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Abstract: The dynamic recrystallization (DRX) features and the evolution of the microstructure of
a new hot isostatic pressed (HIPed) powder metallurgy (P/M) superalloy are investigated by hot-
compression tests. The sensitivity of grain dimension and DRX behavior to deformation parameters
is analyzed. The results reveal that the DRX features and grain-growth behavior are significantly
affected by deformation conditions. The DRX process is promoted with a raised temperature/true
strain or a reduced strain rate. However, the grains grow up rapidly at relatively high temperatures.
At strain rates of o.1 s−1 and 1 s−1, a uniform microstructure and small grains are obtained. Due
to the obvious differences in the DRX rate at various temperatures, the piecewise DRX kinetics
equations are proposed to predict the DRX behavior. At the same time, a mathematical model for
predicting the grain dimension and the grain growth behavior is established. To further analyze the
DRX behavior and the changes in grain dimension, the hot deformation process is simulated. The
developed grain-growth equation as well as the piecewise DRX kinetics equations are integrated into
DEFORM software. The simulated DRX features are consistent with the test results, indicating that
the proposed DRX kinetics equations and the established grain-growth model can be well used for
describing the microstructure evolution. So, they are very useful for the practical hot forming of P/M
superalloy parts.

Keywords: P/M superalloy; microstructure evolution; grain growth; dynamic recrystallization

1. Introduction

Owing to their excellent anti-corrosion/fatigue properties and strengths, powder
metallurgy (P/M) superalloys are widely applied for manufacturing the turbine disks
of aero-engines [1,2]. However, due to the high content of alloying elements and the
internal defects in P/M superalloys, hot forming processes, for example, hot-extrusion and
forging processes, are fairly complex [3]. Furthermore, the hot-forming process is usually
accompanied by complicated deformation mechanisms such as dynamic recrystallization
(DRX), dynamic recovery (DRV), etc. These deformation mechanisms are greatly influenced
by the forming parameters [4–6]. Therefore, to precisely tailor the microstructures and
optimize the final properties of alloy parts, it is necessary to research the sensitivity of
microstructures and properties to deformation parameters. Also, accurate models should
be established to predict the microstructures in hot deformed alloys [7].

During hot deformation, the microstructures can be refined and the metallurgical
defects can be efficiently removed. Up until now, the material flow characteristics [8,9]
and microstructure evolution [10,11] of nickel-base superalloys have been widely reported.
Fang et al. [12] studied the two-pass rheological characteristics and DRX behavior of the
hot-extruded P/M alloy. Zhang et al. [13] revealed the interaction between the flow be-
havior and γ′ phase of the FGH96 superalloy and optimized the hot forming parameters.
Wang et al. [14] investigated the recrystallization and densification behavior of a Ni-based
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superalloy in the forging process. Zhang et al. [15] discussed the role of non-uniform
precipitates on local plastic deformation in hot isostatic-pressed (HIPed) FGH96 alloy.
Sreenu [16] investigated the microscopic structure features in a new P/M superalloy which
was processed by the HIP route. In addition, the mathematical model is a vital way to
depict the relationship between deformation conditions and rheological features, as well
as the microscopic structure evolution in alloys [7,17–20]. Meanwhile, accurate mathe-
matical models are essential to analyze/forecast material deformation behavior and the
evolution of the microstructure by the finite element method (FEM) [21–23]. Recently, for
the deformed P/M superalloys, some accurate mathematical models were established.
For example, Liu et al. [24,25] established an equation to depict the interaction between
the forming conditions and the DRX grain dimension of a hot-deformed FGH96 superal-
loy. Zhang et al. [26] developed the strain-compensated constitutive and ANN models to
forecast the rheological characteristics for a hot-extruded P/M superalloy. Tan et al. [27]
revealed that the DRX nucleation behavior and the evolution of the microstructure are
sensitive to the Zener–Hollomon (Z) parameter in a hot-extruded P/M superalloy.

