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Abstract. Dynamic scene modeling is a challenging problem in com-
puter vision. Many techniques have been developed in the past to address
such a problem but most of them focus on achieving accurate reconstruc-
tions in controlled environments, where the background and the lighting
are known and the cameras are fixed and calibrated. Recent approaches
have relaxed these requirements by applying these techniques to outdoor
scenarios. The problem however becomes even harder when the cam-
eras are allowed to move during the recording since no background color
model can be easily inferred.

In this paper we propose a new approach to model dynamic scenes cap-
tured in outdoor environments with moving cameras. A probabilistic
framework is proposed to deal with such a scenario and to provide a
volumetric reconstruction of all the dynamic elements of the scene.

The proposed algorithm was tested on a publicly available dataset filmed
outdoors with six moving cameras. A quantitative evaluation of the
method was also performed on synthetic data. The obtained results
demonstrated the effectiveness of the approach considering the complex-
ity of the problem.

1 Introduction

Passive modeling of dynamic scenes is a challenging problem in computer vision.
The aim is to recover a mathematical time-varying description of the scene using
only videos recorded by some cameras. A considerable number of approaches
have been developed in the past to address such a problem. Typically these
techniques exploit the use of silhouette [1–3], color/stereo [4–7], shading [8, 9]
and motion [10] extracted from the videos in order to infer the geometry of the
dynamic elements of the scene. In the case of silhouette based techniques, the
geometry of the dynamic objects is recovered using either deterministic [1, 11] or
probabilistic [3, 2] visual hull. Color information can be exploited by using either
multi-view stereo [6, 7] or narrow baseline stereo [4], or combining both together
as proposed in [5]. Silhouette and color information can also be combined to
improve the reconstruction results [12–14].

However, most of these works focus on controlled environments where the
background is known or can be estimated and the cameras are fixed and cali-
brated. Only few approaches have tried to deal with outdoor scenarios mainly
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Fig. 1. Results obtained using our approach to model a dynamic scene with two people:
one walking and the other juggling. (a) Volumetric reconstruction. (b) One frame of
the videos used for the reconstruction. (c) Reconstructed volume projected back to the
previous image. (d) Reconstruction rendered from another viewpoint.

resorting to some scene priors [15] or limiting the reconstruction quality at bill-
board level [16]. In particular, [15] performs on the assumption that a person is
the only one dynamic element in the scene.

Unlike the above approaches, in this paper, we propose a technique to achieve
full 3D reconstruction of the scene dynamics in outdoor uncontrolled environ-
ments filmed with moving cameras and without making any assumptions on the
shape or the motion of elements to be reconstructed. In a sense, our approach
can be considered similar, at least in principle, to a silhouette based approach.

Silhouette based approaches rely on the possibility of performing background
subtraction on the entire video sequence. This is an easy task in a controlled en-
vironment but becomes hard in the more generic case of an outdoor scenario.
In [2], for instance, the authors addressed such a scenario but assuming station-
ary cameras. The problem indeed, becomes even more challenging in the case
of moving cameras since a per-pixel color model for the background cannot be
recovered anymore. Some relevant works focusing on background subtraction
have been developed in the recent past to address this kind of situations. How-
ever, these techniques resort to some priors on both the background and the
foreground elements of the scene such as shape priors [17, 18], color priors [19,
16] and motion priors [20]. The first class assumes that the foreground objects
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can only have specific shapes, for instance, human shapes. The second class as-
sumes that the color models of the foreground and the background objects are
known a priori. The last class instead makes assumptions on the type of motion
of the dynamic elements. As an example, [20] assumes that the elements that
are moving rigidly, with respect to camera, are background while the others are
foreground.

In this paper we propose a technique to infer the geometry of the dynamic
elements of a scene by exploiting the structural information of the static parts of
the scene, which is inferred in a preprocessing stage, and the color information
from the acquired video sequences.

