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Objective: This paper explores the development of a rigorous computational model
of driver behavior in a cognitive architecture — a computational framework with under-
lying psychological theories that incorporate basic properties and limitations of the
human system. Background: Computational modeling has emerged as a powerful
tool for studying the complex task of driving, allowing researchers to simulate driver
behavior and explore the parameters and constraints of this behavior. Method: An inte-
grated driver model developed in the ACT-R (Adaptive Control of Thought-Rational)
cognitive architecture is described that focuses on the component processes of control,
monitoring, and decision making in a multilane highway environment. Results: This
model accounts for the steering profiles, lateral position profiles, and gaze distributions
of human drivers during lane keeping, curve negotiation, and lane changing. Conclu-
sion: The model demonstrates how cognitive architectures facilitate understanding of
driver behavior in the context of general human abilities and constraints and how the
driving domain benefits cognitive architectures by pushing model development toward
more complex, realistic tasks. Application: The model can also serve as a core com-
putational engine for practical applications that predict and recognize driver behavior

and distraction.

INTRODUCTION

Driving is a very common yet highly complex
task that involves dynamic interleaving and exe-
cution of multiple critical subtasks. To explore
how people perform this complex task, research-
ers have developed a variety of models to account
for and simulate driver behavior. Some of these
models are primarily conceptual models that help
one to understand the representational and proce-
dural components of the driving task (e.g., Boer
& Hoedemaeker, 1998). Others are computa-
tional models that compute, simulate, and predict
various aspects of driver behavior (e.g., Donges,
1978; Godthelp, 1986; Hildreth, Beusmans, Boer,
& Royden, 2000). These computational models
have emerged as powerful tools for both theo-
retical study of driver behavior (e.g., study of the
perception-action aspects of steering) and practi-
cal development of real-world intelligent vehicle
systems (e.g., intelligent lane guidance and warn-
ing systems). In particular, the research com-
munity has recently witnessed a growing push for

integrated driver models — models that unify the
many aspects of driving into a single, larger scale
computational model of behavior. Past and ongo-
ing efforts toward integrated driver models (e.g.,
Levison & Cramer, 1995; Tsimhoni & Liu, 2003)
have shown great promise, accounting for aspects
of behavior during normal driving and even (al-
beit to a much more limited extent) performance
when driving while performing secondary tasks.

Driving and Integrated Driver Modeling

Even with these successes, the community has
a great deal more work to do in achieving a truly
integrated driver model that simulates and pre-
dicts real-world driver behavior. To better under-
stand the power and limitations of existing models,
it is useful to view driving and driver modeling
in the context of the embodied cognition, task, and
artifact (ETA) framework (Byrne, 2001; Gray,
2000; Gray & Boehm-Davis, 2000). As the name
suggests, this framework emphasizes three com-
ponents of an integrated modeling effort: the task
that a person attempts to perform, the artifact (or
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instrument) by which the person performs the task,
and the embodied cognition by which the person
perceives, thinks, and acts in the world through the
artifact. A sound understanding of each compo-
nent is critical to developing rigorous integrated
models of driver behavior.

The task of driving is in fact an ever-changing
set of basic tasks that must be integrated and inter-
leaved. Michon (1985) identified three classes of
task processes for driving: operational processes
that involve manipulating control inputs for stable
driving, tactical processes that govern safe inter-
actions with the environment and other vehicles,
and strategic processes for higher level reasoning
and planning. Driving typically involves all three
types of processes working together to achieve
safe, stable navigation — for instance, monitoring
a traffic light and controlling the vehicle to stop
and start, or deciding to make a turn and control-
ling the vehicle through the turn. Some tasks are
not continual but intermittent, arising in specific
situations — for instance, parking a vehicle at a fi-
nal destination. In addition, driving may include
secondary tasks, perhaps related to the primary
driving task (e.g., using a navigation device) or
perhaps mostly or entirely unrelated (e.g., tuning
aradio or dialing a cellular phone).

The “artifact” for driving is the vehicle itself
and the interface between the human and the vehi-
cle. Most recognizably, this interface includes the
steering wheel, the accelerator (throttle) and
brake pedals, and possibly the clutch pedal (on a
manual transmission); it also includes related con-
trols such as turn signals, headlights, and wind-
shield wipers. These components of the vehicle
interface are, in large part, standardized among
different vehicles. For secondary tasks, the arti-
fact also includes any interface to the secondary
device — typically, knobs, buttons, and other in-
puts, along with small displays and other outputs;
unlike the control-related components, secondary
task components are much less standardized
among today’s vehicles. Of course, these interface
components can be incorporated into any number
of vehicle types, from compact to midsize to lux-
ury vehicles, to sports utility vehicles and light
trucks, to large trucks, military vehicles, and so
forth, producing in effect a seemingly endless va-
riety of possible artifacts for the driving task.

Embodied cognition is the integrated cognitive,
perceptual, and motor processes that manipulate

the vehicle and execute the desired tasks. Of
course, driving requires cognition during even
routine driving, most obviously for higher level
decision making, more subtly for lower level ve-
hicle control and situation awareness (see, €.g.,
Groeger, 2000). Between cognition and the vehi-
cle lies the embodiment of the driver, namely the
perceptual processes (visual, aural, vestibular, etc.)
and motor processes (hands, feet) that provide the
input from and output to the external world. Not
surprisingly, there can be parallelism in this inte-
grated system — for instance, moving the hand
while visually encoding the lead car — but there are
also capacity constraints and/or bottlenecks that
sometimes result in degraded performance.

The goal of integrated driver modeling is to
rigorously address all three of these components:
handling as many driving-related tasks as possi-
ble, incorporating realistic controls and vehicle
dynamics, and performing the tasks through cog-
nitive processes that interact through realistic
perceptual and motor processes. Many existing
models of driver behavior and performance em-
phasize only one or two of the ETA-triad compo-
nents. Perception-and-action models of control
(e.g., Fajen & Warren, 2003; Rushton, Harris,
Lloyd, & Wann, 1998; Salvucci & Gray, 2004;
Wilkie & Wann, 2003) provide a firm theoretical
basis for how perception and action interact in ba-
sic tasks such as lateral and longitudinal control
(for driving or related tasks such as locomotion);
however, these models are often formulated as
continuous-valued functions without realistic
vehicle dynamics and without explicit constraints
on the perceptual and/or motor systems (e.g., de-
lays in perceiving objects or turning a wheel). More
control-theoretic models of driving (e.g., Donges,
1978; Godthelp, 1986; Hess & Modjtahedzadeh,
1990) often incorporate rigorous vehicle dynamic
models for basic control, but they sometimes ig-
nore issues of whether or how model inputs can
be readily perceived from the external environ-
ment and how drivers interleave multiple tasks to
produce satisficing rather than optimal perfor-
mance (see Boer, 1999, for an excellent discus-
sion). Machine-learning models of vehicle control
(e.g., Pomerleau & Jochem, 1996) focus on the
task of lane keeping and implicitly account for
vehicle dynamics in their trained systems; howev-
er, because of their emphasis on application, these
models reveal little about driver cognition and
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behavior and thus do not generalize well to phe-
nomena such as cognitive bottlenecks or distrac-
tions from secondary tasks. Nevertheless, these
categories of models are not diametrically op-
posed to integrated driver models; in fact, the many
successes of these models have demonstrated the
importance of rigorous modeling efforts for both
theoretical understanding of driver behavior and
practical application of these theories in real-world
system development.

