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Abstract. Current modeling techniques are not well equipped to design
dynamic software architectures. In this work we present the basic con-
cepts for a dynamic architecture modeling using nets-within-nets. Nets-
within-nets represent a powerful formalism that allows active elements,
i.e. nets, to be nested in arbitrary and dynamically changeable hierar-
chies. Applying the concepts from nets-within-nets, therefore, allows us
to model complex dynamic system architectures in a simple way, which
enables us to design the system at different levels of abstractions using
refinements of net models.
Additionally to the conceptual modeling of such architecture, we provide
a practical example where the concept has been successfully applied in
the development of the latest release of Renew (Version 2 of the multi-
formalism Petri net IDE1). The overall monolithic architecture has been
exchanged with a system that is divided into a plug-in management sys-
tem and plug-ins that provide functionality for the users. By combining
plug-ins the system can be adapted to the users’ needs. Through the
introduction of the Petri net concepts, the new architecture is now – at
runtime – dynamically extensible by registering plug-ins with the man-
agement system. The introduced architecture is applicable for any kind of
architecture but most suitable for applications with dynamic structure.

Keywords: High-level Petri nets, Nets-within-nets, reference nets, Re-

new, plug-ins, components, dynamic software architecture, modeling

1 Introduction

Today’s software systems are getting more and more complex. The amount of
functionality and the number of features that are put into a system increases
steadily. Moreover, features that are only loosely related are included into a
system making the software more attractive for some user and at the same time
too complex and bloated with features for other users. The need to switch the
design to configurable or adaptable / customizable systems has been recognized
for a long time.

Many systems already provide the possibility to extend the functionality with
plug-ins. Some of the software systems are component-based, leaving the user in

1 Integrated development environment.
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charge of the degree of versatility of the utilized system. However, the flexibility
of these systems is usually limited. Most systems only allow static configuration,
some also allow to extend the functionality at runtime in a very limited way.

Renew serves as an example for a complex system. It is an IDE for sev-
eral Petri net (and Petri net related) formalisms. Examples of these are refer-
ence nets [5], P/T-nets, Workflow nets [4], Feature Structure nets [17], Timed
Petri nets and Multi-agent nets [11]. Renew has grown significantly in the last
couple of years.

Many users did not need the many specialized formalisms and features in
their everyday work with the tool. However, still more new extensions were on
the verge to be developed, threatening that the system would grow further.
While some users / developers were using the new features, others had to deal
with the resulting overhead. The need for a highly customizable architecture
became obvious.

The idea was born to redesign Renew in an extensively flexible way that
would solve the problems and lead to an architecture that is configurable, cus-
tomizable and extensible. Moreover, the developers envisioned a system that is
even more flexible: A system that is customizable at runtime, i.e. a system whose
architecture is dynamically configurable.

The notion of flexibility in the re-design has to be concretized, therefore
a model for a dynamic architecture is needed. The modeling process for an
architecture design helps significantly to understand the architecture and the
dependencies between the involved units. Modeling helps to share and discuss
ideas with other software architects and to convey these ideas to developers.
Furthermore, it helps to establish the concept, to find and eliminate conceptual
problems and to visualize the system. However, to model a system architecture
design, an established and expressive modeling technique has to be applied.

There are various architecture modeling techniques like UML [9] or archi-
tecture description languages (ADL, see [8,15]) that could be used to design
our architecture. Nevertheless, we use the reference net formalism [5] which is
based on Valk’s nets-within-nets [16] paradigm because it combines many fea-
tures that are otherwise not available in one single language: With Petri nets
we have formal semantics, operational semantics and a plain graphical notation.
The reference net formalism adds coverage of dynamic changes in behavior and
structure as well as object-based properties like encapsulation, polymorphism
and instantiation. So we can use a lot of features that would otherwise not be
available within one single technique. However, the reference nets are currently
not well equipped to describe static aspects of a system, like interfaces or a
type hierarchy. This drawback is of minor relevance since we are interested in a
dynamic architecture model in this paper.

We designed our concept model for a dynamic architecture with reference
nets. The concept was successfully applied in the re-design of Renew resulting
in the current version (2.0). We achieved to transform the old—in some way
extensible, but mainly monolithic—design into a highly configurable dynamic
architecture.
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According to our approach of implementing through model refinement we
introduce the abstract concept model and successively refine it until we ob-
tain a functional model. For the reason of efficiency, the functional model is
re-implemented in Java. Since our models are designed and executed in Renew

it is possible to utilize both, the model implementation and the Java implemen-
tation.