To avoid building a per-pixel background color model from temporal video
data for segmentation, we instead use the precomputed geometry of the static
parts of the scene to transfer the current background appearance across multi-
ple views. Given some images captured at the same time instant, our approach
is based on projecting each image onto the other images and exploiting their
differences. Something similar was partially exploited by [21] to achieve a deter-
ministic and fast background subtraction of a person using three static cameras.
These projections however generate some false detections which in our text will
be referred as the ghost of the foreground (occlusion shadows in their paper).
While in [21], the method simply eliminates these artifacts by intersecting all
the reprojections, we instead exploit this information as well in a probabilistic
framework. As described later in the paper, the ghost may help recover in some
situations where no information can be obtained from the actual location of the
dynamic object.

Since only the images captured at the same time instant are used to model the
current scene we do not suffer from some issues that are common in background
subtraction techniques such as changes in illumination or shadows.

Compared to the approach proposed in [16], where the authors suggest to
retrieve the background color by exploring the temporal domain of each video
independently, our approach exploits the spatial domain, retrieving this informa-
tion from the other cameras at the same time instant. Moreover, in this approach
we do not need an initial color model for the foreground which had to be specified
by a user in [16].

This paper is organized in three parts. Section 2 describes the proposed
reconstruction algorithm. Section 3 shows the experimental results. In the end,
Section 4 draws the conclusions.

2 Reconstruction Procedure

The captured videos are first pre-processed in order to retrieve information about
the cameras and the static elements of the scene. Subsequently, the geometries of
all the dynamic elements of the scene are reconstructed. This section describes
how the pre-processing stage is performed while the next section covers the
reconstruction of the dynamic elements. For the sake of simplicity we refer to
the static part of the scene as background and the dynamic part as foreground.
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Structure-from-Motion (SfM) [22, 23] and multi-view stereo [6] can be applied
to some images of the scene, captured in absence of any dynamic elements, in
order to recover the background geometry. In our implementation we used the
pipeline provided by Zach et al. [24] which generates a continuous mesh model
for the background.

Each video camera is then calibrated both spatially and photometrically,
and the video streams synchronized. To do so, we follow the approach described
in [16]. More specifically, intrinsic parameters are recovered using [25] and they
are assumed to be constant throughout the recording. Subsequently the pose,
i.e., the extrinsic parameters, for each camera at each time instant, are computed
with respect to the background geometry by matching the SIFT descriptors [26]
extracted from the current frame and the SIFT descriptors previously extracted
during the SfM procedure. These matches generate correspondences between 2D
points in the current frame and 3D points in the background geometry. The pose
of that camera at that specific time is recovered by applying the three points
algorithm [27]. Temporal synchronization of the videos stream is performed using
the corresponding audio streams as in [15].

Finally, the video streams are calibrated photometrically with respect to
each other using the method proposed in [28]. More specifically a color transfer
function mapping the color space of one camera into the color space of another
is recovered for each pair of cameras. This is necessary to account for different
settings in the cameras like different exposure time, gain and white balancing.

Our formulation is designed to estimate the 3D reconstruction of a single
frame. For sake of simplicity, from here on, the analysis will focus only on a
specific time instant t and the text will refer to images captured by the cameras
as the images captured at that specific time t.

Let Ii denote the image captured by camera i ∈ [1, .., n], and let πi be the
projection function mapping 3D points in the world coordinate system to 2D
points in the image coordinate system of camera i according to both the intrinsic
and the extrinsic parameters recovered during the previous stage.

Since both the background geometry and the projection function πi are
known, the depth map of the background geometry seen by camera i can be
computed. Let’s denote this depth map with Zi. The value stored in each of its
pixels represents the depth of the closest 3D point of the background geometry
that projects to that pixel using πi. In practice, Zi can be easily computed in
GPU by rendering the background geometry from the point of view of camera i
and by extracting the resulting Z-buffer.

Given two cameras i and j, let Rij denote the image obtained by projecting
the image Ij into camera i, i.e., by rendering the background geometry from the
point of view of camera i using the color information of camera j and taking into
account the color transfer function between i and j. More formally, for each pixel
p in Rij , we know that π−1

i ([p, Zp
i ]T ) represents the coordinates of the closest 3D

point in the background geometry projecting in p. Note that π−1

i is the inverse
of the projection function πi where the depth is assumed to be known and equal
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Fig. 2. (Top row) Source images acquired respectively by camera 1, 2 and 3. (Middle
row) Images Rij computed by projecting the previous images into camera 2 (black
pixels indicate missing color information, i.e., α = 0). (Bottom row) Difference images
Dij . (Best viewed in color)

to Zp
i . Therefore, the coordinates of pixel p in the image j are equal to

πj(π
−1

i ([p, Zp
i ]T )) (1)