Integrated Driver Modeling in the ACT-R
Cognitive Architecture

The approach to integrated driver modeling
explored here centers on the development of driv-
er models in the framework of a cognitive arch-
itecture. A cognitive architecture is a general
framework for specifying computational behav-
ioral models of human cognitive performance
(e.g., Anderson & Lebiere, 1998; Just & Carpen-
ter, 1992; Laird, Newell, & Rosenbloom, 1987,
Liu, 1996; Meyer & Kieras, 1997; Newell, 1990).
The architecture embodies both the abilities and
constraints of the human system — for instance,
abilities such as memory storage and recall, learn-
ing, perception, and motor action; and constraints
such as memory decay, foveal versus peripheral
visual encoding, and limited motor performance.
As such, a cognitive architecture helps to ensure
that cognitive models developed in the framework
are rigorous and psychologically valid, thus abid-
ing by all the limitations of the human system.
The chosen framework for this driver model is the
ACT-R (Adaptive Control of Thought-Rational)
cognitive architecture (Anderson et al., 2004; see
also Anderson & Lebiere, 1998), a hybrid archi-
tecture based on chunks of declarative knowledge
and condition-action production rules that operate
on these chunks. The particular advantages of the
ACT-R architecture will be discussed in the course
of the paper. However, it is important to note that
many of the central themes and ideas remain the
same for models developed in any cognitive archi-
tecture — for instance, Aasman’s (1995) driver
model developed in the Soar architecture (Laird
et al., 1987; Newell, 1990).

Integrated driver models developed in a cogni-
tive architecture such as ACT-R are especially well
suited to addressing all three components of the
ETA triad. Cognitive architectures have demon-

strated the ability to model tasks ranging from ba-
sic laboratory tasks (e.g., serial recall: Anderson
& Matessa, 1997) to higher level cognition and
decision making in complex dynamic tasks (e.g.,
fighter piloting: Jones et al., 1999; air traffic con-
trol: E J. Lee & Anderson, 2001; human-computer
interfaces: Ritter, Baxter, Jones, & Young, 2000).
Architectural models typically interact with a
simulated environment identical to, or almost
identical to, the environment used by human par-
ticipants, and thus the models must abide by the
same input/output limitations and environment
dynamics as human participants. In doing so, ar-
chitectural models represent and account for both
the internal workings of human cognition and the
external manifestations of cognition through per-
ceptual processes and motor behavior. All these
features make cognitive architectures extremely
amenable to modeling many of the most impor-
tant aspects of driver behavior.

This paper represents the culmination of sev-
eral years of work focused on developing an
integrated driver model in the ACT-R cognitive
architecture. The initial prototype model (Salvuc-
ci, Boer, & Liu, 2001) served as the first proof-
of-concept of the feasibility and power of the
cognitive architecture approach. Since that time,
several significant developments have helped to
shape and formalize the initial model. First, the
basic elements of its two-level control model have
been validated outside the context of the architec-
ture as a simple, stand-alone computational model,
and it has been demonstrated how the model can
account for curve-negotiation and lane-changing
behavior results across several empirical studies
(Salvucci & Gray, 2004). Second, a number of
lessons have been learned from applications of the
initial model to predicting driver distraction both
from cell phone dialing (Salvucci, 2001b; Salvucci
& Macuga, 2002) and from cognitive tasks (Sal-
vucci, 2002). Third, the ACT-R cognitive archi-
tecture itself has undergone a major evolution,
resulting in a novel “buffer’>centered architecture
that fits nicely with many of the evolving concepts
in the driver model (see Anderson et al., 2004);
the new architecture posits buffers of information
through which production rules can communicate
with both declarative memory and the external
environment (through perceptual and motor mod-
ules). (The initial model was developed in Version
4.0 of the ACT-R architecture [Anderson & Lebiere,
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1998]; the model described here represents a com-
plete reworking, conceptually and practically, in
Version 5.0 of the architecture [Anderson et al.,
2004], taking full advantage of the new version’s
buffer-centered architecture.) All these develop-
ments have combined to produce the new ACT-R
integrated driver model presented here.

THE ACT-R INTEGRATED DRIVER MODEL

The ACT-R driver model is a computational
model of driver behavior implemented in the ACT-
R cognitive architecture (Anderson et al., 2004;
see also Anderson & Lebiere, 1998). The current
driver model is intended to represent behavior for
a particular task and artifact, namely that of driv-
ing a standard midsize vehicle on a multilane
highway with moderate traffic. Highway driving
is a common driving scenario that accounts for a
large percentage of vehicle miles — for instance,
highway driving accounted for 72% of vehicle
miles in the United States in 2000 (Federal High-
way Administration, 2001). It is hoped that the
model will be extended to other common contexts
(e.g., city driving) and possibly other vehicles (e.g.,
trucks and buses) in the near future, but the com-
mon highway driving context has enabled explo-
ration of a number of interesting specific processes
(e.g., lane changing) and general processes (e.g.,
monitoring for situation awareness) that should
generalize well to other tasks and artifacts.

The driver model includes three main com-
ponents that derive from and emphasize specific
aspects of Michon’s (1985) hierarchical control
structure. The control component, analogous to
Michon’s (1985) operational level, manages all
aspects of perception of the external world and
mapping of specific perceptual variables to ma-
nipulation of vehicle controls (i.e., steering, accel-
eration, braking). The monitoring component,
part of Michon’s (1985) tactical level, maintains
awareness of the current situation by periodically
perceiving and encoding the surrounding environ-
ment. The decision making component, also part
of Michon’s (1985) tactical level, handles tactical
decisions for individual maneuvers (e.g., lane
changes) based on knowledge of the current envi-
ronment. These three components are implement-
ed in the ACT-R architecture to take advantage of
the architecture’s built-in features and human-
like limitations that result in a more psychologi-

cally plausible model of driver behavior. I will first
provide a brief description of the ACT-R architec-
ture and then describe each of the core compo-
nents of the driver model as implemented in this
architecture.

The ACT-R Cognitive Architecture

The ACT-R cognitive architecture, like all cog-
nitive architectures, is simultaneously a rigorous
theory of human cognition and a working frame-
work in which to build computational models of
human behavior. ACT-R posits two separate but
interacting knowledge stores. The first type of
knowledge, declarative knowledge, is made up
of chunks, or small logical units, of symbolic in-
formation. Declarative chunks can encode simple
facts (e.g., Philadelphia is in Pennsylvania), cur-
rent goals (e.g., try to change lanes), and even
ephemeral situational information (e.g., there is a
car to my left). Chunks are also associated with
“subsymbolic” parameters that encode continuous-
valued properties of each chunk — for instance,
chunk activation as a representation of the relative
ease with which the chunk can be recalled. In ad-
dition, learning mechanisms can affect these
subsymbolic parameters — for instance, chunk ac-
tivation decays over time to mimic forgetting but
also increases as the chunk is practiced and re-
called more often.