Though the deformation mechanisms as well as the microstructure evolution of HIPed
P/M superalloys have been reported, accurate models for predicting the DRX features
and grain-growth behavior are still rarely reported. In this work, the hot-compression
experiments of a novel HIPed P/M superalloy are conducted. Then, the flow features,
DRX mechanism, and grain features of an advanced P/M superalloy are systematically
investigated. The grain dimension and DRX volume fraction (Xdrx) are quantitatively
calculated. The piecewise DRX kinetics equations and grain-growth model are established
to predict the DRX and grain-growth behaviors under different deformation conditions.
Then, the developed models are integrated into DEFORM software. Finally, the DRX
features and microstructure evolution during hot compression are simulated.

2. Material and Experiment Procedures

The elemental components (wt. %) for the novel P/M superalloy are listed in Table 1.
The size of the initial powder is about 80 µm. The test material was produced through
argon atomization and hot isostatic pressing at a temperature of 1150 ◦C and a pressure of
150 MPa for 4 h. Figure 1 displays the primary microstructure of the HIPed P/M superalloy.
The equiaxed and coarse grains are observed and the mean grain dimension is about 9.5 µm.
The deformed cylinder samples were obtained from the HIPed superalloy and their radius
was 4 mm and their height was 12 mm. Isothermal compression experiments were executed
on the Gleeble-3500D simulator. The range of deformation amount was from 20% to 60%
and that of the strain rate was from 1 to 0.001 s−1. The temperature was selected from
1080 to 1170 ◦C. Additionally, the graphite slices were employed to minimize the friction
between the molds and sample.

Table 1. The chemical compositions of the novel P/M superalloy (wt. %).

Al Ti Nb Co Cr W Mo Ta Hf Ni

2.7–3.1 3.6–3.9 1.2–1.3 18–20 11.5–13.5 4.0–4.5 3.5–4.5 0.9–1.2 0.1–0.3 Bal.

The schematic plot of hot-deformation experiments is illustrated in Figure 2. To
investigate the DRX behavior and the grain dimension in the hot-compression process,
electron back-scattered diffraction (EBSD, JEOL-7001F1 FE-SEM) was applied to observe
the deformed microstructures. The method of preparing EBSD samples has been reported
in detail in our previous study, i.e., the samples were mechanically polished and then elec-
trolytically polished by a solution of 10 mL HClO4 and 90 mL CH3CH2OH at a temperature
of −31 to −26 ◦C as well as a voltage of 23 V [28]. The EBSD test was performed at an
acceleration voltage of 25 kV, step size of 0.5 µm, and a scanning area of 100 µm × 100 µm.
The HKL Channel 5 software was applied to deal with EBSD data. The Xdrx and grain size
were accurately calculated by MTEX5.7.0.
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formation continues, stable stresses are obtained because of the kinetic equilibrium be-
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Figure 2. Schematic diagram of hot compression tests for the HIPed superalloy.

3. Results and Discussion
3.1. Rheological Characteristics and Deformation Mechanisms

Figure 3 illustrates the rheological stress of the researched superalloy under the tested
conditions. The stress is large at low temperatures or high strain rates. This is because the
grain boundaries (GBs) migration is weakened at low temperatures and the deformation
time is short at high strain rates. In addition, the work-hardening (WH) behavior becomes
obvious with a raised strain rate or a reduced temperature [29,30]. In the early period of
deformation, the stress increases instantly due to the WH induced by rapid dislocation
proliferation and accumulation [31,32]. As the true strain is raised, the dynamic recovery
(DRV) and DRX become obvious, which results in decreased stress. As the deformation
continues, stable stresses are obtained because of the kinetic equilibrium between WH, DRX,
and DRV [33]. Particularly, the rheological stress exhibits a fast drop at 1120 ◦C/0.1 s−1. This
is caused by heterogeneous deformation or local deformation heating or cracking [34,35].
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Figure 3. Typical true stress–strain curves of the HIPed superalloy at (a)
.
ε = 0.1 s−1; (b) T = 1140 ◦C.

3.2. The Evolution of Microstructure
3.2.1. Influence of True Strain on DRX Behavior and Grain Dimension

The grain-orientation spread (GOS) method can reflect the orientation gradient within
grains and evaluate the DRX degree in the deformed alloy [36]. Here, the DRX and
deformed grains are recognized by the GOS method [37]. The calculation equation is
expressed as [38]:

GOS =
1

J(a)∑b
ωab (1)

where J(a) shows the pixels amount in grain a and ωab shows the misorientation degree
between the orientation of pixel position b and average orientation of grain a. According
to the GOS distribution of the complete DRX sample and GOS division principle [39], the
grains with GOS < 3◦ are defined as DRX grains.