Note that Renew is used as modeling tool for our recursive concept model
for a dynamic architecture and also as target system for the application and
realization of the concept model. This self-reflective feature is one of the key
aspects of our approach.

In the following section we give an introduction to reference nets. The focus
lies on some features of reference nets that we use extensively in the design of
our concept model. In Section 3 we present our concept model for a dynamic
architecture. In Section 4 we present the realization of the concept model in
Renew and discuss some pragmatic design decisions. Section 4.4 relates our
concept and modeling technique with other approaches for configurable systems.

2 Nets Within Nets

Note for the experienced reader: If you already know reference nets and are

well-acquainted with their concepts we recommend that you skip this section

and continue with Section 3.

Nets-within-nets are expressive high-level Petri nets that allow nets to be nested
within nets in dynamical structures. In contrast to ordinary nets, where tokens
are passive elements, tokens in nets-within-nets are active elements, i.e. Petri nets.
In general we distinguish between two different kinds of token semantics: value
semantics and reference semantics. In value semantics tokens can be seen as di-
rect representations of nets. This allows for nested nets that are structured in a
hierarchical order because nets can only be located at one location. In reference
semantics arbitrary structures of net-nesting can be achieved because tokens rep-
resent references to nets. These structures can be hierarchical, acyclic or even
cyclic.

In the following sections we will discuss reference nets because of three rea-
sons. First, they are supported in the tool Renew, second, they show the basic
principles of nets-within-nets, and third, they allow for acyclic nesting struc-
tures. If the number of references for nets are reduced to one reference for a net,
value semantics and reference semantics are equivalent.

2.1 Reference Nets

Reference nets [5] are object-oriented high-level Petri nets, in which tokens can
be nets again. For these nets-within-nets [16], referential semantics is assumed.
Tokens in one net can be references to other nets. In a simple setting of a
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single nesting of nets, the outer net is called system net while a token in the
system net refers to an object net. Nevertheless, object nets themselves can
again contain tokens that represent nets, and thus a system of nested nets can
be obtained. The benefit of this feature is that the modeled system is modular
and extensible. Furthermore, transitions in nets can activate and trigger the
firing of transitions in other nets, just like method calls of objects, by using
synchronous channels [2,5].

Renew (The Reference Net Workshop [6,7]) combines the nets-within-nets
paradigm of reference nets with the implementing power of Java. Here tokens
can also be Java-objects and nets can be regarded as objects.

In comparison to the net elements of P/T-nets, reference nets offer several
additional elements that increase the modeling power as well as the convenience
of modeling. These additional elements include some arc types, virtual places
and a declaration. Several inscription types have been added to the net elements
providing functionality for the different net elements. Places can be typed and
transitions can be augmented with expressions, actions, guards, synchronous
channels and creation inscriptions. In the following paragraph we will focus on
aspects of net instances and synchronous channels. Detailed information on nets-
within-nets and reference nets can be found in [5] and [16]. It should only be
mentioned briefly that we use reserve arcs as a convenient notation. In addition,
we also use flexible arcs (see [10]) in our models. These are expressive arcs that
can drop all elements of a collection onto a place and withdraw all (pre-known)
elements of a collection from a place.

Net Instances and Synchronous Channels reference nets are object-oriented
nets. Similar to objects in object-oriented programming languages, where objects
are instantiations of classes, net instances are instantiations of net templates. Net
templates define the structure and behavior of nets just like classes define the
structure and methods of objects. While the net instance has a marking that
determines its status, the net template determines only the behavior and initial
marking that is common to all net instances of one type.

The paradigm of nets-within-nets introduced by Valk [16], allows tokens to
be nets again. In reference nets, tokens can be anonymous, basic data types,
Java objects or net references. Any net instance can create new net instances
similar to an object creating new objects. The new net instance is marked with
the initial marking according to the specification of the net template.

The notation of the creation inscription with the usage of the keyword new,
to create a new instance, is displayed in Figure 1. In this example the system
net has an initial marking of three integer tokens. Thus the transition can fire
three times creating three new net instances.

The three new net instances are bound to the variable x and put into the
output place. This is displayed in Figure 2, in which the net templates and the
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1
23

xi
x:put(i)

x:new ObjectNet

Down-link

Creation Inscription

num

:put(num)

Up-link

(SystemNet) (ObjectNet)

Fig. 1. Example system net and object net.

net instances for both nets are displayed. There is one instance of the system
net and three instances of the object net.2

The different net instances are each created during one firing of the tran-
sition of the system net, which bears the creation inscription. The tokens re-
ferring to the net instances are put into the output place. In the net instance
SystemNet[0] in Figure 2 these three tokens are displayed in the output place.
Navigation among the net instances is done in a hypertext fashion by clicking on
the reference in a net instance in order to open the referred net instance window.