The second type of knowledge, procedural
knowledge, is made up of production rules repre-
senting procedural skills that manipulate declara-
tive knowledge as well as the environment. Each
production rule is essentially a condition-action
rule that generates the specified actions if the spec-
ified conditions are satisfied. Rule conditions typ-
ically specify the current goal and match other
current values in the architectural buffers (e.g., in
the visual or retrieval buffers). When all conditions
match and the rule “fires,” rule actions can add to
or alter declarative memory, set a new current goal,
and/or issue perceptual or motor commands (e.g.,
find a particular visual object or type a key). Like
declarative chunks, production rules are associat-
ed with subsymbolic parameters that affect their
behavior — for example, “conflict resolution”
parameters that determine which rule fires given
several possible matches. Also like declarative
parameters, parameters for procedural knowledge
can adapt over time given different choices and
situations.
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One critical advantage of a cognitive architec-
ture for driving (or any other complex task, for
that matter) is the incorporation of built-in fea-
tures that mimic human-like abilities. ACT-R in
particular has built-in perceptual and motor mech-
anisms (Byrne, 2001; Byrne & Anderson, 2001)
that allow ACT-R models to interact with exter-
nal simulations. These mechanisms can perceive
changes in the environment and can manipulate
the environment using programmed modules that
interface with the actual simulation. Also, ACT-R
has the ability to perform some processes in par-
allel such that, for example, the perceptual mod-
ule can look at a new item while the motor module
performs a physical movement. Of note, this al-
lows ACT-R models to run in simulation — often
inreal time, or at least generating data on the same
time scale as that of human participants —and pre-
dict exactly those data and measures that are col-
lected from drivers (steering wheel, throttle, and
brake positions; turn signals; eye movements;
etc.). The prediction of real-world measures
greatly facilitates model validation through direct
comparison with human data.

At the same time, ACT-R places certain limi-
tations and constraints on models that mimic the
constraints of the human system. One of the most
important constraints for the driver model is that
although perceptual and motor processes can run
in parallel with cognition, the cognitive processor
itself is serial and, in essence, can “think” only one
thing at a time. The cognitive processor is respon-
sible for collecting all information from perceptu-
al modules and issuing all motor commands, and
thus it serves as the central bottleneck for behav-
ior. This fact is critical for applications such as pre-
dicting driver distraction: When the driver model
attempts to perform a secondary task such as dial-
ing a phone, the cognitive processor must inter-
leave the secondary task with the primary driving
task, thus potentially leading to reduced perfor-
mance. In fact, the model can account not only
for interference from primarily perception- and
motor-oriented secondary tasks but also primari-
ly cognitive secondary tasks, because the latter
would interfere with the cognitive processor’s
ability to manage the primary task.

Model Specification

As mentioned, the ACT-R driver model has
three primary components: control, monitoring,

and decision making. The three components are
integrated to run in ACT-R’s serial cognitive pro-
cessor as a tight loop of small cognitive (and relat-
ed) operations. The entire model is implemented
as an ACT-R production system including rele-
vant procedural and declarative knowledge. This
section describes each component, the integration
of the components into a working implementa-
tion, and finally estimation of model parameters
and integration with the simulated driving envi-
ronment.

Control. The control component of the driver
model manages all perception of lower level visu-
al cues and manipulation of vehicle controls for
lateral control (i.e., steering) and longitudinal con-
trol (i.e., acceleration and braking). Lateral control
centers on a new steering model (Salvucci & Gray,
2004) that utilizes “two-level” control based on
the perception of two salient visual points (see
Donges, 1978; Land & Horwood, 1995). First, the
near point represents the vehicle’s current lane
position, used to judge how close the vehicle is to
the center of the roadway. The near point is char-
acterized as a point in the center of the near lane
visible in front of the vehicle, set at a distance of
10 m from the vehicle’s center. Second, the far
point indicates the curvature of the upcoming
roadway, used to judge what the driver should
execute to anticipate the upcoming curvature and
remain in the current lane. The far point is char-
acterized as one of three targets: (a) the vanish-
ing point of a straight roadway, up to a maximum
distance equivalent to 2 s of time headway; (b)
the tangent point of an upcoming curve (Land &
Lee, 1994); or (c) the lead vehicle — that is, the
vehicle immediately in front of the driver’s vehi-
cle. Together, the near and far points provide com-
plementary pieces of information that allow for
adjustment to the lane center at the current position
(using the near point) and for predictive com-
pensation at a near-future position (using the far
point). Figure 1 illustrates the near and far points
for a straight road segment (with vanishing point),
a curved road segment (with tangent point), and a
road segment with a lead vehicle.

In the model, lateral control requires percep-
tion of these salient points and subsequent motor
execution of control. The model first moves its
visual attention to the near point, then to the far
point, noting the visual angles 0., and B¢, of the
two points, respectively. Also, assuming the far
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(b)

(c)

Figure 1. Nlustration of near point (circle) and far point
(cross) for (a) straight road segments, (b) curved road
segments, and (c) any road with lead car. (From Salvucci
& Gray, 2004. Reproduced with permission from Pion
Limited, London.)

point has remained the same from the last cycle
of the main control loop (e.g., it hasn’t changed
from a vanishing point to a tangent point), the
model calculates differences from the last cycle,
namely AByear, AByy, and Az (given the time of the
last cycle). Finally, the model uses these quanti-
ties to adjust the vehicle’s steering angle by some

incremental value. The model strives for the most
simple but effective method of control and, to this
end, utilizes a simple steering control law that
relies on perceived visual direction to the near
and far points, as described by Salvucci and Gray
(2004). The control law for steering angle @ can
be expressed in its discrete form as

ACp = kfarAefar + knearAenear + klenearAt (1)

(See Salvucci & Gray, 2004, for derivation from
the continuous form.) The control law essentially
attempts to impose three constraints: a steady far
point (AB¢,, = 0), a steady near point (A, = 0),
and a near point at the center of the lane (0, =
0). The three constants vary the weights associ-
ated with each of these constraints. (An enhanced
version of the model could adapt these constants
as a function of speed to compensate for corre-
sponding changes in vehicle response; however,
the constants in the current model have been found
to work well for typical highway speeds and thus
suffice for this paper’s primary focus on highway
driving.) Salvucci and Gray (2004) have shown
how this control law, as a stand-alone model out-
side the context of a cognitive architecture,
accounts for driver steering profiles during curve
negotiation (e.g., Land & Horwood, 1995) as well
as corrective steering (Hildreth et al., 2000).

Longitudinal control (i.e., speed control) em-
bodies a very similar process. The model encodes
the position of the lead car and derives the time
headway thw,, to this vehicle. Again, it computes
differences from the last instantiation of control,
deriving Athw,, along with the previously men-
tioned At. These two values then result in an up-
dated value for acceleration . For simplicity, the
model utilizes a longitudinal control law very sim-
ilar to the lateral control law, namely,

AlP = kcaIAtthar + kfollow(thwcar - thwfollow)At- (2)

The acceleration equation attempts to impose two
constraints: a steady time headway (Athwe, = 0)
and a time headway approximately equal to a
desired time headway for following a lead vehicle
(thwear = thwignow)- Again, the two constants deter-
mine the weights of the two constraints. The accel-
eration value v actually manipulates two controls:
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A positive value translates to depression of the
accelerator (throttle), and a negative value trans-
lates to depression of the brake pedal, with values
from O to 1 representing no depression to full de-
pression, respectively.