When the temperature and strain rate are 1110 ◦C and 0.1 s−1, respectively, the GOS
distribution at the true strain of 0.22, 0.51, and 0.92 is demonstrated in Figure 4. Obviously,
there are some changes in DRX behavior and grain dimension at different strains. As the
true strain is raised, the mean GOS and average kernel misorientation (KAM) decreases but
the Xdrx increases. Meanwhile, the average grain dimension is reduced from 7.18 to 4.21 µm
when the strain increases from 0.22 to 0.92, whereas the mean DRX grain dimension (ddrx)
increases. At 0.22 (Figure 4a), a mass of substructures and serrated GBs appear. Meanwhile,
fine DRX grains and necklace structures are observed at the serrated/bulging GBs because
the serrated GBs have a high local orientation or strain gradient for DRX nucleation.
Obviously, discontinuous dynamic recrystallization (DDRX) occurs [40,41]. At 0.22, the
GOS (7.04◦)/KAM (1.88◦) values are relatively high and the Xdrx (15.56%) is low. However,
the average grain size is large, which is attributable to the high dislocation density and the
low-deformation storage energy. The original GBs are gradually covered by DRX grains
and the mean GOS and KAM rapidly decrease when the true strain is 0.51. In addition,
the Xdrx increases significantly. Although the DRX grains grow up, the average grain size
decreases to 4.39 µm because of the annihilation/rearrangement of dislocations and the
migration of GBs [42–44]. When the true strain is further raised to 0.92 (Figure 4c), the
number of grains with high GOS values further decreases and the KAM also declines to
0.56◦. In addition, the DRX degree increases. As the DRX grains further grow up, a uniform
microstructure is obtained.
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3.2.2. Influence of Strain Rate on the DRX Behavior and Grain Dimension

Figure 5 displays the evolution of DRX behavior and grain dimension at diverse strain
rates. Here, the true strain is 0.92 and the temperature is 1140 ◦C. Some serrated GBs and
tiny DRX grains can be found, which reveals the occurrence of DDRX [34]. As the strain
rate increases from 0.001 s−1 to 0.1 s−1, the average KAM and GOS increase but the Xdrx
decreases. Meanwhile, tiny DRX grains are found and the mean grain dimension decreases
because the large strain rate can produce high strain energy and accelerate the development
of substructures with a mass of dislocations. It is conducive to DRX nucleation [45]. In
addition, previous reports show that less time for deformation and γ′ phase pinning results
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in a low Xdrx and fine grains at a high strain rate [46]. The grains with high GOS have
hardly been observed at 1140 ◦C and the Xdrx at three strain rates are higher than 95%,
which indicates the DRX is complete.
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3.2.3. Influence of Temperature on the DRX Behavior and Grain Dimension

When the true strain is 0.92 and the strain rate is 0.1 s−1, the relationship between
temperature and GOS is depicted in Figure 6. The mean value of GOS declines but the
average grain size and Xdrx increase when the temperature is raised. At low temperatures
(Figure 6a,b), the grains with high GOS and fine DRX grains are observed and the KAM is
high (0.87◦ and 0.71◦). It indicates the high dislocation density in grains and the limited
DRX. When the temperature is raised to 1140/1170 ◦C (Figure 6c,d), the enhanced DRX
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induces a decrease in the mean GOS and KAM. Also, the Xdrx increases significantly
(Figure 6f). This is attributed to the high temperature enhancing the movement of GBs
and the mobility/diffusion of dislocations. In addition, the mean grain size increases to
13.48 µm due to the rapid growth of DRX grains. The γ′ phase is sufficiently dissolved,
which weakens the pinning effect on GBs [47]. Particularly, the DRX rate is significantly
disparate at diverse temperatures. In Figure 6h, when the temperature is below 1120 ◦C,
the Xdrx is lower than 82%. However, the DRX is almost complete at 1140 ◦C.
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(b) 1110 ◦C [28]; (c) 1120 ◦C; (d) 1140 ◦C; (e) 1170 ◦C; (f) the local misorientation angle; (g) aver-
age grain size distribution; (h) area fraction of DRX (the strain rate is 1 s−1 and true strain is 0.92).