Fig. 2. A screen shot of a system net and an object net, the templates and
several net instances.

2 In Renew net instances can be identified by the names of the windows and the
window background colors. Net templates have a white background color and net
instances have an integer number attached to their window title bars that identifies
the distinct instances. These identifying numbers are also attached to the tokens.
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For the communication between net instances, synchronous channels are
used. A synchronous channel consists of two (or more) inscribed transitions.
There are two types of transition inscriptions for the two ends of the synchronous
channel: downlinks and uplinks. The synchronous channel forms a symmetric
channel, therefore bidirectional communication is possible. Two transitions that
form a synchronous channel can only fire simultaneously and only if both tran-
sitions are activated. Downlink and uplink belong to a single net or to different
nets. In both cases any object, also another net instance, can be transferred
from either transition to the other. If two different net instances are involved, it
is thus possible to synchronize these two nets and to transfer objects in either
direction through the synchronous channel. For this the system nets must hold
the references of the object nets as tokens (as in the output place in Figure 2).

The simple example of Figures 1 and 2 does not only show the creation of
net instances, but also the application of synchronous channels. A synchronous
channel put(.) connects the two transitions of system net and object net. The
system net holds the reference to the object net instance x that is created during
the firing of the transitions. The downlink x:put(i) calls the uplink in the object
net :put(num). The integers are taken from the input place of the system net
and bound to the variable i used as an argument in the channel inscription. Both
transitions fire simultaneously and the two variables i and num are unified. Thus
num is bound to the same integer as i, which finally is put into the output place
of the object net. So the different numbers in the output places can distinguish
the different net instances of the object net, which is the reason why we have
chosen numbers as tokens in this example.

By using two (or more) parameters in a channel, information can be trans-
fered in both directions synchronously. For instance a simple database lookup
can be implemented by using this feature. One of the parameters serves as key
and the other one as value. This will be used in Section 3.

2.2 Renew

With Renew it is possible to draw and simulate Petri nets and reference nets.
The simulation engine can execute a net by creating an instance of the net. Any
simulated net can instantiate other nets. Hence it is possible to produce many
instances of different nets. The relationship between net template, also simply
called net, and net instance can be compared to the relationship of class and
object (see Section 2.1).

Editor Figure 3 shows the graphical user interface (GUI) of Renew, a simple
Petri net in the back and a net instance.

The user interface consists of the menu bar, two palettes and a status line. The
menu bar offers menus for general operations, attribute manipulations, layout
adjustment and Petri net-specific operations. It also provides the possibility to
control the simulation. Of the two palettes the first one consists of usual drawing
tools while the second one holds the Petri net drawing tools for the creation



154 L. Cabac, M. Duvigneau, D. Moldt and H. Rölke

Fig. 3. Renew GUI, Petri net and net instance (producer-consumer example).

of transitions, places, virtual places, arcs, test arcs, reserve arcs, inscriptions,
names and declarations. In addition to these tools, the editor reacts in a context-
sensitive manner to facilitate the drawing of nets. One example is the dropping
of arcs on the background that creates a new place if the arc starts at a transition
and vice versa. Another example is the right click on inscribable elements that
produces an inscription for this element with a context sensitive default value.

Simulator Net templates hold the initial marking while net instances hold the
current marking. In Figure 3 the producer-consumer example has been started.
In the net template (background) one of two black tokens (‘[]’) of the initial
marking can be seen in the place labeled Producer. While the net instance by
default only shows the number of tokens in a place it is also possible to show
the contents of the places by clicking on the numbers (compare with Figure 2).

In the following section we model our concept of an dynamic architecture
with reference nets. All modeling is done with Renew, which is also the target
for the realization of the concept model.

3 Concept Model

A dynamic architecture is characterized by extensibility and adaptability. In
this work we conceive extensibility as a recursive feature. A system is extended
by components, which again are extended by plug-ins, which are (specialized)
components. Reference nets as nets-within-nets allow nets to be nested within
other nets. They are, therefore, capable of modeling an extensible architecture
in which a management component can act as a container for components – in
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our model other nets. These components again are used as containers for other
components. We develop the model successively from a simple one-level view to
a full-fledged plug-in-based system.

This chapter introduces the concept model for extensible systems that allows
components to extend a system dynamically during runtime. The realization of
this concept in Renew 2.0 is described in Section 4.