The ACT-R architecture includes several con-
straints that limit how such control can be em-
ployed. Most significantly, the serial cognitive
processor cannot instantiate a continuous function
and instead must update control inputs discretely,
as indicated previously. Also, the architecture’s
50-ms “cycle time” — the time needed to fire a pro-
ductionrule— dictates the minimum time between
updates of control. In the production-system im-
plementation, the minimum time for execution of
this control loop is 150 ms, representing the firing
of three production rules (in essence, one rule to
encode the near point, one to encode the far point,
and one to issue the motor commands, as detailed
in an upcoming section). Perception in the archi-
tecture happens through shifts of visual attention
and resulting eye movements predicted by ACT-
R’s EMMA (Eye Movements and Movement of
Attention) module (Salvucci, 2001a); thus, per-
ception of a salient visual point requires not only
time to fire the relevant production rule or rules
but also time to encode the visual object into de-
clarative memory. For motor processes, ACT-R
has no built-in motor modules for steering and
pedal movements, so these have been added to
the architecture for the driving domain. For most
motor movements, drivers do not need to operate
near peak performance (e.g., turning the steering
wheel), and thus the model imposes only one sig-
nificant constraint: A foot movement between the
accelerator and brake requires 200 ms of prepa-
ration time (based on preparation of four motor
parameters at 50 ms each; see Byrne & Anderson,
2001) and 500 ms of execution time (an approx-
imation based on a range of 420-630 ms found
by J. D. Lee, McGehee, Brown, & Reyes, 2002,
for successful braking situations).

In a highway environment, the majority of
lower level control arises in the context of lane
keeping and curve negotiation. However, one
other common subtask that frequently occurs in
highway driving is that of lane changing. Inter-
estingly, the basic equations stated previously,
particularly that for steering control, generalize in
a completely straightforward manner to lane
changing: When the driver enacts a lane change,

he or she simply begins to use the near and far
points of the destination lane rather than the cur-
rent lane (Salvucci & Liu, 2002). This change has
the immediate effect of creating a large 0,,,, thus
initiating a large steering motion in the direction
of the destination lane. However, this effect is
tempered by the compensation of the A6, and
ABg,, terms in the equation, which attempt to main-
tain a steady transition and prevent the vehicle
from swinging wildly into the other lane. This
compensation limits the maximum rate at which
the driver will steer. Salvucci and Gray’s (2004)
analysis showed how this idea nicely accounts
for steering profiles during lane changing (Sal-
vucci & Liu, 2002). In addition, some drivers may
wish to steer even less rigorously for safety pre-
cautions; thus, the model uses a revised lateral
control law,

ACP = kfarAOfar + KnearABnear + 3)
kl min(eneara enma)a)Al"

incorporating a parameter 0,,,,,, that limits the con-
tribution of 0., to changes in steering angle.

Monitoring. The monitoring component of the
driver model handles the continual maintenance
of situation awareness. For this model in the high-
way driving environment, situation awareness
centers critically on awareness of the position of
other vehicles around the driver’s vehicle. Moni-
toring is currently based on a random-sampling
model that checks, with some probability ponitors
one of four areas — namely, either the left or right
lane, and either forward or backward (i.e., in the
mirror) — with equal likelihood. When the model
decides to monitor a particular lane and direc-
tion, it moves visual attention to that area and
determines whether there is any vehicle present.
If so, the model notes the vehicle’s current lane,
direction, and distance in ACT-R’s declarative
memory. Thus, declarative knowledge continual-
ly maintains the awareness of surrounding vehi-
cles. The model could, of course, be extended in
a straightforward way to note other aspects of the
surrounding environment (on- and off-ramps,
signs, billboards, etc.), but these are not currently
included.

The use of ACT-R’s declarative memory for
encoding of the current environment provides
immediate predictions about potential driver
errors: Because of memory decay mechanisms
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built into the architecture, the chunks that encode
vehicle position and distance decay rapidly and
may be forgotten when not refreshed often, thus
providing predictions (albeit yet-untested predic-
tions) about mistaken estimation of surroundings
and potentially hazardous lane changes. For in-
stance, if the model were to use a modified strat-
egy relying on memory instead of visual checking
before a lane change, it could forget about a vehi-
cle observed in the “blind spot” or even mistak-
enly retrieve an obsolete memory of a clear blind
spot. The model could thus begin to address driv-
ers’ differential use of knowledge “in the world”
versus “in the head” (Gray & Fu, 2004).

Decision making. The decision-making com-
ponent of the driver model uses the information
gathered during control and monitoring to deter-
mine whether any tactical decisions must be made.
In the highway environment, the most common
decision-making opportunity arises in the deter-
mination of whether and when to execute a lane
change. The decision of whether to change lanes
depends on the driver’s current lane, given that
drivers (in the United States) attempt to stay in the
right lane during normal driving and use the left
lane for passing only (ideally). If the driver’s
vehicle is in the right lane, the model checks the
current time headway to the lead vehicle (if any);
if the lead car time headway drops below a desired
time headway thwy,,,, the model decides to change
lanes to pass the vehicle. If the driver vehicle is
in the left lane, the model checks instead simply
for the presence of a lead vehicle. If there is a lead
vehicle, the model remains in the left lane (because
this vehicle is also passing other vehicles); oth-
erwise it decides to change lanes to return to the
right lane.

Even after the model decides to change lanes,
it must still determine when to initiate the maneu-
ver at an appropriate, safe time. First, the model
attempts to recall from declarative knowledge the
nearest vehicle to the driver’s vehicle in the other
lane; if such a vehicle can be recalled and that
vehicle is within a safe distance dy,, of the driver’s
vehicle, the lane change is aborted. In this way, the
model can avoid vehicles in its blind spot even
when it cannot directly view the vehicle; howev-
er, as mentioned, the model may also forget about
this vehicle if it remains in the blind spot for a
longer period of time. Then, the model monitors
the destination lane both front and back to check

for the presence of another vehicle and updates its
mental model of the environment. If this moni-
toring does not observe a vehicle nearer than the
safe distance d.,., the model initiates the execu-
tion of the lane change; otherwise, the model
immediately aborts the maneuver. As described
earlier, the execution of the lane change corre-
sponds simply to the use of the near and far points
of the destination lane rather than the current lane.
The lane-change maneuver continues until the
vehicle reaches the center of the destination lane.

Component integration and multitasking. The
integration of the three core model components
of control, monitoring, and decision making re-
quires some method of multitasking in perform-
ing each of the three respective subtasks. Because
of its implementation in the ACT-R cognitive ar-
chitecture, the model is constrained to a serial cog-
nitive processor that cannot perform all three tasks
at once but rather must interleave the tasks seri-
ally. To this end, the model contains a single, tight
main loop that performs an incremental step of
each subtask: For control, this incremental step in-
volves a single instantiation of the lateral and lon-
gitudinal control laws; for monitoring, the step
involves (with probability pmonitor) the check of a
single vehicle in a chosen lane and direction; and
for decision making, the step involves a single de-
cision as to whether or not to initiate a lane change
while lane keeping or to end the lane change while
lane changing. In addition, work with driver dis-
traction (e.g., Salvucci, 2001b) suggests that driv-
ers deviate from the primary control task only
when they judge themselves to be “safe” given the
current conditions, including current lane position
and lateral velocity (i.e., velocity side to side).
Thus, the model includes the requirement that
before switching from control to monitoring or
decision making, the vehicle must be within lane-
position and lateral-velocity bounds; specifically,
the model checks lateral position with the con-
straint that ;eqr < Ogap1e and checks lateral velocity
with the constraint that 0., < O (Where 0 be-
comes AB,../At in the discrete case).