Summarily, the DRX behavior and grain features of the studied HIPed P/M superalloy
are dramatically affected by the deformation amount, temperature, and strain rate. Hence,
the contour maps to depict the effects of deformation conditions on DRX volume fraction
and average DRX grain size are demonstrated in Figure 7. Obviously, the DRX is enhanced
with the raised temperature or the reduced strain rate. The colors and values of the contour
maps are very different in terms of the raised temperature when the strain rate is constant.
When the temperature is below 1120 ◦C, a weak DRX is observed. However, a full DRX can
be achieved at 1140/1170 ◦C. Also, the DRX rates are different at various temperatures. This
is because the movement of GBs is enhanced by the time and energy at high temperatures.
Therefore, based on the effects of temperature on DRX mechanisms, the piecewise DRX
kinetics models are proposed in Section 3.3.
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Figure 7. Contour maps at different deformation conditions: (a) DRX volume fraction; (b) average
DRX grain size.

3.3. DRX Kinetics Model

Generally, the critical strain (εc) corresponding to DRX is decided by θ− σ curves [34,48].
Here, θ = dσ

dε shows the WH rate, σ represents the true stress, and ε is the true strain.
According to Poliak’s study [38], the εc for DRX is equal to the minimum spot on the θ − σ
curve and θ is expressed as a third-order polynomial function:

θ= A1σ3 + A2σ2 + A3σ+A4 (2)

where A1, A2, A3, and A4 represent material constants.
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Then, Equation (2) is also expressed as:

d2θ

dσ2 = 6A1σ + 2A2 (3)

For d2θ
dσ2 = 0, the critical stress (σc) can be expressed as:

σc = −A2/3A1 (4)

Based on the measured rheological stresses, the σc and εc can be determined. Figure 8
displays the values of under various conditions. Obviously, the reduced temperature or the
raised strain rate increase εc.
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Generally, εc can be evaluated by:

εc = a1
.
ε

l1 exp (
Q1
RT

) (5)

where R is the constant for gas (8.314 J/(K·mol)). In addition, a1 and Q1 are material
parameters, which can be decided by least square linear fitting of ln εc–10,000/T and
ln εc − ln

.
ε plots, respectively, as displayed in Figure 9. Thus, εc is determined as:

εc = 1.794× 10−5 .
ε

0.1731 exp (
101, 090.13

RT
) (6)
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Figure 10 displays the variations of Xdrx with the true strain at 1140 ◦C/0.001 s−1. The
value of Xdrx is small in the initial incubation stage. After this incubation period, the DRX
is accelerated and finally tends to be stable. The ε0.5 can be obtained through the Xdrx − ε
curve (Figure 10a). Figure 10b illustrates the value of ε0.5 at various compression conditions.
The reduced strain rate or the raised temperature can decrease ε0.5. Similarly, ε0.5 is related
to deformation parameters [49], i.e.,

ε0.5 = a2
.
ε

l2 exp (
Q2
RT

) (7)

where a2, l2, and Q2 represent material parameters, which can be evaluated by ln ε0.5–10,000/T
and ln ε0.5 − ln

.
ε plots, respectively, as illustrated in Figure 11. Hence, ε0.5 is determined as:

ε0.5 = 4.577× 10−7 .
ε

0.114 exp (
159, 420.7

RT
) (8)
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Figure 10. (a) Relationship between Xdrx and ε at 1140 ◦C/0.001 s−1. (b) ε0.5 at different
deformation conditions.
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In Figure 10, the variations in Xdrx with the strain are similar to a sigmoidal curve,
which can be described as [32]:

Xdrx = 1− exp [−0.693(
ε− εc

ε0.5 − εc
)

n
] (ε > εc) (9)

where n is a material constant. Xdrx, ε, εc, and ε0.5 separately represent the DRX volume
fraction, true strain, critical strain, and the strain where Xdrx reaches 50%. Figure 12 displays
ln(− ln(1− Xdrx)) − ln((ε− εc)/(ε0.5 − εc)) plot, and the n is determined through the
linear fitting of this plot. Then, the DRX kinetics models are determined as:

Xdrx = 1− exp [−0.693( ε−εc
ε0.5−εc

)
2.15

]

εc = 1.747× 10−5 .
ε

0.1737 exp ( 101,502.36
RT )

ε0.5 = 4.577× 10−7 .
ε

0.114 exp ( 159,420.7
RT )

(10)Materials 2022, 15, x FOR PEER REVIEW 11 of 22 
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Figure 12. The relationship between ln(− ln(1− Xdrx)) and ln((ε− εc)/(ε0.5 − εc)).

