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Abstract

Purpose: To develop a constrained local arterial input function (cL-AIF) to improve quantitative 

analysis of dynamic contrast-enhanced (DCE) MRI data by accounting for the contrast-agent 

bolus amplitude error in the voxel-specific AIF.

Procedures: Bayesian probability theory-based parameter estimation and model selection were 

used to compare tracer kinetic modeling employing either the measured remote-AIF (R-AIF, i.e., 

the traditional approach) or an inferred cL-AIF against both in silico DCE-MRI data and clinical, 

cervical cancer DCE-MRI data.

Results: When the data model included the cL-AIF, tracer kinetic parameters were correctly 

estimated from in silico data under contrast-to-noise conditions typical of clinical DCE-MRI 

experiments. Considering the clinical cervical cancer data, Bayesian model selection was 

performed for all tumor voxels of the 16 patients (35,602 voxels in total). Among those voxels, a 

tracer kinetic model that employed the voxel-specific cL-AIF was preferred (i.e., has a higher 

posterior probability) in 80% of the voxels compared to the direct use of a single R-AIF. Maps of 

spatial variation in voxel-specific AIF bolus amplitude and arrival time for heterogeneous tissues, 

such as cervical cancer, are accessible with the cL-AIF approach.
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Conclusions: The cL-AIF method, which estimates unique local-AIF amplitude and arrival time 

for each voxel within the tissue of interest, provides better modeling of DCE-MRI data than the 

use of a single, measured R-AIF. The Bayesian-based data analysis described herein affords 

estimates of uncertainties for each model parameter, via posterior probability density functions, 

and voxel-wise comparison across methods/models, via model selection in data modeling.
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Introduction

Dynamic contrast-enhanced (DCE)-MRI, which involves monitoring the MRI signal 

dynamically after intravenous injection of a paramagnetic contrast agent (CA) bolus, is 

widely employed in the evaluation of tissue perfusion and vascular permeability [1–3]. 

Tracer kinetic modeling of the acquired MRI signal time-course provides parameters 

describing the underlying physiology of the tissue of interest [4]. The estimated 

physiological parameters, including forward volume transfer constant (Ktrans), permeability-

surface area product (PS), tissue-volume-normalized volumetric blood plasma flow rate (Fp), 

hereafter “blood plasma flow”, plasma volume fraction (vp), and extracellular-extravascular 

volume fraction (ve) have been successfully employed in the characterization of cancerous 

tissues and the assessment of therapeutic response [5, 6].

Quantitative tracer kinetic modeling of DCE-MRI data requires modeling of the tissue 

response function and knowledge of the CA concentration in the blood plasma at the 

capillary inlet of any region of interest (ROI), referred to as the arterial input function (AIF). 

AIFs can be difficult to measure experimentally and population-averaged AIFs are 

sometimes used to circumvent these difficulties [7]. However, due to inter-individual 

variability of the vascular bed, the use of a directly measured AIF for each subject is often 

the preferred approach for clinical studies [8].

The actual AIF at the capillary inlet of any given tissue of interest is both delayed and 

dispersed relative to the remote-AIF measured directly from a major feeding (upstream) 

vessel [9]. In what follows, the directly measured remote-AIF is hereafter referred to as the 

R-AIF. Significant error in quantitative kinetic parameter estimation can be introduced if 

AIF bolus delay and dispersion are not taken into account [10–13]. Methods to account for 

delay include aligning the tissue response curve and the R-AIF to a common bolus arrival 

time [14] or incorporating an arrival time delay (offset time) parameter within the tracer 

kinetic model’s tissue response function [15]. Nevertheless, accounting for dispersion 

remains a challenge for quantitative DCE-MRI data analysis. In the case of tumor tissue, in 

which the vasculature is widely known to be structurally and functionally abnormal (i.e., 

leaky, tortuous, dilated, and saccular, with a haphazard pattern of interconnections and large 

holes in vessel walls), a single global R-AIF is likely to be a poor approximation to the 

desired voxel-specific AIF. Further, due to MRI experimental limitations (e.g., practically 

achievable spatial and temporal resolution), partial volume and other effects can also lead to 
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a significant error in correctly assessing the time-dependent amplitude of the R-AIF [16]. 