The serialization of the three model subtasks is
critical to the model’s ability to predict realistic
driver performance that incorporates human-like
limitations. Because even this tight loop requires
some time to execute, the driver model does not
produce perfect performance even on a straight
roadway with no other secondary tasks, just as
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human drivers would also not produce perfect per-
formance. In addition, if the driver attempts to
perform a secondary task along with the primary
driving task, the secondary task will further inter-
rupt the main loop and may potentially worsen
performance; this observation forms the basic
premise of my approach to predicting driver dis-
traction, mentioned in the final discussion. Ideally,
arbitrary secondary tasks would be added to the
primary component tasks to allow a rigorous the-
ory of multitasking to arbitrate the execution of
the tasks using some notion of prioritized task
scheduling. However, currently, the default ACT-
R cognitive architecture does not incorporate such
a theory, although initial efforts have begun to
specify such a theory (Salvucci, 2005). Neverthe-
less, the driver model’s somewhat naive account
of task scheduling has proven adequate for the pur-
poses of validating the basic model and demon-
strating its feasibility for integration into practical
applications such as predicting driver distraction.

Production-system implementation. A sche-
matic of the driver model’s implementation as an
ACT-R production system is shown in Figure 2.
In the figure, the title of each large box indicates
the goal (e.g., drive), the names below indicate
production rules for that goal (e.g., control-attend-
near), the arrows indicate flow of control between
goals, and the asterisks (*) indicate where a goal
completes and returns to its parent goal. The top-

level drive goal includes production rules to ini-
tiate a control update (control-attend-near), to
initiate lane monitoring (monitor-lane), and to in-
itiate or complete a lane change (try-lane-change
and end-lane-change). These rules create subgoals
to perform the associated subtasks of control,
monitoring, and decision making.

For control, after the drive goal attends the near
point (control-attend-near), the control goal first
processes (i.e., notes the position of) the near point
and attends the far point (process-near-attend-far).
Then, it processes the far point using all the stored
information to update the steering and acceleration
inputs (process-car in the presence of a lead car,
process-far otherwise). As noted earlier, this cen-
tral loop for updating control thus requires the
firing of three production rules, or roughly 150 ms.
Because control updates require the “old” control
goal to calculate changes from the last update, a
special rule fires in the absence of the old goal
(process-without-old) and immediately performs
asecond update. A final rule (control-failure) han-
dles all other (anomalous) cases and also imme-
diately restarts the update.

For monitoring, the model fires one of four
drive productions (monitor-lane-{1,r,lm,rm}) with
probability penitor to monitor one of the four pos-
sible visible lane areas, namely the left or right lane
ahead or the left or right lane behind (in the mirror).
The monitor goal simply processes the presence

Control

—» process-near-attend-far
process-{far,car} *
process-without-old
control-failure

Drive

Monitor-Lane

control-attend-near
monitor-lane-{l,r,Im,rm}
try-lane-change-{left,right} ——

Y

process-{car,none} *

A

end-lane-change

Decide-Lane-Change

Check-Lane

decide-yes *
decide-no *

—>»1 check-other-lane
check-mirror-other-lane

recall-monitor-lane
recalled-in-safe-zone
monitor-lane
monitored-in-safe-zone *
check-success *

Figure 2. Schematic of the ACT-R production system. Box titles indicate goal types; names below indicate production
rules; arrows indicate flow of control; and asterisks mark rules that return control to the parent goal.
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(process-car) or absence (process-none) of a car
in this area. Notably, the goal chunk remains in de-
clarative memory and thus can be later retrieved
for the purposes of decision making and/or gener-
al situation awareness.

For decision making, the model fires one of two
drive productions (try-lane-change-{left,right})
when a lane change is desired, each of which ini-
tiates the decide-lane-change goal. This goal in
turn initiates a check-lane subgoal to check for
vehicles in the other lane forward (check-other-
lane) and backward (check-mirror-other-lane).
As mentioned earlier, check-lane first attempts to
recall a vehicle in that lane (i.e., recall a monitor-
lane chunk for that area) and then explicitly mon-
itors the lane with a call to monitor-lane. If any
vehicles are found within the safe distance dgqs.
(recalled-in-safe-zone and monitored-in-safe-zone),
check-lane returns a failure and decide-lane-change
chooses not to change lanes (decide-no); other-
wise decide-lane-change chooses to change lanes
(decide-yes) and updates this fact in the parent
drive goal. In this latter case, the lane change con-
tinues until the vehicle reaches the destination lane
and the model reverts back to normal lane keeping
(end-lane-change).

Parameter estimation. Given the complexity of
the driving task, it is reasonable that any model
of driver behavior involves a number of domain-
specific parameters, some of which may vary
among individual drivers. At this stage of devel-
opment for the ACT-R driver model, not yet hav-
ing tackled the problem of individual differences
in a rigorous manner, a single set of estimated
values is used for all model parameters, with an
eye for future individual differences in these
parameters. The parameter estimation process
involved two stages for two separate sets of para-
meters. First, the bulk of the parameters were sim-
ply set to reasonable values based on informal
observation of the model driving as well as ap-
proximations derived from available empirical lit-
erature. These parameters and their values are
listed in Table 1 as “informal.” The remaining
parameters represented those most critical to the
resulting driver behavior for the various detailed
measures that will be described in the Model Val-
idation section. These parameters were estimated
by setting them to reasonable values, observing
the resulting qualitative and quantitative fits given
these values, and revising the values according-

ly; most importantly, the constant weights in the
steering control required rigorous estimation be-
cause these weights most drastically affected the
resulting behavior. These parameters are listed in
Table 1 as “estimated.”

Along with the domain-specific parameters,
the model also inherits through the ACT-R archi-
tecture a set of domain-independent parameters.
Fortunately, the ACT-R community has converged
on default settings for these parameters through
previous modeling efforts, and the vast majority
of these defaults are utilized in the driver model.
The only changed parameters were modified to
represent the fact that the procedural skills and
declarative chunks that constitute the model are
well learned: Because the model assumes an ex-
perienced driver well past the learning stage, it
includes parameter values that reflect this assump-
tion — namely, declarative chunks are given 100
“references” and a creation time of —1000 s, which
indicates that their activation is stable and rela-
tively fixed (i.e., will not be easily forgotten).
(ACT-R’s base-level learning was activated with
optimized learning enabled and a default decay
rate of 0.5.) Further explanation of these parame-
ters can be found in Anderson and Lebiere (1998).

Integration with simulation environment. One
of the primary goals of the ACT-R driver model is
to facilitate rigorous evaluation and validation by
having the model drive in the same environment
as human drivers. The environment used for the
driver model and the validation participants is a

TABLE 1: ACT-R Driver Model Parameters, Values,
and Method of Determining Values (Informal Ob-
servation or Estimation for Best Model Fit)

Parameter Value Method
Kear 16.0 Estimated
Knear 4.0 Estimated
ki 3.0 Estimated
Onmax 0.07 rad Estimated
Kear 3.0 Informal
Ktoliow 1.0 Informal
thWeoliow 1.0s Informal
thWoass 20s Informal
Prmonitor .20 Informal
safe 40 m Informal
Ostable 0.07 rad (=1/4 lane) Informal
Dstable 0.035 rad/s (=1/8 lane/s)  Informal
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multilane highway environment integrated with
a fixed-base driving simulator. (The original driv-
ing simulator was located at Nissan Cambridge
Basic Research in Cambridge, Massachusetts;
the simulator software for the current model has
evolved from this simulator and is now being de-
veloped further at Drexel University.) The envi-
ronment incorporates a model of vehicle dynamics
as well as automated vehicles that simulate realis-
tic traffic around the driver. When a human driver
navigates this environment in the driving simu-
lator, the system generates a lengthy protocol that
includes vehicle control data (e.g., steering wheel
and throttle position), driver gaze (eye movement)
data, and environment information (e.g., location
of all vehicles). The ACT-R driver model has its
own fully equivalent simulation that differs only
in that the human-viewable graphics have been
removed. When the driver model navigates this
environment, the system generates exactly the
same protocol as the original simulation system —
for instance, the model turns a virtual steering
wheel to control lateral position and also focuses
its virtual eyes on various components of the visu-
al field (including the control points and other
vehicles). In fact, the model protocol can be re-
played in the original simulator with no modifica-
tion. Thus, not only can the qualitative nature of
the model’s behavior be examined, but also direct
quantitative comparisons of the model’s and hu-
mans’ behavior can be generated, greatly facilitat-
ing the quantitative evaluation and validation of
the model with empirical data.