Figure 13 gives the relationship between the strain rate/ε and the calculated Xdrx.
Also, the comparisons between the calculated and experimental Xdrx are represented. To
validate the precision of traditional DRX kinetics equations, the average absolute relative
error (AARE) and correlation coefficient € are calculated, i.e.,
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AARE =
1
N

N

∑
i=1

∣∣∣∣Ei − Pi
Ei

∣∣∣∣× 100 (12)

where Ei is the measured value and Pi shows the calculated one. Meanwhile, the measured
mean value is expressed as E and the calculated mean value is defined as P. In Figure 13,
the traditional DRX equation can well describe the DRX behavior at high temperatures
(1140–1170 ◦C). However, when the forming temperatures are below 1110 ◦C, the predicted
Xdrx is much higher than the experimental value and the R between experimental and
predicted Xdrx is only 0.15. Meanwhile, the predicted ε0.5 value is low, which indicates that
DRX occurs in advance. According to the above EBSD observations, due to a large number
of dissolved γ′ phases [50] and enough energy for GBs’ migration at high temperatures,
DRX occurs rapidly. However, the γ′ phase is difficult to dissolve and the deformation time
is short with the raised strain rate and the reduced temperature, resulting in the decreased
DRX rate. Thus, the DRX rates are quite different at various deformation temperatures. So,
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the traditional kinetics model cannot accurately predict the DRX behavior under different
deformation conditions.
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(d) 1170 ◦C. (e) The comparisons between the calculated and experimental Xdrx.

In Figure 10b, when the temperature is below 1120 ◦C ε0.5 is high. However, at 1140 ◦C
and 1170 ◦C, ε0.5 is low indicating that the DRX rate is significantly different at various
temperatures. Combined with the microstructure evolution discussed in Section 3.2.3, to
precisely describe the DRX behavior for the present alloy, the piecewise equations can be
used to predict ε0.5 and the segmented temperature is 1200 ◦C. The material parameters
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are determined by least square linear fitting of ln ε0.5–10,000/T and ln ε0.5 − ln
.
ε plots, as

shown in Figures 14 and 15. Then, ε0.5 is determined as:

ε0.5 = 3.05× 10−5 .
ε

0.059 exp(
114, 876.8

RT
) (T = 1080− 1120 °C) (13)

ε0.5 = 5.67× 10−12 .
ε

0.107 exp(
294, 773.5

RT
) (T = 1120− 1170 °C) (14)
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ε.

In Figure 16, the values of material constant n are determined in the range of 1080–1120 ◦C
and 1120–1170 ◦C, respectively. Consequently, the proposed piecewise DRX kinetics equa-
tions are determined as:

Xdrx = 1− exp[−0.693( ε−εc
ε0.5−εc

)
n
]

n =

{
1.61 (T = 1080− 1120 °C)
1.48 (T = 1120− 1170 °C)

εc = 1.79× 10−5 .
ε

0.173 exp( 101,090.1
RT )

ε0.5 =

{
3.05× 10−5 .

ε
0.059 exp( 114,876.8

RT ) (T = 1080− 1120 °C)

5.67× 10−12 .
ε

0.107 exp( 294,773.5
RT ) (T = 1120− 1170 °C)

(15)
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Figure 16. The relationship between ln(− ln(1− Xdrx)) and ln((ε− εc)/(ε0.5 − εc)) at
(a) 1080–1120 ◦C and (b) 1120–1170 ◦C.

