this driver tends to use higher

deceleration rates.

Figure 5 shows the probabilistic side of the model, where different

probability density functions of the acceleration term are plotted in

0 subjective utility U

initial guess

first iteration

second iteration

-10

-20

S
u
b
je

c
ti
ve

 t
o
ta

l 
u
ti
lit

y

-30

-40
-4 -3 -2 -1 0

a (m/s2)

1 2 3 4

(a)

derivation U’(a)

initial guess
first iteration

second iteration

D
e

ri
va

ti
o
n
 U

’(
a
) 

o
f 

s
u
b
je

c
ti
ve

 u
ti
lit

y

-1

-0.5

0

0.5

1

-4 -3 -2 -1 0

a (m/s2)

1 2 3 4

(b)

FIGURE 6 Finding utility maximum by using Newton’s method.

Hamdar, Treiber, Mahmassani, and Kesting 215



216 Transportation Research Record 2088

different driving scenarios. When the traffic is moving, in steady state

(Δv = 0), for s = 20 m, the average velocity value is 10 m/s (36 km/h

corresponding to a = 0). As this velocity value increases, the vari-

ance in the acceleration value increases (thicker probability density

line), whereas the expectation value of the acceleration decreases.

This decrease reflects that the driver wants to obtain her safety time

gap again. As in other micromodels, this can lead to instability for

higher velocities in dense traffic conditions (s = 20 m, k = 50 vehicles

per kilometer) (5). The increase in the variance is a consequence of

the value function of the prospect theory: near the anchoring point

(zero acceleration) one acts more sensitively than far from the ref-

erence situation, that is, when accelerating or decelerating strongly.

If the velocity value is fixed to v = 20 m/s, at steady state (Δv = a = 0),

the headway values range between 20 and 60 m. When faced with the

case of moving vehicle approaching a standing vehicle (Δv = v),

the moving vehicle tries to decelerate stronger as Δv increases

and s decreases. Furthermore, for Δv = v >10 m/s, the decelera-

tion increases nearly quadratically and its value is slightly higher  

than the kinematically necessary deceleration,

When this same vehicle is at rest (v = 0), the applied acceleration

values range only between 1 and 2 m/s2, which is a realistic range

for accelerations from a standstill on a road when only a small gap

is provided (0 < s < 20) (18).

Finally, Figure 7 presents the deterministic side of the model,

where the acceleration values computed at optimum utility (a*) are

provided with their corresponding variance. In the case of moving

traffic (Figure 7a), all vehicles use the maximal deceleration values

when 18 (m/s) ≤ v ≤ 40 (m/s) and 7 (m/s) ≤ Δv ≤ 20 (m/s). The lowest

variances are observed when Δv increases below zero, allowing

the vehicles to accelerate instead of decelerate. Figure 7b denotes the

expected braking deceleration when approaching a standing vehicle

or a red traffic light. For relatively small gaps or high velocities,

the kinematically necessary braking decelerations are adopted, lead-

ing to a smooth and continuous braking maneuver to the standstill. For

small velocities and comparatively large gaps, a continuous transition
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to the accelerating regime is observed. Again, this is the expected

driver behavior. Notice that in contrast to most other models, such

as the Gipps model, the driving properties of keeping a certain time

headway and braking according to the necessary kinematical rules,

is not introduced explicitly into the model equations. In fact, these

are emergent properties resulting from the dynamics.

CONCLUSIONS AND FUTURE WORK

Existing car-following models are deterministic and do not sufficiently

consider the cognitive aspects of the driving task. This paper intro-

duced a car-following model that places greater confidence on the

cognitive rationale of drivers. For that reason, prospect theory is

adopted for the evaluation process of gains and losses while driving.

This allows risk taking when a driver is uncertain of the leader’s future

behavior. Accidents will be possible and no artificial constraints will

be needed to prevent them.

The model implemented showed promising results for stochastic

equilibrium. The asymptotic extension of the car-following equations

is possible analytically and allows more efficient implementations

and faster execution. This makes such a cognitive-based stochastic

model simple enough to compete with existing car-following models.

Decision-making theories such as prospect theory allow a more

solid psychological background for the presented model, relating it

to a rich literature not yet exploited in the traffic modeling domain:

stochasticity, risk taking, and accidents are well incorporated in the

modeled behavior of the drivers.

To test the validity of this model, a more complete implementa-

tion, including calibration and validation by comparison with real-

life trajectory data, remains important. This will allow studying the

resulting flow–density relationships as well as other macroscopic

performance measures (average travel times, average delay, etc.).

Moreover, the free-flow and the lane-changing behaviors are not fully

developed in this stochastic framework.
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