Comparison with Related Driver Models

The ACT-R driver model is most closely relat-
ed to three categories of previously developed
driver models. First, many early models of driv-
er steering and lane keeping focused primarily on
control-theoretic descriptions of steering control
(e.g., Carson & Wierwille, 1978; Donges, 1978;
Godthelp, 1986; Hess & Modjtahedzadeh, 1990;
McRuer, Allen, Weir, & Klein, 1977; van Winsum
& Godthelp, 1996; Weir & McRuer, 1973). Al-
though they have captured some aspects of driver
lane keeping and curve negotiation, these mod-
els, as pointed out by Boer (1999), may be unrea-
sonable in the sense that they rely on inputs not
readily perceivable from the external environ-
ment — for instance, vehicle yaw, or time to lane

crossing. In addition, some models incorporate
additional parameters (e.g., Weir & McRuer,
1973) and/or smoothing techniques (Carson &
Wierwille, 1978) to account for delays in driver
perception and response. In contrast, the ACT-R
driver model utilizes readily perceivable inputs —
namely the visual direction to the near and far
points — and integrates these into a fuller theory
of cognition, perception, and motor action to pro-
vide a more psychologically plausible model that
incorporates the constraints of the human system.

A related class of models arises in recent
perception-action models of control (e.g., Fajen
& Warren, 2003; Rushton et al., 1998; Salvucci &
Gray, 2004; Wilkie & Wann, 2003). Whether by
the use of visual direction (e.g., Salvucci & Gray,
2004) or optic flow (e.g., Wilkie & Wann, 2003),
these models follow more closely the types of
perceptual constraints inherent in the human sys-
tem. However, unlike the earlier control-theoretic
models mentioned previously, these models have
not typically incorporated rigorous models or de-
lays of vehicle dynamics and human physical
movement, which certainly contribute to the dy-
namic process of steering and control.

The models most closely related to the pro-
posed model are integrated driver models that
attempt to unify many aspects of the driving task.
The model of Levison and Cramer (1995) inte-
grates driver and vehicle models to predict perfor-
mance measures for typical driving scenarios.
The models of Aasman (1995) and Tsimhoni and
Liu (2003) instantiate models of driver behavior
within the context of cognitive architectures sim-
ilar to ACT-R, namely Soar (Laird et al., 1987,
Newell, 1990) and Queueing Network-Model
Human Processor (QN-MHP; Liu, 1996), respec-
tively. These last two models in particular were
developed in very much the same spirit as was
the ACT-R model, with complementary goals of
exploring driver behavior and, simultaneously, ex-
ploring the generality and applicability of the cog-
nitive architecture. Currently, the ACT-R driver
model has been applied in a wider range of do-
mains than have the Soar and QN-MHP models
(see, e.g., Salvucci, 2001b, 2002, 2005; Salvucci,
Chavez, & Lee, 2004; Salvucci & Macuga, 2002),
which have focused on intersection approach and
lane keeping, respectively. Nevertheless, because
of their implementation in general cognitive ar-
chitectures, both models show promise similar to
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that of the ACT-R model in being applied to a vari-
ety of driving-related phenomena.

MODEL VALIDATION

Given that the goal of the ACT-R driver model
is to accurately represent driver behavior, the mod-
el’s behavior requires validation and comparison
with real human behavior. This is no small en-
deavor: Just as no single method, measure, or met-
ric will suffice for understanding human driver
behavior, no single one will suffice to validate that
the model indeed corresponds well to human driv-
ers. Nevertheless, one can validate the most crit-
ical parts of a driver model by focusing on key
scenarios and analyzing the most important obs-
ervable data involved in these scenarios. To this
end, how the ACT-R model fits several aspects of
driver data will now be examined from two com-
mon scenarios in normal highway driving: lane
keeping/curve negotiation and lane changing. For
these scenarios, the examination focuses on three
important measures of behavior — steering angle,
lateral position, and eye movements (as a surro-
gate for the locus of visual attention) — in the form
of aggregate results and time-course profiles.

Human and Model Data

The computational nature of the ACT-R driver
model, combined with its ability to interact with
the same simulation environment that human
drivers use, greatly facilitates the collection and
comparison of human and driver data. Human data
from 11 drivers were collected in the original study
(Salvucci et al., 2001) conducted in the previous-
ly mentioned driving simulator. Model data were
collected by running five 10-min model simula-
tions in the same conditions and same environ-
ment as the original experiment; note that the
model, like a human driver, produces variability
in behavior, and thus several simulation runs are
desirable to achieve more stable results. The fol-
lowing analysis includes a total of 311 min (548
km) of driving data for human participants and
50 min (94.9 km) of driving data for the model
simulations. Because the human and model sim-
ulation protocols are identical in form, each set is
analyzed in the same manner so as to generate
directly comparable measures of driver behavior
and performance.

Lane Keeping and Curve Negotiation

The most common component of highway
driving (and most driving) is lane keeping, or sim-
ply steering down the center (or near the center)
of alane. Under informal observation, the ACT-R
driver model can clearly negotiate down the cur-
rent lane and maintain a reasonably central lane
position. However, drivers’ lane-keeping behavior
can be quantified more formally in several ways.
First, perhaps the most interesting aspect of the
lane-keeping task involves how drivers negotiate
curves — that is, how they steer into and through
acurved section of roadway. Figure 3 shows time-
course plots of drivers’ steering profiles and later-
al positions while negotiating right and left curves.
The construction of these plots requires some
explanation. First, the sections of the protocols
that corresponded with entering and exiting the
curve, as noted by the roadway at the vehicle’s
current position, were extracted; the roadway
used in data collection had curved segments of
different lengths and curvatures, but all segments
had a constant curvature throughout the segment.
Next, each segment was divided into 10 equal-
sized units, and these units were extended out to
before and after the actual curved road segment.
Finally, all protocols were aggregated by averag-
ing together all the values within each segment.

Figure 3 includes the time-course plots for the
(a) human data and (b) model simulations for both
steering wheel angle (R* = .98, RMSE = .06, com-
paring all human data points with all model data
points in the graph) and lane position (R = .55,
RMSE = .06). The human drivers’ steering profiles
show that they began to change steering angle be-
fore approaching the curve, flattened out to a fair-
ly constant angle, and then began to steer back to
center before the end of the curve and gradually
returned to center. The model showed this same
trend, particularly in that it began steering off cen-
ter before the curve started and again before it
ended. The model reached the peak steering de-
flection slightly more sharply than did the human
drivers at the start of the curve, but it exhibited
the same smooth steering toward the end of and
after the curve. The lateral position profiles show
that both human drivers and the model tended
slightly to steer toward the inner part of the road
during a curve (i.e., toward the left for left curves
and toward the right for right curves). This result
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Figure 3. Curve negotiation profiles for steering angle and lateral position for (a) human data and (b) model simula-
tions. The vertical dotted lines indicate the start (leftmost line) and end (rightmost line) of the curve.

was especially interesting given that the model had
not been explicitly designed to approach the inner
part of the curve. This behavior arises because the
model observes the tangent point in the distance
and attempts to keep it stable as the vehicle ap-
proaches, thus drawing the vehicle slightly toward
the tangent point as it approaches the curve; thus,
the model’s tendency toward the inner part of the
curve is an emergent prediction of the model’s
simple control law that nicely reflects human driv-
er performance.