Nonetheless, while imperfect, the R-AIF represents a “best possible” first approximation to 

the “true” AIF. Employing an inferred local-AIF for each individual voxel, one that can 

correct the R-AIF for voxel-specific bolus amplitude error and arrival-time delay, should 

improve quantitative modeling of DCE-MRI data.

The goal of this study was to compare DCE-MRI data modeling employing (i) a R-AIF and 

(ii) an inferred, constrained local-AIF (cL-AIF, vide infra) against both in silico DCE-MRI 

data and clinical cervical cancer DCE-MRI data. Herein, we describe a flexible analytical 

function that models well the measured R-AIFs obtained from the external iliac artery of 

patients with advanced stage cervical cancer. A Bayesian-based, Markov chain Monte Carlo 

(MCMC) parameter estimation approach is employed to infer each tumor’s voxel-specific 

cL-AIFs based on the patient’s R-AIF. Our work builds on AIF modeling reported 

previously by Fluckiger et al. [17, 18] and Lee et al. [19], in which normalized gamma-

variate curves were employed to represent the first and second passes of the CA bolus. A 

key difference herein is that the cL-AIF model (functional form) is constrained based on an 

empirical fixed-parameterization of the R-AIF measured for each patient. To reduce the 

model complexity, only cL-AIF bolus amplitude and arrival time are free parameters, which 

account for CA bolus amplitude and arrival time errors.

Materials and Methods

DCE-MRI tracer kinetic modeling

Tracer kinetic modeling of the administrated CA assumes that the tissue CA concentration 

Ct(t) can be expressed as:

Ct t = Fp ⋅ ∫
0

t

R t − τ ⋅ Ca τ dτ, [1]

where Fp is blood plasma flow (s−1), R(t) is the tissue impulse response residue function, 

and Ca(t) is the AIF.

Many tracer kinetic models (i.e., the tissue response residue function, R(t)) have been 

applied to describe the behavior of administrated CA in DCE-MRI experiment. In a previous 

study [20], the three-parameter compartmental tissue uptake model (CTUM) was found to 

be the most probable model for the same advanced stage cervical cancer patient population, 

and was, thus, employed in this study. The impulse response residue function for the CTUM 

is:

R t = 1 − E ⋅ e
−γ ⋅ t + E, [2]

where E is the CA extravasation fraction, and γ is the inverse of the plasma mean transit 

time, i.e., γ is the governing rate constant. Plasma volume (vp) and permeability-surface-
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area-product (PS) can be calculated from Fp, E and γ. Further details are provided in 

Sourbron et al. [4].

A gamma-variate local-AIF model

Recently, Lee et al. [19] introduced a strategy for inferring the voxel-specific local-AIF in 

dynamic susceptibility contrast (DSC)-MRI employing a three-component local-AIF model. 

The CA concentrations of the primary and first recirculation bolus were each modeled 

(empirically parameterized) with a normalized gamma distribution function, Eq. [3]. An 

additional (third) term, which accounts for a steady-state circulation phase, completed the 

local-AIF model, Eq. [4]:

Gamma distribution:G α, β, t1, t =
1

β
α + 1 × Γ α + 1

× t − t1
α × e

−
t − t1

β [3]

Local‐AIF model:Ca(t) = ∑
i = 1

2

CiG(α, β, ti, t) + C3(1 − e
−r(t − t1)

) [4]

Note: the shape of the primary and recirculation CA boluses in this local-AIF are the same, 

i.e., they are defined by the same-valued gamma-distribution parameters (α and β), but have 

different amplitudes, ci, and arrival times, ti. We have extended this strategy to DCE-MRI 

data and modified the local-AIF model of Lee et al. [19] by adding an exponential decay 

term, with decay-rate constant δ, to account for renal clearance of CA over time, which is 

not negligible for DCE-MRI due to the much longer acquisition time compared to DSC-

MRI:

Ca(t) = (∑
i = 1
2

CiG(α, β, ti, t) + C3(1 − e
−r(t − t1)

)) × e
−δ(t − t1)

[5]

See Supplementary Table S1 for a description of all the parameters introduced in Eqs. [3–5].

