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Abstract. In addition to the emission of gravitational waves (GWs) the coalescence

and merger of two neutron stars will produce a variety of electromagnetic (EM) signals.

In this work we combine a large set of numerical relativity simulations performed by

different groups and we present fits for the mass, kinetic energy, and the velocities

of the dynamical ejected material. Additionally, we comment on the geometry and

composition of the ejecta and discuss the influence of the stars’ individual rotation.

The derived fits can be used to approximate the luminosity and lightcurve of the

kilonovae (macronovae) and to estimate the main properties of the radio flares. This

correlation between the binary parameters and the EM signals allows in case of a GW

detection to approximate possible EM counterparts when first estimates of the masses

are available. After a possible kilonovae observation our results could also be used

to restrict the region of the parameter space which has to be covered by numerical

relativity simulations.

PACS numbers: 04.25.D-, 04.30.Db, 95.30.Sf, 95.30.Lz, 97.60.Jd
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1. Introduction

The first detections of coalescing binary black hole (BBH) systems [1, 2] inaugurated

the field of gravitational wave (GW) astronomy. Beside BBHs, binary neutron stars

(BNS) are one of the expected sources for future GW detections [3, 4]. In contrast to

BBH mergers, it is expected that BNS mergers produce electromagnetic (EM) signals,

as kilonovae (also called macronovae), radio flares or short gamma-ray bursts (SGRBs).

While SGRBs are powered by collimated highly relativistic outflows, e.g., [5, 6, 7],

kilonovae are transient emissions in the optical or near-infrared band, e.g., [8, 9, 10],

produced by the radioactive decay of r-process nuclei in the neutron-rich material ejected

during the merger. Additionally, mildly and sub- relativistic outflows can generate

synchrotron radiation (radio flares) even years after the merger of the two neutron

stars, see e.g., [11].

One possibility to study BNS mergers are numerical relativity (NR) simulations.

Those simulations allow to describe the system even beyond the merger of the two stars

solving Einsteins field equations. Over the last years more microphysical descriptions

have been included, e.g., realistic equation of states (EOSs), neutrino transport,

magnetic fields. It also has become a common approach to extract information from

NR simulations about the unbound material ejected from the system and use these

information to estimate possible EM counterparts. However, the computation of

ejecta and lightcurves is still challenging. While current state-of-the art numerical

simulations cover the last 10 − 20 orbits before and up to ∼ 50ms after the merger, it

is computationally too expensive to study the dynamical ejected material longer than a

fraction of a second. But, it is possible to use relativistic simulations as initial conditions

and either assume free expansion of the ejecta material, e.g., [12], evolution on a fixed

spacetime background, e.g., [13, 14], or use radiative transfer Monte-Carlo simulations,

e.g., [15, 16]. Our work is complementary to most previous studies, we will use a large set

of numerical relativity data obtained from different groups to derive phenomenological

fits relating the binary parameters to the ejecta properties. Knowing the basic properties

of the ejecta allows to give estimates on the expected kilonovae and radio flares.

In general, the time between a GW detection and the observation of the

corresponding kilonovae (about a few days) is not long enough to perform full NR

simulations which have typical run times of weeks to months. Therefore, NR simulations

can only be used for comparison once GW and EM observations finish. The advantage of

the phenomenological model proposed in this article is that even before the EM follow up

observations start first estimates of the kilonovae properties can be given. Furthermore,

after the kilonovae has been detected, the model can be used to reduce the part of the

BNS parameter space which has to be covered by full NR simulations.
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Figure 1. Mass vs. radius relations (left) and mass vs. compactness relations (right)

for all EOSs used in this work. Tabulated EOSs are marked with dashed lines, piecewise

polytropes with solid lines. The markers refer to configurations employed in this work.

2. Employed Dataset

Over the last years numerical relativity (NR) has made a tremendous progress and a

large number of groups have studied the merger process of BNSs, see e.g., [17, 18] and

references therein. Despite the computation of the emitted GW signal, the investigation

of ejected material and EM counterparts went into the focus of research.

Combining published work from different groups enables us to obtain an NR catalog

to derive fitting formulas for important ejecta quantities. In this article we use results

from [19, 20, 21, 22, 23, 24], where the mass, kinetic energy, and velocity of the ejecta are

reported. The data set combines results based on grid structured codes [19, 21, 22, 23, 24]

with results employing a SPH code [20] under conformal flatness approximation and

it includes simplifies EOSs, tabulated EOS as well as simulations with and without

neutrino treatment. In total 172 simulations have been considered.