Figure 17 gives the variations in the calculated Xdrx with the strain. Also, the com-
parisons between the calculated and experimental Xdrx are represented. The calculated
values are very close to the experimental ones. To confirm the precision of the proposed
piecewise DRX kinetics equations, R and AARE are calculated. The AARE value is 2.3%
and the R value is 0.992. Hence, the DRX behavior of the present HIPed P/M superal-
loy during hot compression can be accurately described by the proposed piecewise DRX
kinetics equations.
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Figure 17. The effects of strain rate and strain on Xdrx at (a) 1080 ◦C; (b) 1110 ◦C; (c) 1120 ◦C;
(d) 1140 ◦C; and (e) 1170 ◦C. (f) The comparisons between the calculated and experimental Xdrx.

The DRX grain size (ddrx) in the stable deformation stage is listed in Table 2. Obviously,
the reduced strain rate or the raised temperature can increase ddrx. Generally, ddrx is
connected with the compression parameters, which is evaluated through Sellars’s empirical
equation [32,51]. Hence, according to experimental data, ddrx is determined as:

ddrx = 1.76× 1015 .
ε
−0.16 exp (

−393, 644.47
RT

) (16)

Table 2. The size of DRX grain (ddrx) at the steady-state deformation stage (µm).

Temperature/Strain Rate 0.001 s−1 0.01 s−1 0.1 s−1 1 s−1

1080 ◦C 3.53 2.23 1.64 1.36
1110 ◦C 6.98 4.37 3.24 2.32
1140 ◦C 17.07 12.46 7.52 7.36
1170 ◦C 33.75 21.73 14.73 10.29

Figure 18 demonstrates the comparisons between the calculated/experimental ddrx.
The calculated AARE value is 2.5% and the R is 0.991. Meanwhile, the mean grain dimen-
sion is demonstrated as:

di = ddrxX + d0(1− X) (17)

where ddrx represents the size of DRX grain, d0 shows the initial grain size, and X represents
the DRX volume fraction. Similarly, ddrx is demonstrated as:

ddrx = 1.76× 1015 .
ε
−0.16 exp (

−393, 644.47
RT

) (18)
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Figure 18. Comparisons between the calculated and experimental ddrx.



Materials 2022, 15, 4030 16 of 22

3.4. Finite-Element Simulation of DRX Behavior and Grain-Dimension Evolution

In order to simulate DRX behavior and grain-dimension evolution in this HIPed
superalloy during hot compression, the proposed piecewise DRX kinetics equations and
grain-growth model are integrated into the DEFORM software through the development
of the subprogram. The program flowchart to simulate the DRX behavior and grain size
is illustrated in Figure 19. First of all, the hot-compression parameters and the initial
microstructure are inputted. Then, for a given time increment, εc is calculated. If ε < εc, the
present operation is continued. At the same time, the current strain rate state (

.
ε) is evaluated.

If ε > εc and
.
ε(t) > 0, DRX will occur and the Xdrx/grain-size dimension will be counted.

If Xdrx > 95%, full DRX is finished. Meanwhile, the current grain dimension is regarded as
the mean DRX grain dimension. If Xdrx < 95%, the mean grain dimension is calculated
according to the grain-growth model. Finally, when the deformation is finished, the Xdrx
and grain size are outputted. Figure 20 displays the hot-deformed finite-element geometric
model, which is composed of a billet and upper and lower dies. The three-dimensional
(3D) transmutable type is applied to the hot-compressed block, whereas the 3D-resolution
rigid body is used as a mold. During hot compression, the P/M superalloy workpiece and
dies are regarded as the variable object and immutable objects, respectively. The radius of
the workpiece is Φ 4 mm and the height is 12 mm. The simulated parameters are the same
as those of the present experiments. The moving velocity of the top die is converted from
the experimental strain rate. The shear friction is selected and the friction factor is 0.12. The
element number of the billet and dies are 30,000 and 8000, respectively.
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The evolution of the equivalent strain at diverse deformation parameters is demon-
strated in Figure 21. The distribution of equivalent strain almost changes symmetrically
along the compression axis and radial direction. Three typical deformation regions (large,
free, and difficult deformation) are observed. The center is a high-strain area, namely the
large deformation zone resulting from the triaxial constringent stress and small frictional
force, whereas the end faces that have contact with the dies are low-strain areas, i.e., the
difficult deformation regions. Compared with the equivalent strain in the central region,
the equivalent strain at the edge and end of the expansion site is smaller. In addition, the
uniformity of the strain distribution in the central region is improved with a reduced strain
rate or a raised temperature.
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The distribution of the predicted Xdrx at diverse deformation parameters is displayed
in Figure 22. There are obvious differences in the DRX degree in the different regions, which
is due to the non-uniformity deformation caused by the friction between the dies and billet.
The DRX degree is the highest in the large deformation zone, whereas the lowest is in the
difficult deformation region. The simulated Xdrx in the large deformation zone increases
with a reduced strain rate or a raised temperature. They are 80%, 97%, 85.9%, and 78.1% at
1110 ◦C/0.1 s−1, 1140 ◦C/0.1 s−1, 1110 ◦C/0.01 s−1, and 1110 ◦C/1 s−1, respectively. These
predicted values well agree with the test ones.
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Figure 23 exhibits the distribution of the simulated grain size under different de-
formation conditions. Obviously, the distribution of grain dimension is non-uniform at
disparate deformation parameters. The average grain dimension in the large deformation
zone gradually decreases when the strain rate is raised or the temperature is reduced.
The experimental average grain sizes in the large deformation zone are 4.21 µm, 7.83 µm,
6.24 µm, and 2.27 µm, respectively, at 1110 ◦C/0.1 s−1, 1140 ◦C/0.1 s−1, 1110 ◦C/0.01 s−1,