A constrained local-AIF model

A widely-acknowledged weakness of much reported DCE modeling is that the obtained AIF 

is generally remote from the tissue of interest. Given that the voxel-specific local AIF must a 

priori differ substantially from an AIF measured from a major, remote, upstream artery and 

that, to first order, this will be reflected in bolus arrival time and amplitude of an analytical 

representation of the measured AIF, a constrained local-AIF model was derived based on 

empirical parameterization, via Eq. [5], of the patient-specific R-AIF:

i. First, the modified gamma-variate formulation, Eq. [5], was employed to model 

the R-AIF for each patient, yielding estimates of all model parameters.
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ii. Second, the patient-specific R-AIF model was constrained by accepting and 

fixing the values of all model parameters to the estimates obtained in (i).

iii. Third, the formulation of the local-AIF model was completed by introducing two 

free parameters: a bolus delay, Δt, and a scaling factor, s. These two free 

parameters provide, respectively, for a patient-voxel-specific shift in the two 

bolus arrival times (same time shift for the primary and recirculation boluses) 

and for a scaling of the two bolus amplitudes (same amplitude scaling for the 

primary and recirculation boluses):

t1′ = t1 + Δt;  t2′ = t2 + Δt;  C1′ = s × C1;  C2′ = s × C2 [6]

The t1, t2, C1 and C2 in Eq [5] were then replaced by t1′ , t2′ , C1′ , and C2′ , 

respectively for the completion of the cL-AIF model. Note that the scaling factor, 

s, modifies only the two bolus amplitudes (C1 and C2), rather than the whole 

local-DCE-AIF. C3 is a global term representing the long-term, steady-state CA 

concentration throughout the entire vascular system and is, thus, left unchanged 

(i.e., when t is large, Ca(t), Eq [5], reduces to C3, ignoring renal clearance). Thus, 

C3 is a patient-specific global parameter; it is not voxel-specific. Possible 

variation in the bolus shape (e.g., broadening) is neglected in the local-AIF 

formulation to reduce model complexity (i.e., inclusion of possible voxel-specific 

bolus shape changes by estimating voxel-specific values for α and β in the local-

AIF model would introduce more free parameters than are supported by data 

quality, see the modeling results employing the unconstrained local-DCE-AIF 

approach, vide infra).

iv. Finally, the constrained local-AIF model, including bolus delay, Δt, and scaling 

factor, s, as voxel-specific free parameters, hereafter referred to as cL-AIF, and 

Eq. [2] were substituted into Eq. [1], and the convolution was evaluated 

numerically. Posterior probabilities for all free parameters were computed voxel-

by-voxel using Bayesian probability theory [21].

Figure 1a shows the modeling of a representative R-AIF from a cervical cancer patient 

employing the modified gamma-variate formulation, Eq. [5]. Figure 1b, an expansion of the 

plot in panel a, shows a sample cL-AIF, illustrating the effects of the two free additional 

parameters, bolus delay, Δt, and amplitude scaling factor, s, introduced to complete the cL-

AIF model.

In silico DCE-MRI data

In silico DCE-MRI data were simulated based on clinical DCE-MRI data from a 

representative cervical cancer patient. For this patient, a whole-tumor, average DCE-MRI 

CA concentration vs. time curve was calculated and then modeled using the corresponding 

R-AIF for that patient. The estimated parameter values, together with the measured R-AIF, 

were used to simulate a noiseless DCE-MRI curve. Thus, for the noiseless simulated data, 

the correct (true) AIF is known.
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In this representative simulation, the temporal resolution (2.1 s) and the total acquisition 

time (250 s) were identical to those of the clinical DCE-MRI data. Normally distributed 

Gaussian noise, with standard deviation (SD) ranging from 0 mM to 0.05 mM with a step 

size of 0.002 mM, was added to the initially noiseless simulated data. For each noise SD, 

100 different noise representations were simulated. As reference, the baseline noise SD of 

the DCE-MRI data for the sixteen cervical cancer patients is ~0.04 mM.

While only one set of representative CTUM parameter values was employed in the 

simulation study, the global findings regarding accuracy and precision of parameter 

estimation are instructive, and not subtle. Further, considering the voxel-wise analysis of 

clinical cervical cancer data, Bayesian-based model selection and parameter estimation 

naturally compares the cL-AIF and traditional R-AIF approaches over the entire parametric 

range representative of heterogeneous tumor tissue.