Another measure by which lane-keeping behav-
ior can be examined is the distribution of driver
gaze to various parts of the visual environment —
that is, the distribution of where drivers look as
they drive. Although drivers are generally expect-
ed to maintain gaze in front of their vehicle at a
far point or lead car, occasional gazes are also ex-
pected to other areas of the environment for pur-
poses of monitoring and situation awareness (and
potentially other reasons, even boredom). Figure
4 shows the proportion gaze time for the human
and model data (R* = .93, RMSE = .03), ex-
pressed as the proportion of time spent looking at
one of several salient visual areas: the current

lane’s near point, vanishing point, tangent point,
lead car, or other cars (in front); the same areas for
the other lane; and finally the rear-view mirror, on-
coming vehicles, and unclassified gazes (‘“none”).

Perhaps not surprisingly, the human drivers
spent the most time looking at the far area in their
own lane, namely the lead car and the two types
of far points (vanishing point and tangent point).
The model also predicted this majority of gaze
time on far objects, albeit with a slight overpre-
diction for the far areas in the current lane (attrib-
utable in part, I believe, to humans’ significant
“none” gazes, which could not be classified). The
model produced an overall nice fit with the other
data points as well, particularly in that (a) both hu-
mans and model looked at the lead car in the other
lane for the same amount of time, (b) both humans
and model looked at the mirror roughly 5% of the
time, and (c) both humans and model rarely looked
at the near point for either lane. This last point is
another emergent prediction of the driver model,
arising from the fact that the model gathers very
little information from the near point (only the
visual angle on the x axis) and thus can typically
acquire this information peripherally without
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Figure 4. Lane-keeping proportion gaze time for human and model data. Near = lane near point, vp = vanishing

point, tp = tangent point, lead =
none = none of the above.

actually fixating the near point directly (see Sal-
vucci, 2001a, for further information about how
eye movements are associated with shifts in visu-
al attention).

Lane Changing

The other common scenario in highway driv-
ing, complementary to that of lane keeping, is that
of lane changing. As was done for lane keeping,
the three basic measures of lane position, steering
wheel angle, and proportion gaze time can be ex-
amined to elucidate and compare the behavior of
the driver model and human drivers. Figure 5
shows aggregated time-course profiles for all lane
changes in the human and model protocols. These
plots were generated in the same manner as those
for curve negotiation, except that the boundaries
of the protocol segments were dictated not by
roadway curvatures but by verbal protocols: both
human drivers and the model produced a verbal
utterance when (a) they formed the intention to
change lanes and (b) they completed this goal and
reverted back to lane keeping. As in the plots for
lane keeping and curve negotiation, the protocol
segments were broken into 10 units, extended be-
fore and after the actual lane-change segment, and

lead vehicle, car = other vehicle, mirr = rear-view mirror, onc = oncoming vehicle,

averaged together in each segment to form aggre-
gate plots; to avoid averaging in the large steering
angles that occur during curved road segments,
the data occurring during curves were omitted.
One unit in the profile is approximately equivalent
to one-half second of real time (0.51 s for the hu-
man drivers, 0.64 s for the model).

Figure 5 shows the steering and lateral position
profiles for lane changes in both directions. The
steering profiles show that human drivers execut-
ed the lane change maneuver by turning the wheel
in the direction of the destination lane, then back
through center to the opposite direction, and final-
ly settling back in the center position; the second
peak has slightly lower overall magnitude, albeit
not by alarge amount. The model executed a very
similar profile (R*=.79, RMSE = .02, again com-
paring all human with all model data points); the
model’s steering was slightly less smooth and flat-
tened out more around the center 0° steering angle
but, overall, reproduced both the pattern and the
magnitude of the drivers’ profile. Both human and
model steering profiles were in large part sym-
metrical for left versus right lane changes (R*= .97
comparing human left and right profiles, R*> =
93 comparing model profiles). The lateral position
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Figure 5. Lane-changing profiles for steering angle and lateral position for (a) human data and (b) model simulations.
The vertical dotted lines indicate the start (leftmost line) and end (rightmost line) of the lane change.

profiles provide further illustration of the smooth
execution of their lane changes, again with a close
correspondence between model and human data
(R* = .98, RMSE = .07).

In addition to steering and lateral position pro-
files, proportion gaze time can also be examined
as a time-course profile over time during the lane
change. The profiles for model and human data
are shown in Figure 6, where each data point rep-
resents the equivalent of five units in Figure 5 to
alleviate the large variability in these eye move-
ment data. The figure presents results for three
groupings of visual areas: the start lane of the lane
change, the end lane, and the rear-view mirror. In
examining the human driver profiles, one can see
a noticeable shift from the start lane to the end
lane; perhaps surprisingly, this shift happened not
in the middle of the lane change, as the vehicle
actually crossed lanes, but rather at the very start
(or even before the start) of the lane change (see
also Salvucci & Liu, 2002). The model predicted
this same shift because of the manner in which it
changes lanes — namely, simply switching to the
control points of the end lane. However, the mod-
el’s shift was much more severe: Although the

model still gazed occasionally at the less frequent
lane, it clearly directed most of its focused atten-
tion on the current control lane. Also, both the
human drivers and model exhibited a larger pro-
portion of gazes to the mirror before the lane
change, steadily dropping through the progres-
sion of the maneuver; for both humans and model,
the early gazes represent searching for surround-
ing vehicles and checking behind for sufficient
clearance to execute the lane change. Although
the quantitative fits could admittedly be better, the
model does manage to capture the critical effects
and shifts of attention exhibited by human drivers
(R* = .65, RMSE = .26).

GENERAL DISCUSSION

Computational cognitive modeling is quickly
maturing to address increasingly complex phe-
nomena at an increasingly high level of rigor. More
specifically, cognitive architectures have proven
very successful at capturing both lower level per-
formance and higher level decision making in
complex dynamic tasks. The ACT-R driver model
represents a contribution toward this effort with
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Figure 6. Lane-changing profiles for proportion gaze time on the start lane, end lane, and mirror for (a) human data
and (b) model data. The vertical dotted lines indicate the start (leftmost line) and end (rightmost line) of the lane

change.

a novel approach to integrating the lower level
(i.e., operational) and higher level (i.e., tactical)
aspects of driver behavior in the framework of
the ACT-R cognitive architecture. Of course, the
ACT-R driver model does not yet provide a com-
plete picture of driver behavior — further work
extending the task, artifact, and/or embodied cog-
nition addressed by the model could take any num-
ber of directions. Nevertheless, I am confident that
both model and architecture can evolve signifi-
cantly from the current state of the art to capture
a broader and deeper range of the phenomena
surrounding driver behavior.

Benefits of Cognitive Architectures

As mentioned earlier, cognitive architectures
offer many benefits for developing integrated
models of driver behavior. The ACT-R architec-
ture in particular has a number of features that
relate directly to driver modeling and either facil-
itate modeling in the current model or will facili-
tate modeling in future versions of the model. A
few of the most important benefits will now be
considered and, as before, one should note that
many of these benefits are not particular to ACT-
R but would generalize to other cognitive archi-
tectures as well.