3.1 Extensibility

To construct extensible systems it is useful to get a notion of what is meant by
extensibility. This is modeled here with reference nets starting on an abstract
level that is then further concretized throughout this section.

add functionality remove functionality

provide functionality
by using functionality

provide
functionality

f

f

f

Fig. 4. Model for extensible systems.

Figure 4 illustrates an extensible system in a most general way. The upper
grey colored elements of the net define the extension management part of the
system. The net shows the system as reference net in which the central place
acts as the container for extensions. Functionality is added to the system by
a synchronous channel at the transition labeled add functionality3 and then
put on the central container place. Functionality is removed by the transition
labeled remove functionality.

The white transitions in the lower part are representatives for the available
domain-specific functionality of the system. Some of the functionality may incor-
porate the functionality provided by extensions that lie in the central container
place. All elements f that are extending the system are nets again, according
to the nets-within-nets paradigm. An exemplary marking of the net is shown in
Figure 5.

In this figure, exemplary channel inscriptions are visible. The small net tokens
provide functionality by the channel uplinks :func1() or :func2(). The system
provides functionality to the user through the channel uplinks :funcA() and

3 The channel inscriptions are omitted in this figure because the focus lies on the
concepts.
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:remove(f):add(f)

:func1():func1()

:func2()

:funcB()
f:func1()

:funcA()

ff

f

Fig. 5. Extensible system with net tokens.

:funcB(). However, to provide funcB, the system uses extended functionality.
It specifies the extension interface, here represented by the channel downlink
f:func1(). There are two available extensions providing the specified channel
by an uplink, so the system may choose any of these functionality providers.
Adding and removing functionality to and from the system is also accessible to
the user through channel uplinks :add(f) and :remove(f).

This model leads to the concept of components. Components are units of
extensibility. The net tokens that represent extensions of functionality in Figure 5
perfectly fit that notion. So we can define components by this net model. A
textual definition of components is given by Schumacher in [13].4

Definition 1 Component

A component is a unit of distribution that comprises executable code accom-

panied by appropriate documentation and provides domain-specific functionality.

3.2 Recursive Extensibility

In the current model we are able to say that the system is extensible on one level.
This notion of one-level extensibility [14] expresses the fact that new components
can be introduced to the system but these components can not be extended
themselves. The concept of extension management of the system can also be
applied to the components. Since the extensibility model of the previous section
is built with components, we can call the extension management component
management. The possibility to extend the components leads us to a notion for
a recursively extensible system.

Figure 6 shows the modified system where components may be contained
within components. It can be observed that the components implement the same
management interface as the system net model. A component only differs from
the model of the system or any other component in the domain-specific part,
which is not shown explicitly in Figure 6.

4 This definition is closely related to Sametinger [12].
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ff f
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Fig. 6. Model of a recursively extensible system.

We can now regard the components that recursively extend other components
as plug-ins. From Schumacher’s viewpoint a system is composed of components
and plug-ins. Plug-ins are special components that change the behavior of the
system by changing the behavior of components. The full textual definition given
in [13, p. 34] is:

Definition 2 Plug-in

Plug-ins are components that change the behavior of one or more other com-

ponents in the system. This is done by using the provided interface of the com-

ponents.

With the introduction of the plug-in concept we can regard the component man-
agement as plug-in management.

However, in our net model, there is no difference between the component
nets and the system net. So we cannot distinguish components from plug-ins.
The system as well as all components can be extended by plug-ins. In the further
refinement of the net model it is possible to observe a difference between system
and components, and thus the distinction between plug-ins and components
becomes significant.

Up to now, we have a hierarchical structure of the system. The extension
relation is strongly tree-structured. The use of reference semantics as described
in Section 2.1 enables us to relax this condition. It is possible to add one plug-
in to multiple different components, so the extension relation forms an acyclic
graph. Even a cyclic relation is possible, although that may lead to endless
recursion.

In order to concretize the model further, we will now describe how the adding
of plug-ins is introduced into the model. Figure 7 shows the simple mechanism of
adding plug-ins to plug-ins. A plug-in p2 is added to another plug-in p by using
the derived functionality of the component represented by the main net. Here
we have a chain of channel synchronizations: When the uplink :subadd(p2) is
called by some other net instance’s downlink, then the downlink p:add(p2) at
the same transition synchronizes with the uplink :add(p) of a third net instance.
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p p

p pp

:add(p)

p:remove(p2)

:funcA()

p:add(p2)
:funcB() :subremove(p2):subadd(p2)

:remove(p)

p:func1()

Fig. 7. A component allows the extension of its plug-ins.