Clinical DCE-MRI Data

Clinical cervical cancer DCE-MRI data were acquired from patients enrolled in EMBRACE 

(https://www.embracestudy.dk/), an international study on MRI-guided brachytherapy in 

locally advanced cervical cancer. All studies were approved by the local medical ethics 

research board. Sixteen patients with locally advanced-stage cervical tumor were scanned 

prior to radiotherapy. All DCE-MRI data were acquired on a 3T Philips Achieva scanner 

using a 3D, saturation-recovery, spoiled gradient-echo sequence (TR/TE = 2.9/1.4 ms, 

saturation time = 25 ms, flip angle = 10°). A bolus of 0.1 mmol/kg Dotarem® (gadoterate 

meglumine; Guerbet, France) was injected at 4 ml/s, followed by a 50 ml saline flush. For 

each patient, 120 dynamic axial scans (18 baseline scans, baseline signal-to-noise ≈ 5:1) 

were obtained with 2.1 seconds temporal resolution and 2.3 × 2.3 mm2 in-plane resolution 

(matrix size = 176 × 176, FOV = 405 × 405 mm2, 20–24 slices with a slice thickness of 5 

mm) following the administration of CA. The acquired MR images were smoothed as 

described in Korporaal et al. [15]. A pre-contrast T1 map was produced via the variable flip 

angle method (α = 5°, 10°, 15°, 20°, and 25°), using a spoiled gradient echo sequence 

(TR/TE = 20/1.7 ms), with the same resolution and orientation as the DCE scans. MR signal 

intensities were then converted to CA concentration using the T1 map, as described in 

Kallehauge et al. [22]. Because of the short TE, effects of T2* dephasing are minimal and 

were ignored in the conversion. Cervical tumor tissues were segmented based upon TSE T2-

weighted images (TR/TE = 4236/100 ms, Flip angle = 90°, Slice thickness = 3 mm, In-plane 

resolution = 0.94 × 0.94 mm2, matrix size = 320 × 320) by an experienced radiologist. An 

R-AIF was obtained experimentally for each patient by averaging multiple CA-

concentration vs. time curves measured in the external iliac artery. The chosen measurement 

locations were unaffected by flow disturbances near the bifurcation of the external/internal 

artery. A literature value of 1660 ms [23] was used for the pre-contrast blood T1.

Data analysis

Both clinical cervical cancer DCE-MRI data and in silico DCE-MRI data were modeled 

with three representations of the AIF:

i. The R-AIF: As is often done in conventional DCE modeling, an offset time 

constant was incorporated into the tracer kinetic tissue response function (i.e., the 
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CTUM, Eq. [2]), to account for bolus delay (i.e., a total of four parameters). 

However, in the simulation study, the same R-AIF employed in the generation of 

the in silico data was also used for CTUM parameter estimation (i.e., by 

definition, the correct AIF was “known”). Thus, in the simulation studies, the 

bolus delay was zero.

ii. The uL-AIF: An unconstrained local-DCE-AIF model, described by the Eq. [5] 

formulation with all parameters considered as “free” (requiring estimation), was 

directly substituted into Eq. [1]. All of the parameters in the uL-AIF model (α, β, 

t1, t2, C1, C2, C3, γ, and δ) and in the CTUM (Fp, PS and vp) were estimated 

simultaneously from the CA concentration vs. time curves (i.e., a total of 12 

parameters). Note: the free parameters t1 and t2 in the uL-AIF eliminate the need 

for an additional bolus delay parameter, as is employed with the R-AIF.

iii. The cL-AIF: Free parameters Δt and s represent bolus arrival time delay and 

amplitude of the cL-AIF, designed to be voxel-specific, which was otherwise 

constrained by fixed parameterization via Eq. [5] modeling of the R-AIF. The 

cL-AIF was substituted into Eq. [1], and Δt and s, and the parameters in the 

CTUM (Fp, PS and vp) were estimated (i.e., a total of five parameters).