Although simulation techniques are continuously improved and higher accuracy is

achieved, the characterization of ejecta is still challenging and results have to be assigned

with large uncertainties. Considering the accuracy of the NR data points, quantities as

the mass and kinetic energy have uncertainties which range between ∼ 10% up to even

∼ 100%, see e.g., appendix A of [19] and table III of [24], where multiple resolutions

have been employed. In general one finds that the fractional uncertainty is larger for

lower massive ejecta.

In addition to the uncertainty of the results employing the same numerical code

also differences between different implementations/codes exist. For some cases those

discrepancies are quite large (up to a factor of ∼ 5 in extreme cases) and they also



Dynamical Ejecta and Electromagnetic Counterparts of BNS mergers 4

depend on the implementation of thermal effects and if neutrino cooling or transport is

included in the simulations. Those differences can produce systematic uncertainties. We

try to minimize selection effects by including a large number of simulations produced by

a variety of numerical codes. In the future crosschecks among different codes employing

the same physical systems will be needed for a better estimate of systematic errors.

In our work, we restrict our analysis to dynamical ejecta. Ejecta produced after

BH formation are not included, but will contribute to the total amount of ejecta and

to the corresponding EM signals, see e.g., [25]. Thus, our results can be seen as lower

bounds for the luminosity of EM observables. Furthermore, while some of our data

points were computed by NR simulations including neutrinos and tabulated EOSs, the

effect of magnetic fields is not studied, although magnetic fields will influence the binary

dynamics shortly around and after merger and lead to mass ejection by magnetic winds.

The complete dataset is reported in table 1, where a simulation number is assigned

to every data point (first column). In total we consider 23 different EOSs (shown

in figure 1). Most EOSs are represented by a piecewise polytrope fitted to a zero-

temperature EOS (straight lines), see e.g., [26]. An additional thermal contribution to

the pressure according to pth = ρǫ(Γth−1) is added for the evolution, where ρ is the rest-

mass density and ǫ the internal energy. The parameter Γth is also reported in table 1.

Some simulations use full tabulated EOSs (dashed lines), which we denote as full in

table 1. Simulations with tabulated EOSs and neutrino treatment are denoted with

fullN. In addition to the parameters describing the binary, we report the mass of the

ejected material Mej, the kinetic energy Tej, the average velocity inside the orbital plane

vρ, the average velocity perpendicular to the orbital plane vz, and the total velocity vej.

Table 1: NR data used in this work. Columns refer to:

The data ID, cf. e.g., figure 2, mass of the first star M1,

mass of the second star M2, Γth modeling thermal effects for

piecewise polytropic EOS, ejecta mass Mej, kinetic energy

of the ejecta Tej, average velocity inside the orbital plane

vρ, average velocity perpendicular to the orbital plane vz,

total average ejecta velocity vej. In cases where vρ and vz are

given, we estimate the total ejecta velocity as vej =
√

v2ρ + v2z .

Note that in [23] the ejecta velocity was estimated based on

Tej = Mejv
2
ej/2, consequently we use this relation to compute

the kinetic energy not stated in [23].