In the end, the color of the pixel p in Rij is defined as follows

Rp
ij = Ij(πj(π

−1

i ([p, Zp
i ]T ))) (2)

Let us note that no color information can be retrieved for pixels of Rij that map
outside the field of view of camera j and also for those which have no depth
information in Zi, e.g., for those projecting onto regions not modeled by the
background geometry. We keep track of such pixels by defining a binary mask
αij such that, αp

ij = 0 indicates the absence of color information at pixel p in
Rij . The procedure of computing Rij is performed in GPU using shaders.

Figure 2 shows some example images Rij obtained by projecting the images
captured by three different cameras, namely #1, #2 and #3, into the camera
#2. The background geometry, in this case, models both the building and the
street but it does not include the juggler. The reader can notice that, when the
background geometry matches the current scene geometry the captured image
Ii and the image Rij look alike in all the pixels with αp

ij equal to one. On the
contrary, if the current scene geometry includes an additional object which was
not present in the background geometry, this gets projected into the background
points behind it. We refer to this reprojection as the ghost of the foreground
object in the image Rij . Figure 3 explains this concept visually. In Figure 2, the
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Fig. 3. Image formation process for a reprojection image Rij . Since the scene element
γ is not a part of the background geometry, it generates a ghost image on camera i

which is far away from the region it should ideally project to if it were a part of the
background geometry.

ghost of the juggler can be observed in both images R21 and R23 while it’s not
visible in R22 since the image is projected on itself.

By visually comparing Rij and Ii, one can observe differences in the pixels
belonging to foreground elements as well as in the pixels belonging to their
ghosts. Let’s call Dij the image obtained by a per-pixel comparison between
image Ii and image Rij . In order to make our comparison method robust to errors
that may be present in either the calibration or in the background geometry, the
similarity measure used to compare these two images takes into account for local
affine transformations in the image space. We propose to compute Dij as

Dp
ij = min

q∈Wp

(
∥

∥Ip
i − Rq

ij

∥

∥) (3)

where Wp is a window around p and ‖·‖ is the L1 norm in the RGB color
space. This similarity measure proved to be more robust but, unfortunately, some
details around the ghost borders are lost. This can be seen in Figure 4(a) where
the ghost of the foreground object gets shrunk by half the window size used. In
order to avoid these artifacts, the same approach is repeated by comparing, this
time, the pixel p in Rij to a corresponding window Wp in Ii. A result obtained
by using this second approach is shown in Figure 4(b) where, this time instead,
the silhouette of the foreground object gets shrunk by half the window size. In
the end we chose to use the following metric which combines the advantages of
the both the previous metrics:

Dp
ij = max( min

q∈Wp

(
∥

∥Ip
i − Rq

ij

∥

∥), min
q∈Wp

(
∥

∥Rp
ij − Iq

i

∥

∥)) (4)

A result obtained by applying this new metric can be seen in Figure 4(c).
Given the input images Ii, all the possible images Dij for each i > j are

computed. This leads to a set of (n2 − n)/2 difference images Dij that we will
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(a) (b) (c)

Fig. 4. Results obtained by applying different color similarity measures to compare
the two images Ij and Rij in order to build the image Dij . (a) Result obtained by
applying the Equation 3. (b) Result obtained by applying the Equation 3 with Ij and
Rij swapped. (c) Result obtained by applying the Equation 4.

refer to as D. In the next paragraph the problem of recovering the 3D geometry
of the foreground object is formulated in a probabilistic way using as observation
the computed set of images D.

The scene to be reconstructed is discretized as a voxel grid. Let V be the
random vector representing the occupancy state of all the voxels inside this grid
where Vk = 1 indicates the voxel k is full and empty otherwise. The aim of our
algorithm is to find a labeling L∗ for V which maximizes the posterior probability
P (V = L|D), i.e.,

L∗ = arg max
L

P (V = L|D) (5)

By the Bayes’ rule, this is equivalent to

L∗ = arg max
L

(log(P (D|V = L)) + log(P (V = L))) (6)

We first describe how the probability P (D|V = L) is computed for a given
labeling of the voxel grid, while P (V = L) is described later.