For the cervical cancer DCE-MRI data, a data-driven Bayesian probability theory-based 

model selection algorithm (see Supplementary Material for details) was employed to 

compare use of the R-AIF and cL-AIF on a voxel-by-voxel basis. The average computation 

time (model selection + parameter estimation) for one cervical cancer patient (~2,000 

voxels) was approximately 3–4 hours employing a Dell PowerEdge R340 server with 64 

CPUs and 256 GB physical memory. Traditional (frequentist) statistical analyses were 

performed using Matlab (The Mathworks, Inc., Natick, MA). A two-sided Wilcoxon signed 

rank test was used to compare kinetic parameters estimated employing the R-AIF and the 

cL-AIF. Statistical significance was established by P < 0.05.

Results

The simulation study (Figure 2) evaluates the accuracy (mean relative error, i.e., mean of the 

absolute error divided by the exact value), and precision (variance of the relative error) of 

CTUM parameter estimation for the simulated data employing: (i) the correct AIF, i.e., the 

R-AIF used to generate the in silico data, (ii) the uL-AIF, and (iii) the cL-AIF.

When the correct AIF was used, the accuracy of estimation of all three CTUM parameters 

(PS, vp and Fp) was relatively insensitive to added noise power, while precision decreased 

slowly (and linearly) as signal-to-noise decreased. However, when the uL-AIF model was 

employed in the data analysis, despite minimal residuals, the correct CTUM parameter 

values could not be estimated accurately and the variance of the parameter estimation was 

large (precision was low), even for very small added noise power. By contrast, the accuracy 

of CTUM parameter estimation remains stable as noise level increases when the data are 

modeled using the cL-AIF and the precision of the parameter estimates approaches that 

derived using the correct AIF. In this scenario, the estimated scaling factor and delay time 
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have the correct mean values of one and zero, respectively, with increasing uncertainty as 

contrast-to-noise ratio decreases.

Figure 3 compares the use of R-AIF vs. uL-AIF vs. cL-AIF in the modeling of a 

representative, single-voxel, cervical cancer DCE-MRI dataset. The use of the R-AIF does 

not model the DCE data well, especially for the initial rise of the CA concentration. The 

voxel-specific uL-AIF approach provides the smallest systematic deviations in the residuals. 

However, the in silico simulation study clearly identifies the so obtained CTUM parameter 

estimates as unreliable (vide supra). Use of the voxel-specific cL-AIF models the data well, 

with small residuals approaching those of the uL-AIF. Figures 2d – f show the posterior 

probability density functions (PDFs) for each of the three estimated CTUM parameters 

employing the three different AIFs. MCMC calculations employing both the R-AIF and the 

cL-AIF converged well (i.e., narrow PDFs, thus small uncertainties). Despite the smallest 

residuals, but entirely consistent with the in silico simulations, CTUM parameters were 

poorly determined (i.e., characterized by wide PDFs, thus large uncertainties) when the uL-

AIF was employed.

Next, both the R-AIF and the cL-AIF were employed to analyze all the DCE-MRI data from 

sixteen patients with advanced stage cervical cancer, on a voxel-by-voxel basis. Figure 4 

shows the pharmacokinetic parametric (Fp, PS, and vp) maps and corresponding uncertainty 

maps estimated for a representative transverse tumor slice, employing either the R-AIF or 

the cL-AIF. The voxel-wise uncertainty for each parameter was computed using the standard 

deviation of the MCMC samples (i.e., the width of the PDF) divided by the mean parameter 

value. The pharmacokinetic parameters estimated using R-AIF are consistent with previous 

cervical cancer DCE literature [24, 25]. The Fp estimated using the cL-AIF is larger than 

that estimated using the R-AIF (P < 0.001), while the vp is smaller (P < 0.001). No 

statistically significant difference between the use of R-AIF and cL-AIF in the estimation of 

PS was found. See Supplementary Table S3 for a summary of the mean, median, inter-

quartile range, variance, and skewness of each of the parameters for the 16 patients, 

employing either the R-AIF or the cL-AIF.