The management part of that third net instance looks the same as in Figure 7,
it may also be another instance of the same net. The unloading of the plug-in is
done in a similar way.

This mechanism enables the system to be recursively pluggable through plug-
ging plug-ins into components at an arbitrary number of levels, as long as every
level provides such a call-through functionality. The mechanism also shows that
management of one plug-in can be seen as functionality of another plug-in. The
distinction between management and functionality that we made in the first
models can be dropped now.

A drawback of the current model is that the plug-in p2 cannot control its
adding to or removal from selected components. It is passed as a passive object
through the channels during the process. This problem will be discussed in the
following section.

3.3 Communication Between Components

One of the advantages of the component-orientation is the re-usability. This
means that the functionality that is offered by the plug-in is utilized by all com-
ponents that need this functionality. Therefore, a component has to be able to
address another component / plug-in. For this we introduce the notion of services
that are offered by components to other components.

Services have to be published and made accessible for other components. Each
component provides an interface by which the descriptions of the offered services
are accessible. A global service directory is needed so that components can look
up service provider components. We refine the abstract model of Figure 7 and
introduce a net that has the management of plug-ins and their services as its
only functionality. This net is called the plug-in management system (PMS).

Figure 8 shows the model of a PMS with the service lookup infrastructure
(SLI). When a new plug-in p is added to the system, the PMS asks for the
description of the services that are offered (p:getServices(sd)) by this plug-
in. This is in this net indicated by the flexible arcs (two arrow tips) which are able
to drop all elements of a collection sd onto a place or to withdraw all elements
of a collection simultaneously from a place, respectively.
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p p

p p

:subadd(p2)
p:add(p2)

:subremove(p2)

[s, p]

:add(p)

p:remove(p2)

sdsd

:remove(p)
p:getServices(sd) p:getServices(sd)

:getService(s,p)

Fig. 8. A PMS that supports plug-in services.

Each service description is stored as a key-value tuple ([s,p]). Other com-
ponents can get information about available services and their suppliers by using
the channel uplink :getService(s,p).5

To be able to use the lookup functionality of the PMS, all components need
a reference to the PMS. Therefore we define that the PMS net should have
exactly one instance. This instance can be regarded as the root of the graph of
the extensibility relation. So the PMS is our explicit top-level net instance of the
whole system.

Provided each plug-in has a reference to the PMS, it could also call the
subadd and subremove channels of the PMS to control its own registration
with other components. A more elegant approach is to use the SLI: If each
extensible component declares its extension management interface as a public
accessible service, potential plug-ins can query the PMS for that service and
register themselves directly. So we can omit the subadd and subremove channels
from the PMS (and from all other components, too).

Our current model is lacking a mechanism that passes the PMS reference
to each component. The model also does not exactly determine the moment of
extension registration and configuration. Therefore we enforce a life cycle for all
plug-ins within the PMS.

In Figure 9 the functionality of managing the life cycle of components is
added to the PMS by two extra transitions with channel downlinks p:init(pms)
and p:shutdown()). At the init transition, the added component gets informed
about its addition to the system, receives the PMS reference and gets the chance
to connect to other components that provide required services. Note that the
retrieval of service descriptions has also moved from the transition where the
component is added to the transition where the component is initialized. This
ensures that the services of a component cannot be used by other components
before the component has been properly initialized.

The introduction of the PMS and its service influences our model of a com-
ponent. The updated model is shown in Figure 10. The gray management part
has grown because of three things: First, right below the central extension place,

5 Modeling database lookups is explained in Section 2.1.
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p p

:getService(d,p)

[d, p]

pppp

sdsd

p:init(this)
p:getServices(sd)

p:shutdown()
p:getServices(sd) :remove(p):add(p)

Fig. 9. A PMS with life cycle management.

the life cycle support has been added, the new place holds the PMS reference.
Second, at the right, the channel uplink :getServices(sd) has been added.
Here the PMS can extract information about the component. And last, left and
right of the central extension place, the life cycle management of the PMS is
repeated for plug-ins.

p p

p

:funcA()

pmspms

:funcB()
p:func1()

:init(pms)

:funcC()
pms:getService("func2", p)

p:func2()

:getServices(sd)

sd

:add(p)
p p

Service
Descriptions

p p
:remove(p)p:configure() p:disconnect()

pms

:shutdown()

Fig. 10. Refined model of a component.