Let φk
i denote the footprint of the voxel k in camera i, i.e., the projection of

all the 3D points belonging to k onto the image plane of camera i. Furthermore,
denote with χk

ij the set of the ghost pixels of voxel k in the image Rij . Since these
pixels are the ones corresponding to the background geometry points occluded

by the foreground object in camera j, i.e. π−1

j ([φk
j , Z

φk
j

j ]T ), χk
ij can be computed

as follows

χk
ij = πi(π

−1

j ([φk
j , Z

φk
j

j ]T )) (7)

i.e., by projecting those background points into camera i (See Figure 3).
We make three conditional independence assumptions for computing the

probability P (D|V = L): first, the state of the voxels are assumed to be con-
ditionally independent; second, the image formation process is assumed to be
independent for the all images and third, the color of a pixel in an image is inde-
pendent from the others. Using these assumptions, the probability P (D|V = L)
can be expressed as

P (D|V = L) =
∏

k

P (D|Vk = Lk) (8)
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where
P (D|Vk) =

∏

i,j,p

P (Dp
ij |Vk) ∀p ∈ φk

i ∪ χk
ij (9)

Let us now introduce another random variable Cij representing the consensus
between the pixels in image Ii and the ones in image Rij . Cp

ij = 1 indicates that
the color information at pixel p in Ii agrees with the color information at p in
Rij . Clearly, this variable strongly depends on the image Dij .

Specifically, P (Dp
ij |Vk) is modeled using a formulation similar to the one

proposed by Franco and Boyer in [3], i.e.,

P (Dp
ij |Vk) = P (Dp

ij |C
p
ij = 1)P (Cp

ij = 1|Vk) +

P (Dp
ij |C

p
ij = 0)P (Cp

ij = 0|Vk) (10)

While in their work they used background images to determine P (Dp
ij |C

p
ij) we

assume the following: in case of consensus (Cp
ij = 1) the probability of Dp

ij being
high is low and vice versa. Therefore P (Dp

ij |C
p
ij = 1) is chosen to be a Gaussian

distribution truncated for values smaller than 0. Concerning the pixels with no
color information, i.e., the ones with αp

ij = 0, we assume this probability to be
uniform and therefore,

P (Dp
ij |C

p
ij = 1) =

{

TG(Dp
ij) αp

ij = 1

U αp
ij = 0

(11)

where TG(d) is the truncated Gaussian function and U the uniform distribution.
On the contrary, when there is no consensus (Cp

ij = 0) no information can
be stated for Dp

ij and therefore P (Dp
ij |C

p
ij = 0) is set to uniform distribution.

P (Cp
ij = 1|Vk) and P (Cp

ij = 0|Vk) are defined in a similar way as in [3]
but while in their formulation, the state of the voxel k is influenced only by the
background state of the pixels in φk

i , in our formulation its state is also influenced
by the pixels in χk

ij . While this property adds additional dependence between
the voxels, it provides more information on the state of each voxel. In fact, we
not only rely on the consensus observed in the voxel’s footprint φk

i but also on
the consensus observed in χk

ij .
This allows us to recover from two kinds of situations, namely: when the

colors of the foreground object are similar to the colors of the actual background
points behind it, and when the information corresponding to the foreground
object in the image Rij is missing. However, our approach will not help if the
colors of the actual background points in χk

ij are also similar to the colors of the
foreground element.

Concerning P (V = L) we assume dependency only between neighboring vox-
els. In this way, Equation 6 can be entirely solved using graph cuts [29–31]. More
precisely, the pairwise potential log(P (Va = La, Vb = Lb)) between two neigh-
boring voxels a and b is defined considering that if these voxels project to pixels
lying on edges of the original images Ii there should be a low cost for cutting
across these voxels and viceversa. To account for this, in our implementation,
we compute the projection of the centers of each pair of neighboring voxels a
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and b on each image Ii. Subsequently we check all the pixels on the line con-
necting these two projections looking for an edge. If an edge is not found then
the pairwise potential is increased.