Regarding the delay and amplitude scaling parameters, Figure 5 shows maps of the delay 

time, Δt (Panel a), and scaling factor, s (Panel b), estimated for the same tumor slice shown 

in Figure 4. As expected for highly heterogeneous tumor tissues, the bolus amplitudes and 

arrival times vary from voxel-to-voxel. The median delay time and the median scaling factor 

across all tumor voxels for each of the sixteen subjects are shown in the boxplots (Panels d 

& e) of Figure 5. Bolus amplitude errors may be due to partial volume artifacts in the R-AIF 

or to the voxel-wise variation of local AIF amplitude across the tumor. The scaling factors 

for 14 out of 16 patients are less than 1 (i.e., lower amplitude than the R-AIF), while the 

scaling factors for the other two patients are larger than 1 (i.e., higher amplitude than the R-

AIF). This latter finding is likely due to partial volume effects in the direct measurement of 

the R-AIF, which can lead to underestimation of the true CA concentration. Voxel-wise, 

Bayesian model selection compared the R-AIF and cL-AIF in the modeling of the cervical 

cancer DCE-MRI data. Figure 5 shows the preferred-model map for the same tumor slice 

(Panel c), and the mean preferred-model percentage across the sixteen cervical cancers 

patients (Panel f). The cL-AIF approach is more probable than the R-AIF approach, with 
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respective model voxel-count percentages of 78% ± 14% vs. 22% ± 14% (mean ± SD, n = 

16).

Discussion

One of the major challenges for quantitative analysis of DCE-MRI data is obtaining an 

accurate and appropriate AIF for tracer kinetic modeling. Furthermore, given CA bolus 

delay and dispersion, and the structurally and functionally abnormal vasculature 

characteristic of cancer, a single R-AIF is unlikely to approximate well the CA input for 

every voxel within the tumor ROI. In this study, we demonstrated the feasibility of using a 

voxel-specific, inferred cL-AIF, based on fixed parameterization of the R-AIF measured 

from a large, feeding (“remote”) artery with inclusion of two additional free parameters, 

bolus time-delay, Δt, and amplitude-scaling, s, to better model the DCE-MRI data in a voxel-

by-voxel fashion.

In conventional DCE-MRI modeling, an offset time is often incorporated into the tissue 

response function to account for the delay in the arrival of the CA bolus at the tissue of 

interest. However, the inclusion of an offset time alone in the modeling may not be enough 

to fit the acquired DCE data (Figure 3a). To account for the CA dispersion, two approaches 

can be used. As pointed out by Calamante et al. [9], in principle, it should be possible to 

correct the R-AIF by employing a vascular transition function (VTF), in which the bolus 

transition process is described by modeling the vascular bed. Such a model, if it exists, 

would be quite complex, and it is unknown whether such a model would be well supported 

by the acquired DCE-MRI data. A simplified, mono-exponential, VTF model [24] only 

improves the fitting marginally compared to the direct use of the R-AIF, whereas the 

improvement is substantial when the cL-AIF is employed (see Supplementary Figure S2).

Estimating a local-AIF for the tissue of interest is an alternative approach to the use of a 

VTF. Blind deconvolution, which simultaneously estimates the local-AIF and the tracer 

kinetic parameters from the tissue CA concentration vs. time curves, has been proposed. 

Fluckiger et al. [17, 18] showed that constraining the input function to a particular functional 

form (i.e., a local-AIF model) yields more accurate parameter estimation compared to 

deconvolution without a specific AIF model. In Fluckiger et al. [18], k-means clustering 

tissue curves were calculated and employed in a deconvolution to estimate a single, tumor-

wide AIF or regional AIF (region size < 10 × 10 × 10 voxels). The estimated AIF was then 

used to estimate voxel-specific tracer kinetic parameters.

In the first part of our study, an uL-AIF based on a gamma-variate model, Eq. [5], was 

employed to estimate voxel-specific local-AIFs and tracer kinetic CTUM parameters. 

Simulation studies show that the accuracy and precision of the estimated kinetic parameters 

were severely compromised using this uL-AIF. Even for the simulated, noiseless data, the 

unconstrained L-AIF approach still produces large relative errors. This is because: (i) even 

though no noise was added, the simulated data are inevitably truncated (i.e., only 120 

abscissa values are sampled, up to 250 seconds); (ii) the simulated signal is sampled every 

2.1 seconds, rather than as an ideal continuous curve. Given a total of twelve free parameters 

in the uL-AIF approach, it is not surprising that the tissue CA concentration vs. time curve is 
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insufficiently informative to support the simultaneous estimation of all the parameters 

defining both the fully parameterized, voxel-specific uL-AIFs and the tracer kinetic model. 