# Ref EOS M1 M2 Γth Mej Tej vρ vz vej
[M⊙] [M⊙] [10−3M⊙] [1050erg] [c] [c] [c]

1 ALF2 [24] 1 1.75 1.75 36 12.69 0.18 0.03 0.18
2 ALF2 [24] 1.167 1.75 1.75 25 10.73 0.19 0.06 0.2
3 ALF2 [24] 1.1 1.65 1.75 24 7.5 0.17 0.07 0.18
4 ALF2 [24] 1 1.5 1.75 21 4.8 0.15 0.07 0.17
5 ALF2 [24] 1.222 1.527 1.75 7.5 3.93 0.17 0.12 0.21
6 ALF2 [19] 1.2 1.5 1.8 5.5 3 0.21 0.1 0.23
7 ALF2 [19] 1.25 1.45 1.8 3 1.5 0.2 0.1 0.22
8 ALF2 [19] 1.3 1.4 1.8 1.5 0.8 0.16 0.11 0.19
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9 ALF2 [19] 1.4 1.4 1.8 2.5 1.5 0.21 0.13 0.25
10 ALF2 [24] 1.375 1.375 1.75 3.4 1.36 0.17 0.1 0.2
11 ALF2 [19] 1.35 1.35 1.8 2.5 1.5 0.22 0.12 0.25
12 ALF2 [19] 1.3 1.3 1.8 2 1 0.19 0.1 0.21
13 APR4 [19] 1.2 1.5 2 7.5 5.5 0.24 0.12 0.27
14 APR4 [19] 1.2 1.5 1.8 8 5.5 0.23 0.11 0.25
15 APR4 [19] 1.2 1.5 1.6 9 5 0.2 0.1 0.22
16 APR4 [19] 1.3 1.6 1.8 2 1.5 0.24 0.08 0.25
17 APR4 [19] 1.2 1.4 1.8 3 2 0.21 0.12 0.24
18 APR4 [19] 1.25 1.45 1.8 7 4.5 0.22 0.11 0.25
19 APR4 [19] 1.3 1.5 1.8 12 8.5 0.23 0.12 0.26
20 APR4 [19] 1.3 1.4 1.8 8 5 0.19 0.12 0.22
21 APR4 [19] 1.25 1.35 1.8 5 3 0.18 0.1 0.21
22 APR4 [19] 1.4 1.5 1.8 0.6 0.9 0.35 0.12 0.37
23 APR4 [19] 1.45 1.45 1.8 0.1 0.1 0.29 0.13 0.32
24 APR4 [19] 1.4 1.4 1.8 14 10 0.22 0.15 0.27
25 APR4 [19] 1.35 1.35 2 5 3 0.19 0.13 0.23
26 APR4 [19] 1.35 1.35 1.8 7 4 0.19 0.12 0.22
27 APR4 [19] 1.35 1.35 1.6 11 6 0.19 0.13 0.23
28 APR4 [19] 1.3 1.3 1.8 2 1 0.19 0.1 0.21
29 H4 [24] 1 1.75 1.75 40 12.51 0.17 0.02 0.17
30 H4 [24] 1.167 1.75 1.75 14 4.65 0.18 0.05 0.19
31 H4 [24] 1.1 1.65 1.75 17 4.83 0.17 0.04 0.17
32 H4 [24] 1 1.5 1.75 27 8.04 0.17 0.03 0.17
33 H4 [24] 1.222 1.527 1.75 6.6 3.04 0.18 0.11 0.21
34 H4 [19] 1.2 1.5 2 4 2 0.21 0.09 0.23
35 H4 [19] 1.2 1.5 1.8 3.5 2 0.21 0.09 0.23
36 H4 [19] 1.2 1.5 1.6 4.5 2 0.19 0.1 0.21
37 H4 [19] 1.2 1.4 1.8 2.5 1 0.19 0.1 0.21
38 H4 [19] 1.25 1.45 1.8 2 1.5 0.19 0.1 0.21
39 H4 [19] 1.3 1.5 1.8 3 2 0.19 0.1 0.21
40 H4 [19] 1.3 1.4 1.8 0.7 0.4 0.18 0.1 0.21
41 H4 [19] 1.25 1.35 1.8 0.6 0.3 0.18 0.1 0.21
42 H4 [19] 1.4 1.4 1.8 0.3 0.2 0.17 0.13 0.21
43 H4 [24] 1.375 1.375 1.75 3.4 1.59 0.19 0.1 0.21
44 H4 [19] 1.35 1.35 2 0.4 0.2 0.2 0.1 0.22
45 H4 [19] 1.35 1.35 1.8 0.5 0.2 0.19 0.11 0.22
46 H4 [19] 1.35 1.35 1.6 0.7 0.4 0.21 0.11 0.24
47 H4 [19] 1.3 1.3 1.8 0.3 0.1 0.16 0.1 0.19
48 MS1 [19] 1.2 1.5 1.8 3.5 1.5 0.19 0.1 0.21
49 MS1 [19] 1.25 1.45 1.8 1.5 0.8 0.19 0.11 0.22
50 MS1 [19] 1.3 1.4 1.8 0.6 0.2 0.17 0.09 0.19
51 MS1 [19] 1.4 1.4 1.8 0.6 0.2 0.13 0.09 0.16
52 MS1 [19] 1.35 1.35 1.8 1.5 0.6 0.14 0.08 0.16
53 MS1 [19] 1.3 1.3 1.8 1.5 0.5 0.15 0.08 0.17
54 MS1b [24] 0.944 1.944 1.75 65 21.45 0.18 0.02 0.18
55 MS1b [24] 1 1.75 1.75 49 15.19 0.17 0.03 0.17