To account for temporal continuity in the final mesh the voxel state prior
takes into account its labeling computed in the previous frame according to
P (Va = 1) = 0.3 + ξ(L∗,t−1

a ) where ξ defines the temporal smoothness. Once
graph cuts provides a grid labeling L∗ as a solution for Equation 6, marching
cubes [32] is applied to obtain a continuous mesh of the dynamic object.

3 Results

The algorithm was tested on both real and synthetic data. For the real data test,
we used a publicly available dataset provided by [16] where a juggler was filmed
outdoors by six people holding cameras while some other people were walking
by. Video streams have a resolution of 960 × 544 pixels at 25 fps. Background
geometry was obtained using SfM+MVS on the available images of the dataset
while the cameras were calibrated both photometrically and spatially using the
techniques described in Section 2. About 300 frames of this sequence were pro-
cessed by our method using a voxel grid of resolution 140 × 140 × 140 covering
the entire extent of the scene where the action took place.

Figures 1(a,d) show one reconstructed frame of this sequence where two per-
sons are present in the scene. Figure 1(c) shows the reconstructed volume pro-
jected onto one of the cameras superimposed with the corresponding captured
image. As the reader may notice, our system is also able to recover the shape
of the balls being juggled by the performer. This however happens only in half
of the reconstructed frames since motion blur is explicitly present in such parts
of the image. Some more results are shown in Figures 5. Figures 5(e) and 5(f)
show two situations where the algorithm does not work properly. In these two
cases, the person walking behind is not visible in one of the views and is also
occluded completely by the juggler in some of the other views. This leads to a
noisy reconstruction.

This sequence was processed on a 2.93GHz Intel i7 computer with a NVIDIA
GTX 285. For the chosen grid resolution, each frame took around 45 seconds
to process. The current implementation however does not have any major opti-
mizations, in fact only some parts of the code were implemented on GPU.

The results obtained for the juggler sequence were also compared with the
ones obtained by applying standard background subtraction on the videos and
then applying deterministic visual hull. The texture of the background geometry
was estimated from the images used during the preprocessing stage. However,
even small changes in the illumination or shadows in the scene did not allow us to
infer accurate silhouettes for the performer. This is not an issue in our approach
since only images taken at the same time instant are used for comparison.

The results were also compared with two state of the art techniques namely [20]
and [16] but they were not convincing from a reconstruction point of view. In
fact, [16] focuses on segmentation rather than reconstruction since that would
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. (a-d) Results obtained using our approach. (e) and (f) show two cases where the
algorithm does not behave properly due to strong occlusions between the two persons.
(g,h,i) Reconstruction rendered from different viewpoints for the results in the top row.
(Best viewed in color)

be too sensitive to segmentation errors. A user interaction is also needed to label
both foreground and background in some video frames. [20] assumes that the
foreground is moving relative to the background, i.e., it is not moving rigidly with
respect to the camera. However, this approach may fail in detecting objects or
body parts moving slowly. This occurred frequently in the juggler sequence since,
while the performer was juggling fast there was not much movement around his
legs, and therefore they were often misclassified as background in the output
obtained using [20]. Compared to the manually segmented silhouettes of the
foreground objects [20] misclassified 25% of the pixels on an average while by
projecting the volume computed with our method only 1% of the pixels were
misclassified.

Some tests were performed on synthetic data to provide a quantitative eval-
uation of the algorithm. Using a commercial software, we rendered a scene with
two balls bouncing in the center of a room filmed by 7 cameras moving in cir-
cle at a distance of 3m from the center of the action. The field of view of the
cameras was 42◦ and the resolution of the video streams was 800× 600. At first,
the dataset reveals to be very simple and the algorithm performed an almost
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(a) (b)

(c) (d)

(e) (f) (g) (h)

Fig. 6. (a,b) Two images from the synthetic sequence rendered from different cameras
at the same time. The gray ball is barely distinguishable in these images. (c,d) Re-
constructed volume projected back to the corresponding images in the above row. (e)
Reconstructed volume. (f) Ground truth. (g,h) Two images Dij computed during the
shape estimation (the colors are inverted for visibility). (Best viewed in color)

perfect reconstruction of the scene dynamics, obviously up to the chosen grid
resolution. Therefore we rendered the dataset again introducing some ambigui-
ties, more precisely, we textured the walls of the room with the same texture as
one of the balls. Two frames of this new sequence are shown in Figures 6(a,b).
As the reader can notice, even for a human it is difficult to visually distinguish
between the gray ball and the gray wall.