This effect is visually demonstrated by the PDFs for the CTUM’s three free parameters in 

Figures 3d – f (red). When the uL-AIF is employed, the PDFs for the CTUM’s three free 

parameters are low and wide, indicating poor parameter estimation, despite the small 

systematic deviations in the residual, i.e., good modeling in terms of Chi-square (Figure 3b). 

Here, we highlight that the Bayesian-based data analysis approach described herein affords a 

posterior PDF, rather than a single parameter value, for each of the estimated parameters and 

thus, importantly, provides uncertainties (i.e., the width and shape of the PDFs) for all 

results.

Upon constraining the voxel-specific local-DCE-AIF model with parameters extracted from 

the R-AIF, the accuracy and precision of PS, vp, and Fp are all significantly improved 

compared to the use of the uL-AIF model (Figure 2). Applying this cL-AIF approach to the 

cervical cancer DCE-MRI data, Figures 3a – c show improved modeling (smaller residuals) 

compared to the direct use of the R-AIF. Also, the kinetic parameters (PS, vp, and Fp) were 

all well resolved (Figures 3d – f). The degree to which estimated DCE kinetic model 

parameters reflect “ground truth” values depends upon the degree to which the kinetic model 

is an accurate representation of a structurally and functionally complex biological tissue 

system. Consistent with previous DCE-MRI [10] and DSC-MRI [12, 13] reports, blood 

plasma flow was underestimated when the R-AIF was employed. However, a greater 

difference in the estimation of blood plasma flow between the use of R-AIF and local AIF 

was observed in the present study. This may be due to constraining the CA bolus shape (i.e., 

the gamma distribution parameters α and β), for the purpose of reducing model complexity, 

in the cL-AIF model. Note that the values of vp estimated by both approaches are high, 

which is likely due to the physiological assumptions/constraints inherent in the CTUM (e.g., 

negligible CA backflux from the extravascular extracellular space to the vascular space, see 

Soubron et al. [4] for details). Indeed, all of the commonly used DCE models, including the 

extended Tofts model, make different underlying assumptions/simplifications that allow, in 

principle, an exceedingly complex tissue response to be approximated by just a few 

summary parameters. Whenever a simplified model is employed for the purpose of stable 

parametric estimates, biases in the estimated parameter values will inevitably be generated 

by the simplifications/constraints.

One key feature of essentially all modeling methods is that more complex models are almost 

always able to provide better representations of the data, as determined by Chi-square. 

However, the tradeoff is that more complex models require higher data quality to support 

stable parameter estimation. To further test whether the two added free parameters (Δt and s) 

in the cL-AIF model were well supported by the DCE-MRI data, Bayesian model selection, 

which takes into account both the goodness of fit and the complexity of the model, was 

applied to compare the cL-AIF and R-AIF approaches. As noted earlier, the weight (or 

penalty) assigned to each parameter derives naturally from that parameter’s contribution to 

the likelihood function of the modeled data (i.e., its posterior probability), which 

distinguishes the Bayesian approach from other constrained optimization methods. The cL-

AIF approach was preferred relative to the R-AIF approach (bar graph in Figure 5) for the 

clinical cervical cancer DCE-MRI data reported herein.
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From an experimental perspective, we note that the measured R-AIF may contain errors/

artifacts that affect the amplitude, including inflow and partial volume. Further, limited 

water exchange may also affect the amplitude estimated by the cL-AIF method. Estimates of 

the amplitude scaling factor will be influenced by such model imperfections. Thus, care 

should be taken in interpretation (physiological meaning) of the amplitude of the scaling 

factor. Like other tracer kinetic model parameter estimation methods, the main limitation of 

our study is the validation of the derived physiological parameters in terms of their 

biophysical “trueness”. For this study, in which inferred cL-AIFs were employed, validation 

against non-MR and non-AIF based methods would be ideal. However, this validation is 

challenging, due to the lack of such gold-standard methods with human subjects. Evaluating 

the clinical utility of the estimated tracer kinetic parameters for diagnosis and monitoring/

predicting therapeutic response, which are ongoing, may provide a reasonable alternative.