The life cycle management for plug-ins is introduced for the same reasons as
the system-wide life cycle is introduced at the PMS level. However, the channel
names are intentionally changed to configure and disconnect to indicate that
there is exactly one global life cycle for each component. If the component also
is a plug-in, it must additionally support the life cycle specific to the component
where it can be plugged in. If one component can be plugged into multiple other
components, it has to support each life cycle, respectively. So we now have refined
the plug-in concept, we speak of plug-ins with respect to certain components.
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4 Renew Plug-in Architecture

We use Renew itself for a case study where the plug-in concept is applied.
The Renew tool has grown enormously since its first release in 1999, and many
application-specific extensions have been created in the meantime. These exten-
sions, like a workflow engine, an agent platform or an editor for UML interaction
diagrams, are themselves already grown to applications with their own exten-
sions. Up to Renew 1.6, all extensions were compiled into one large application.
Some sets of functionality could be selected by specifying a mode at startup,
but mode switching at runtime was not possible. However, this was not flexible
enough: a user would normally not need all extensions at the same time, but
possibly in arbitrary combinations. Altogether, Renew is very well suited as a
case study for a dynamic, recursive plug-in system.

The plug-in system along with the decomposed application has been released
as Renew 2.0 and presented from the user’s point of view last year in [7]. In this
section we want to show how the concepts developed in the previous section are
applied to the Renew plug-in system. First we sketch how the functionalities
of the application have been decomposed into several components. We will show
where the plug-in concepts can be found in some exemplary components and
where the dynamics come in. Last we will mention some concessions we had to
make to keep the application usable.

4.1 Functional Decomposition

From the user’s point of view, Renew comprises two main components: the
simulation engine and the editor. Already in the first release it has been stated
that Renew supports multiple formalisms, since new formalisms could easily
be added by implementing the appropriate compiler. Clearly it is desirable to
separate each formalism into its own plug-in. A formalism management compo-
nent can then provide a registry for all loaded formalisms as well as the basic
functionality needed by many formalisms.

Figure 11 shows some plug-ins of the current decomposition.6 At the bottom,
there are some unnamed class libraries that are used by many or all plug-ins.
Some of these libraries are integrated into the application as a plug-in of their
own, but they do not provide any extension interfaces. At the right there is
the main plug-in of Renew, the simulation engine. This plug-in also includes
the input and output interfaces of the simulation engine, e.g. non-graphical net
representation classes, token game feedback, remote control or database backup.
With this plug-in and a formalism, it is possible to execute a Petri net system
(without graphical feedback).

The graphical editor comprises two plug-ins: JHotDraw and Gui. This is due
to historical reasons, we decided to re-surface the JHotDraw framework that had

6 It has to be noted that the decomposition of an existing application with approxi-
mately 900 classes in 30 packages into several components is not unique and therefore
some functionalities might be reassigned between components in future releases. The
refactoring of Renew is still work-in-progress.
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Fig. 11. Plug-ins and their dependencies as of Renew2.0

served as the basis for the net editor. The Gui plug-in enhances the JHotDraw
application by Petri net specific figures and control commands for the token
game. The NetComponents plug-in serves as an example for a new plug-in that
has been added after the application decomposition. It has been presented in
[1] and extends the editor by a tool-bar with commonly used patterns of net
elements.

The management of formalisms has been divided into two plug-ins. Formal-
ism manages the registry of known (i.e. loaded) formalisms and provides an API
to select a formalism. The FormalismGui plug-in establishes the connection to
the editor by presenting the available choices to the user. It also tailors the ed-
itor’s menu and tool bars to the currently selected formalism. The two white
components at the top of Figure 11 represent an arbitrary formalism. The stan-
dard formalism of Renew—the reference net formalism—is integrated in the
Formalism plug-in for the time being.

The user benefits from the introduction of the dynamic plug-in system for
example in a server scenario: An application that has been implemented using
reference nets and Java should normally run without the graphical net editor or
animated token game. In this case, a user can start a reduced Renew system
where only the non-graphical components are installed. The Simulator and For-
malism plug-ins (generally speaking, all components and common libraries right
or below the dotted line in Figure 11) are sufficient to run the application. The
user may also want to install a Prompt plug-in7 so he can control the plug-in
system and the simulation engine from the command line interface.

7 The Prompt plug-in is not included in Figure 11, but is available for download from
the Renew homepage [6].
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Suppose that, after the application has run undisturbed for some time, some-
thing gets stuck. The user then has the possibility to load the graphical editor
and related components into the running system to debug the situation. The an-
imated token game, although started long after the simulation setup, will show
the current state of the system. So the user can search for the bug and hopefully
fix it. Afterward, he can restart the simulation engine. When the application
runs again, the editor and related plug-ins can be unloaded from the system and
free their resources.