One of the most fundamental aspects of the
ACT-R architecture is the treatment of seriality
and parallelism in its various processes. ACT-R
includes several processes that run in parallel,
namely the cognitive, visual, and motor process-
es. However, each of these processes is itself a ser-
ial stream: The cognitive processor can run only

one “thought” (i.e., production rule firing) at a
time, and the visual and motor processors can
execute only one visual/motor operation at a time
(although they can prepare one while executing
another). Cognition serves as the central bottle-
neck in the system: All visual and motor opera-
tions must be initiated by the cognitive processor,
although while they are in operation, cognition
may, if desired, process other rule firings. (In
highly optimized cases, this can lead to extreme
interleaving, as can be seen in models of “psy-
chological refractory period” effects: e.g., Byrne
& Anderson, 2001.) The immediate consequence
of this limited parallelism for the driver model is
that all driving tasks must share the serial cogni-
tive processor, leading to contention for this pre-
cious resource.

In the current model, the three core components
of control, monitoring, and decision making all
share cognition — for instance, when the model is
monitoring its environment, it cannot update ve-
hicle control. When integrating this model with
models of secondary tasks, the resource contention
results in driver distraction or inattention and can
adversely affect driver performance (e.g., Sal-
vucci, 2001b). As noted earlier, when and how
the model should schedule and interleave the var-
ious processes is a crucial concern for proper
multitasking. The model currently incorporates a
domain-specific model of multitasking (or a “cus-
tomized executive”: see Kieras, Meyer, Ballas, &
Lauber, 2000) in which the interleaving is tuned
for the defined set of tasks; a domain-independent
theory of multitasking (or “general executive,”
e.g., Salvucci, 2005) would help to fold the driver
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model’s method of interleaving into a more gen-
eral cognitive framework.

Another key aspect of the architecture and
model is the notion of limited attention: Drivers
simply cannot attend — visually, cognitively, or
otherwise — to everything at once. Constraints on
“cognitive attention”” come primarily from the lim-
ited parallelism and cognitive bottleneck described
earlier. For visual attention, ACT-R incorporates
arigorous perceptual module (Byrne, 2001) that
quantifies the constraints on visual attention in two
important ways. First, the architecture can attend
to only a single visual object at one time, and thus
to attend to many objects it must shift attention
between them. In attending to the near point, far
point, and other vehicles, the driver model shifts
visual attention between the various points and
stores information about each (e.g., the visual
angle to the near point) in the current goal chunk.
Second, when using the EMMA module extension
(Salvucci, 2001b), ACT-R generates emergent
predictions about when and where the eyes move
when following visual attention; in essence, every
shift of visual attention also initiates an eye move-
ment to that location, although this eye movement
may not actually occur if attention shifts again
before the eye movement starts executing. Also,
a model can more easily encode objects near the
current foveal location, and thus farther objects are
more likely to be fixated with an eye movement.
Thus, ACT-R incorporates several realistic con-
straints on visual attention, and all ACT-R models,
like the driver model, inherit and must abide by
these constraints. In addition, ACT-R’s visual sys-
tem produces observable predictions of driver
behavior, namely driver eye movements, which
can be compared directly with human drivers.

A third aspect of the model and architecture
involves accounting for the many individual dif-
ferences among drivers. Although individual
differences have only begun to be addressed with
the model, two initial studies have shown promis-
ing results in this area. First, in developing and
testing the two-level control model, Salvucci
and Gray (2004) found that scaling the model’s
parameter values allowed it to capture individual
drivers’ steering profiles for corrective maneuvers
and lane changes. Second, Salvucci et al. (2004)
explored the effects of age on driver performance
and distraction: In comparing younger versus
older drivers, we successfully modeled the effects

of age-related cognitive speed differences on per-
formance during normal driving and while exe-
cuting a secondary task. This work addressed only
the “hardware” differences (Meyer, Glass, Muel-
ler, Seymour, & Kieras, 2001) among individu-
als, namely the changes in core processes such as
memory and motor movements; the work did not
address “software” differences in declarative
knowledge and/or procedural strategies, perhaps
arising from differences in background knowl-
edge and experience. Because these software dif-
ferences are typically domain specific, they are
more elusive than hardware differences in terms
of finding a comprehensive, general theoretical
solution. Nevertheless, the modeling of strategic
differences among drivers remains a long-term if
not a short-term goal.

Practical and Theoretical Implications

The ACT-R driver model has several practical
and more general theoretical implications for both
driving and cognitive architectures. Just as the
driver model aims to provide a rigorous theoreti-
cal account of driver behavior, it simultaneously
strives to be a useful practical tool for real-world
applications. In the past few years, several possi-
ble applications have been explored that general-
ly fall into two categories: systems that attempt to
recognize and infer driver intentions from actions
(e.g., Salvucci, 2004) and systems that attempt to
predict driver behavior given current situations
(e.g., Salvucci, Zuber, Beregovaia, & Markley,
2005).

One application that has shown particularly
good promise involves using the model as a tool
to predict the effects of driver distraction for eval-
uating in-vehicle devices. Using an “integrated
model approach,” developers and/or designers
can create cognitive models of behavior for their
new devices and integrate them with the driver
model production system. Because of the con-
straints imposed by the cognitive architecture, the
behavior for the secondary task device interacts
with the behavior for the primary driving task, po-
tentially producing effects of the secondary task
on driving (and also effects of driving on the sec-
ondary task). To date, the original prototype model
(Salvucci et al., 2001) has been successfully used
to account for effects of driver distraction in sev-
eral studies. The initial study of the integrated
model approach showed how the model could
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predict effects of cell phone dialing in different
modalities on lateral control (Salvucci, 2001b). A
follow-up study using existing cellular phone
dialing methods and a challenging car-following
task demonstrated similar predictive power for
both lateral and longitudinal control (Salvucci &
Macuga, 2002). In addition, a study of “cognitive
distraction” showed successful predictions of
driver performance during a high-load sentence-
span task (Salvucci, 2002). As the ACT-R driver
model continues to evolve to capture additional as-
pects of task (e.g., nonhighway driving), artifact
(e.g., nonmidsize vehicles), and embodied cogni-
tion (e.g., haptic perception), the greater predictive
power of the theoretical description immediately
benefits real-world applications and, it is hoped,
increases the impact and benefit of such applica-
tions for practical design and development.

In more general theoretical terms, the ACT-R
cognitive architecture and the domain of driving
have enjoyed a symbiotic relationship in which
each benefits from interactions with the other. The
driving domain challenges ACT-R to expand be-
yond the boundaries of basic laboratory tasks to
the full complexity of real-world complex tasks.
In doing so, driving and related complex domains
have pushed the ACT-R research community to
more rigorously address larger issues relevant in
real-world task modeling, such as navigating in a
three-dimensional world and coordinating low-
level perception and action with higher level deci-
sion making. At the same time, ACT-R benefits
the driving community by enabling researchers to
view driver behavior through the eyes of the archi-
tecture, thus explaining or elucidating interesting
aspects of behavior; for example, one can derive
better understanding of driver visual processing
and action, integration of low-level control and
higher level decision making, and multitasking
within driving and with secondary tasks all by
placing driving in the context of the cognitive ar-
chitecture. The ACT-R architecture is thus helping
to shape scientific understanding of driving and, in
turn, helping to provide a sound theoretical basis
for practical applications that address real-world
issues such as predicting driver distraction and
performance.
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