Conclusion

In conclusion, we have shown through in silico simulations that the cL-AIF method provides 

accurate and precise CTUM parameter estimates under contrast-to-noise conditions 

representative of clinical DCE-MRI. Further, when compared against a single, global R-AIF, 

Bayesian model selection chose the voxel-specific cL-AIF, in concert with the CTUM, as the 

preferred clinical cervical cancer DCE-MRI data model. Additionally, as expected with 

heterogeneous cervical cancer tissue, the estimated, voxel-specific cL-AIFs show local 

variations in CA bolus amplitude and arrival time.

We note that the cL-AIF approach is not limited to cervical cancer data, nor to the CTUM. 

Indeed, the cL-AIF approach should be widely applicable to other R-AIFs and tracer kinetic 

models. We also highlight that Bayesian-based data analysis affords uncertainties for each 

estimated parameter, via PDFs, and voxel-wise comparison across methods/models, via 

model selection. (An enabling software suite is available at http://

bayesiananalysis.wustl.edu/index.html.) Further work is required to validate the biophysical 

trueness of the tracer kinetic parameters estimated with the cL-AIF approach, likely through 

the use of preclinical rodent models, and to evaluate whether the parameters so obtained 

provide better diagnosis of pathology and treatment response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Panel a: Modeling of an example R-AIF measured from the external iliac artery of a 

cervical cancer patient. The arrows indicate the three components in the local-DCE-AIF 

model, Eq. [5]. Panel b: Expansion of the measured R-AIF shown in Panel a (dashed line) 

and an example cL-AIF (solid black line) based on this measured R-AIF. The arrows 

indicate the bolus delay time, Δt, and scaling factor, s, in the cL-AIF model (Eq. [6]).
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Figure 2. 
Simulation study comparing the accuracy and precision of tracer kinetic model (CTUM) 

parameter estimation as a function of added noise for the three AIF modeling approaches: (i) 

the correct AIF (Panels a - c), (ii) the uL-AIF (Panels d - f), and (iii) the cL-AIF (Panels g - 
i). Relative error is defined as the difference between the estimated value and the true value 

divided by the true value. Error bars indicate the standard deviation of the relative errors 

from 100 different noise representations at a given noise standard deviation.
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Figure 3. 
Panels a - c: Tracer kinetic modeling (CTUM) of a representative single-voxel cervical 

cancer DCE-MRI dataset employing: (i) the R-AIF (Panel a), (ii) the uL-AIF (Panel b), and 

(iii) the cL-AIF (Panel c). The tissue CA concentration curves (data) are shown in black, the 

models in green, red, and blue (Panels a, b, and c, respectively), and the residuals (the 

difference between model and data) as black dashed-dotted lines. Panels d - f: 
corresponding posterior probability functions for PS (Panel d), vp (Panel e), and Fp (Panel 
f), estimated from the modeling shown in Panels a - c. Probability density functions (PDFs) 

for parameters estimated using the R-AIF are shown in green, PDFs for parameters 

estimated using the uL-AIF are shown in red, and PDFs for parameters estimated using the 

cL-AIF are shown in blue. These PDFs are normalized so that the integrations of the PDF 

(area under the curve) are the same for each parameter.
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Figure 4. 
Parametric maps (left map of each pair) and corresponding uncertainty maps (right map of 

each pair), defined as the coefficient of variance (standard deviation divided by the mean 

value), for a cervical tumor slice, employing the R-AIF (top) or cL-AIF (bottom).
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Figure 5. 
Panels a & b: delay time (Panel a) and scaling factor (Panel b) maps estimated for an 

example tumor slice employing the cL-AIF. Panel c: model-selection (R-AIF vs. cL-AIF) 

preferred model map for the same tumor slice. Panels d & e: median delay time (Panel d) 

and scaling factor (Panel e) estimated using the cL-AIF for each of the sixteen patients. 

Panel f: mean preferred-model percentage across all DCE-MRI data for the sixteen patients. 

Error bars indicate the standard deviation of the preferred model percentages across the 

sixteen cervical tumors.
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