4.2 Applied Concepts

The Renew plug-in system acts like the platform shown in Figure 8. There is
no distinction between components and plug-ins because any component may
also act as a plug-in.

The two PMS transitions that add and remove components become slightly
refined in the Renew PMS: Plug-ins can enter the system in two ways. At
startup, a plug-in finder looks in a specific location for pre-installed plug-ins,
and during runtime plug-ins can be loaded dynamically by supplying an URL to
the plug-in loader. The removal of components is realized by an unload command
provided by the PMS.

The Renew PMS is a flat-topped PMS as proposed in Figure 9. All plug-
ins are accompanied by a description of their provided services. All components
follow the life cycle shown in Figure 10. When a plug-in is loaded, the PMS calls
its init() method. To unload a plug-in, there is a two-step process: First the
PMS queries the plug-in whether it canClose(), afterward it may call cleanup()
and remove it from the system.8

Optionally, the PMS may enforce dependencies between plug-ins. If a plug-
in is also accompanied by a description of required services, the PMS will not
include it in the system unless the required services are available, that is provided
by some other plug-ins. Likewise, the unloading of a plug-in is prohibited as
long as another plug-in requires a service provided by the plug-in to remove.
A command to recursively unload all dependent plug-ins is provided. Of course,
this dependency enforcement only works for static service requirements—but this
is exactly what a Java programmer needs to ensure the availability of required
class definitions.

All plug-ins in Figure 11 that are marked with two boxes at their right
side, provide extension interfaces that follow the idea from Figure 10. There
exist three refinements of the general idea: Either an extending plug-in provides
additional implementations of existing interfaces that are seamlessly integrated
into a framework, or it extends the basic plug-in by observing and reacting on
events, or it just registers its own service in a database where it can be queried
by other plug-ins.

8 The two-step process (ask first, remove afterward) emulates the functionality of the
net in Figure 9: There the plug-in also has the possibility to block its removal by
not activating its shutdown channel uplink.
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In the case of the JHotDraw plug-in, other plug-ins can extend the graph
editor by registering additional drawing tools, file types and menu commands.
The main editor window integrates the registered functionality seamlessly. Due
to the elementary functionality of the JHotDraw plug-in, all other plug-ins that
provide some editing functionality are extending this plug-in (as can be seen in
Figure 11).

The Simulator plug-in can be extended mainly by the notification of observer
objects that can react on simulation-related events like transition firings, marking
changes, or initialization and termination of the engine.

The extension interfaces of the Formalism and FormalismGui plug-ins have
already been sketched above. From the technical viewpoint, these plug-ins pro-
vide all three types of extension: There is a registry of known formalisms, a noti-
fication about the choice of the default formalism, and an formalism-dependent
integration of additional tools and menus into the editor.

Recursive extensibility (as introduced in Section 3.2) is represented in Fig-
ure 11 by a chain of extension arrows. An example is the EFGui plug-in which
extends the FormalismGui plug-in which in turn extends the JHotDraw plug-in.
Since the EFGui plug-in additionally directly extends the JHotDraw plug-in, we
also have an example for the extension of multiple components by one plug-in.

4.3 Pragmatism

The side condition that the plug-in system should not reduce the application’s
execution speed necessitated some pragmatic solutions. The concessions we made
are restricted to the Java implementation of the plug-in system, the precise and
concurrent Petri net semantics of the model in Section 3 have not been weakened.

The most important pragmatic decision is to not follow our usual paradigm
of implementation by specification because the two uses of Renew – as runtime
engine and as case study – do not mix well. It would be possible to use the nets
presented in Section 3 as code base for the plug-in system. By augmenting the
nets with Java inscriptions that call the existing functionality of the application
components, we would get an executable plug-in system rather easily. However,
then we would have to set up the Petri net execution environment before the
plug-in system in order to execute the net implementation. This would introduce
a circular precedence because the simulation engine is a part of the application
on top of the plug-in system. Therefore, we decided to use the insights gained
from the concept model to re-implement the plug-in system in pure Java.

A consequence is the different behaviour of the Renew and Java runtime en-
vironment with respect to dynamic linking. While in the reference net formalism
the communicating plug-ins are linked at runtime for each communication indi-
vidually, the Java virtual machine links the classes once when they are loaded.
For full dynamic behaviour we would have to implement a dynamic linking layer
of our own, but we decided to skip that part. The needed indirection would slow
down inter-plug-in communication of repetitive jobs.