A color based segmentation/visual hull technique will, in this case, either
consider the entire wall as foreground or completely background, in both cases
resulting in a bad reconstruction.

On the contrary, our reprojection based approach together with the robust-
ness of the probabilistic framework was able to recover a reasonable reconstruc-
tion of the scene, as can be seen in Figure 6(e). For a visual comparison, the
ground truth is shown in Figure 6(f).

The main reason why such a reconstruction can be achieved can be explained
by looking at one of the Dij images shown in Figures 6(g,h). While for a color
based approach it is not feasible to distinguish between foreground and back-
ground in the case of the gray ball, if the texture of the background is provided
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by another camera some discrepancies between this texture and the observed
image can be measured. A similar result can also be obtained if a per pixel color
model of the background is available for each camera. However, since the cam-
eras are moving this model cannot be easily retrieved. Figures 6(c,d) show the
reconstructed volume projected back to the respective original images.

We ran our algorithm on the full sequence consisting of 15 frames and the
computed reconstructions were compared with the ground truth. At each frame,
the error between the two models was evaluated numerically by measuring the
average euclidean distance between the two surfaces. The average error for the
whole sequence was 2cm, which corresponds to the used voxel size. The standard
deviation for this error was 1.8cm. Note that, by definition the metric that we
are using does not account for the sparse blobs in the reconstruction.

This error increases if we introduce inaccuracies in the background geometry
and in the camera calibration. We ran the test again after adding Gaussian noise
to the camera position with a standard deviation of 1.6cm and a uniformly dis-
tributed noise of ±8cm to the background geometry. The average reconstruction
error increased to 3.6cm, where the majority of the error was induced from the
errors in calibration and not from errors in the geometry.

4 Conclusions

In this paper we proposed a new technique to model dynamic scenes in outdoor
uncontrolled environments filmed with freely moving cameras. A probabilistic
framework is proposed to deal with such a scenario and to provide a volumetric
reconstruction of all the dynamic elements. The method exploits the structural
information of the static parts of the scene, inferred in a preprocessing stage,
to transfer the current background appearance across multiple cameras. Hence,
it avoids the need to build a per-pixel background color model from temporal
video data for segmentation, which is very challenging for scenes recorded with
moving cameras.

Tests on synthetic data revealed a reconstruction accuracy of 2cm for footage
filmed by 0.5MPixels cameras placed at a distance of 3m from the objects to be
reconstructed. This error is relatively low considering the challenges present in
the used dataset such as multiple occlusions and similar background/foreground
colors (see Figure 6). Our approach reveals to be robust enough to deal with such
ambiguities and also with calibration and geometry inaccuracies to an extent.

Experiments on real data proved the ability of our approach to recover the
geometries of multiple dynamic objects filmed outdoors with freely moving cam-
eras (see Figure 1). The reconstruction accuracy is not comparable with the one
that other techniques can obtain for indoor controlled environments with static
cameras. However, it must be noted that the scenario we used for our tests is
much more challenging.

There are three main limitations of our approach. First, the algorithm de-
pends on the possibility of estimating the color transfer function between the
cameras which, in our case, was performed using a rather simple technique [28].
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This works well in the tested sequences but, in the future, for a more generic
scenario we should resort to a more complex calibration technique, like [33].

The second limitation is the resolution of the voxel grid which cannot be
increased indefinitely without considering calibration and background geometry
errors. This limitation however, does not prevent us from recovering the small
balls being juggled by the performer in half of the frames of the real data se-
quence.

The method inevitably inherits the limitations of the visual hull techniques
on the class of reconstructible objects, i.e., it is not able to recover concave parts
of the object if these concavities are not visible in at least one camera.

As a future extension, we plan to consider inside the proposed probabilistic
framework other kinds of depth cues, like multiview stereo and narrow baseline
stereo. A synergical fusion of these information will help overcome the last two
limitations as well as increase the reconstruction accuracy.
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