and 1110 ◦C/1 s−1, which coincide with the simulated results. The simulated Xdrx and
grain sizes in various deformation regions at 1110 ◦C/0.1 s−1 are quantitatively analyzed
and are displayed in Figure 24 and Table 3. In Figure 24a, the DRX degree in the large
deformation area is high while the average grain dimension is small. Also, the volume
fraction of DRX in the non-central position is limited (the points P2 and P3 in Figure 24a),
which is identical to the results from EBSD observation. Figure 24c,d) shows the varia-
tions of the simulated Xdrx and average grain size at different positions with deformation
time. The comparisons of the experimental/simulated Xdrx and average grain size at
1110 ◦C/0.1 s−1 are shown in Table 3. It can be found that the simulation results well
agree with the experimental ones. Thus, the results further indicate that the microstructure
evolution can be accurately predicted by the proposed piecewise DRX kinetics equations
and grain-growth model.
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Figure 23. The distribution of the simulated grain size at (a) 1110 ◦C/0.1 s−1; (b) 1140 ◦C/0.1 s−1;
(c) 1110 ◦C/0.01 s−1; and (d) 1110 ◦C/1 s−1.
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Table 3. The comparisons of the experimental/simulated Xdrx and average grain size at
1110 ◦C/0.1 s−1.

Tracked
Points

DRX Fraction (%) Tracked
Points

Average Grain Size (µm)

Experiment Simulation Experiment Simulation

P1 77.4 80 P4 4.21 4.45
P2 52.8 58 P5 5.19 6.02
P3 40.8 31 P6 6.44 6.84

4. Conclusions

The DRX features and grain-growth behavior for a novel P/M superalloy are sys-
tematically studied. The piecewise DRX kinetics equations and grain-growth model are
developed. The important conclusions are summarized:

1. The DRX behavior and grain features are sensitive to deformation parameters. The
raised temperature/true strain can increase the volume fraction of DRX and the mean
dimension of DRX grains. As the temperature is reduced or the true strain is raised, the
mean grain dimension declines. Increasing the strain rate reduces the DRX volume fraction



Materials 2022, 15, 4030 20 of 22

and mean grain size. Moreover, the main DRX mechanism of the novel P/M superalloy
is DDRX.

2. Piecewise DRX kinetics equations are proposed to predict DRX behavior in forming
processes. The correlation coefficient of them is 0.992 and the average absolute relative
error is 2.3%. Also, an accurate model is established to describe the grain-growth behavior
during hot deformation.

3. The piecewise DRX kinetics equations and the grain growth equation are embedded
into the DEFORM software using a secondary development method and the DRX features
and grain-growth behavior in hot-compression processes are simulated. The simulated
results show that the proposed piecewise DRX kinetics equations and grain-growth model
can accurately depict the microstructure evolution of this novel P/M superalloy during
hot deformation.
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