However, the shutdown of the PMS life cycle needs special care in this sys-
tem: Due to the tight connections between components and their plug-ins, each
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component has to tidy up its references very carefully. Due to the already men-
tioned restriction of the Java class loader mechanism, we currently cannot truly
remove a plug-in from memory when it is unloaded. But in most cases the cleanup
process is sufficient to emulate the desired behavior.

4.4 Related Architectures

Plug-ins are more and more used for software architectures. We mention some
well known products and their used concepts. The architectures are classified
by their authors either as component or as plug-in systems. However, since the
distinction between those systems is ambiguous, we list them here without dis-
cussion of details.

The model of JavaBeans (see http://www.sun.com) defines a mechanism for
reusable components of Java application servers. Enterprise JavaBeans extend
this again to allow for the design of standardized server components.

The OpenIDE is an integrated development environment which is based on
NetBeans (see http://www.netbeans.org). The main advantages are the dy-
namic mechanism for plug-ins and the openness of the architecture. The disad-
vantages are the specific overhead and the missing visualization of the mecha-
nisms used.

Gimp (Gnu Image Manipulation Program, see http://www.gimp.org) is a
open source product with a static plug-in concept. The concept is strictly ori-
ented towards its main purpose of image manipulation.

Netscape see (see http://www.netscape.com) installs its components on
demand. This allows for a lean version. However, the basic mechanism is designed
for the presentation of Web pages. It is unclear whether this architecture can be
used in general for the design of software architectures.

Poseidon (see http://www.gentleware.com) uses the NetBeans mechanism
for its plug-in architecture. The migration from a monolithic to a plug-in-based
architecture (like the one presented in this paper) was done in [3]. Poseidon
demonstrates the potential of NetBeans.

Eclipse is an open source product that mainly provides an architecture for
static plug-ins, which are loaded once at startup time. Usually a restart of Eclipse
is required when installing new plug-ins. Dynamic plug-ins are not fully realized
in the current version of 3.1.

5 Conclusion

Nets-within-nets is an expressive modeling technique that is capable of modeling
dynamic system architectures. Models that are built with these nets can profit
from their ability to construct arbitrary and dynamic structures. The reference
semantics that is applied in reference nets allows to express extensibility and
dependency relationships of system components. Furthermore, the possibility to
concretize the model by refinement leading to a functional model is of great
advantage when designing, discussing and redesigning a system.

http://www.sun.com
http://www.netbeans.org
http://www.gimp.org
http://www.netscape.com
http://www.gentleware.com
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Our generic concept model for a dynamic architecture proves to be an ap-
proach that is both, sufficiently abstract for expressive modeling and sufficiently
concrete to be able to transfer it to a real-world application. Moreover, it is the
only modeling technique—to our knowledge—that is able to represent a flexible,
adaptable and dynamic architecture design. The level of abstractness is a benefit
to the general design decisions. The level of concreteness helps the architect and
developer to experiment and evaluate the model prior to the implementation.

The concept model comes with an explicit top-level net, the PMS. The sim-
ilarity of structures on the top level and all other levels allows for the introduc-
tion of independent service and extension management units on every level. Our
model is capable of describing a pluggable plug-in mechanism. Such a model is
useful to merge multiple systems with independent management architectures.

The Petri net IDE Renew has undergone major refactorings and this process
is still in progress. However, the preliminary results are promising. It is safe to
say that the decision to refactor the system was the right way to go. We achieved
a lean and flexible plug-in mechanism that permits arbitrarily nested plug-ins.
The IDE has become more flexible and it can now be configured according to
the needs of the users—even individually within a multi-user setting. Extending
the functionality as a developer has become much easier, due to the fact that
extensibility is a first order concept in the system.

Beside just another plug-in mechanism with specific features that are very
valuable in the context of our research and development, a visual modeling con-
cept for plug-ins has been presented. In fact, currently well-established modeling
techniques are highly elaborated and powerful but also oriented towards static
architecture design and very resistant against paradigm shifts. In order to im-
prove modern architecture design many dynamic aspects have to be included as
first-order concepts. Extensibility is one of them.

We believe that this approach can be transferred to other application areas
and applied as a general concept for various kinds of domains. Moreover, it
is possible to generalize the implementation of the concept model as done in
Renew to achieve a generalized core application that together with a conceptual
approach can form a base for component-based application design of any kind.

We are looking forward to unleashing the full power of our architecture model
by supporting an interleaved multi-formalism simulation support. Thereby, sev-
eral advantages of different formalisms can be combined to the advantage of
the designed model. Such an approach would be very difficult to handle in a
monolithic system.
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