56 MS1b [24] 1.167 1.75 1.75 24 7.69 0.18 0.05 0.19
57 MS1b [24] 1.1 1.65 1.75 26 7.33 0.17 0.04 0.17
58 MS1b [24] 1 1.5 1.75 32 7.87 0.16 0.03 0.16
59 MS1b [24] 1.222 1.527 1.75 4.8 1.64 0.15 0.11 0.19
60 MS1b [24] 1.375 1.375 1.75 2.3 0.39 0.13 0.06 0.14
61 SLy [24] 1 1.75 1.75 24 8.94 0.19 0.03 0.19
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62 SLy [24] 1.167 1.75 1.75 6.5 5.54 0.25 0.11 0.27
63 SLy [24] 1.1 1.65 1.75 16 7.69 0.19 0.11 0.22
64 SLy [24] 1 1.5 1.75 18 9.12 0.19 0.12 0.22
65 SLy [24] 1.222 1.527 1.75 18 8.4 0.16 0.11 0.19
66 SLy [24] 1.375 1.375 1.75 16 4.83 0.17 0.1 0.2
67 ALF2 [21] 1.25 1.45 1.75 3.9 0.8 - - 0.15
68 ALF2 [20] 1.35 1.35 2 3.8 3.36 - - 0.28
69 ALF2 [21] 1.35 1.35 1.75 3.5 0.7 - - 0.15
70 ALF2 [20] 1.35 1.35 1.5 4.49 3.8 - - 0.27
71 ALF4 [20] 1.35 1.35 2 5.7 6.07 - - 0.3
72 ALF4 [20] 1.35 1.35 1.5 7.4 7.65 - - 0.29
73 APR [20] 1.35 1.35 2 5.96 6.37 - - 0.31
74 APR [20] 1.35 1.35 1.5 7.38 7.9 - - 0.3
75 APR3 [20] 1.35 1.35 2 4.65 4.69 - - 0.3
76 APR3 [20] 1.35 1.35 1.5 6.15 5.5 - - 0.27
77 DD2 [20] 1.2 1.8 full 17.08 6.72 - - 0.17
78 DD2 [20] 1.35 2 full 6.41 9.64 - - 0.31
79 DD2 [20] 1.35 1.8 full 14.85 9.48 - - 0.21
80 DD2 [20] 1.2 1.6 full 10.9 6.39 - - 0.2
81 DD2 [22] 1.18 1.54 fullN 1.3 0.76 - - 0.3
82 DD2 [20] 1.2 1.5 full 8.79 4.97 - - 0.2
83 DD2 [20] 1.5 1.8 full 18.84 15.52 - - 0.25
84 DD2 [22] 1.25 1.47 fullN 0.42 0.29 - - 0.3
85 DD2 [23] 1.25 1.45 fullN 5 1.61 - - 0.19
86 DD2 [20] 1.2 1.35 full 3.17 2.06 - - 0.2
87 DD2 [20] 1.35 1.5 full 3.57 3.13 - - 0.25
88 DD2 [23] 1.3 1.4 fullN 3 0.87 - - 0.18
89 DD2 [20] 2 2 full 0.25 0.25 - - 0.25
90 DD2 [20] 1.8 1.8 full 1.37 1.63 - - 0.26
91 DD2 [20] 1.6 1.6 full 7.8 7.4 - - 0.27
92 DD2 [20] 1.5 1.5 full 5.38 4.66 - - 0.26
93 DD2 [22] 1.36 1.36 fullN 0.43 0.31 - - 0.3
94 DD2 [20] 1.35 1.35 2 2.57 3.31 - - 0.34
95 DD2 [20] 1.35 1.35 1.8 2.26 2.61 - - 0.32
96 DD2 [20] 1.35 1.35 1.5 2.72 2.9 - - 0.3
97 DD2 [20] 1.35 1.35 full 3.07 2.18 - - 0.22
98 DD2 [23] 1.35 1.35 fullN 2 0.46 - - 0.16
99 DD2 [20] 1.2 1.2 full 3.09 1.37 - - 0.17
100 ENG [20] 1.35 1.35 2 5.29 5.01 - - 0.29
101 ENG [20] 1.35 1.35 1.5 6.32 5.3 - - 0.26
102 Glenh3 [20] 1.35 1.35 2 1.08 0.62 - - 0.23
103 Glenh3 [20] 1.35 1.35 1.5 1.69 0.9 - - 0.22
104 GS2 [20] 1.2 1.5 full 10.69 6.14 - - 0.18
105 GS2 [20] 1.35 1.35 full 2.74 2.16 - - 0.19
106 H3 [20] 1.35 1.35 2 1.43 1.15 - - 0.27
107 H4 [21] 1.25 1.45 1.75 6 2.8 - - 0.23
108 H4 [20] 1.35 1.35 2 1.28 1.09 - - 0.27
109 H4 [21] 1.35 1.35 1.75 0.6 0.5 - - 0.3
110 H4 [20] 1.35 1.35 1.5 1.93 1.64 - - 0.27
111 MPA1 [20] 1.35 1.35 2 3.64 3.6 - - 0.3
112 MPA1 [20] 1.35 1.35 1.5 4.48 4.35 - - 0.29
113 MS1 [21] 1.25 1.45 1.75 5.8 1.2 - - 0.15
114 MS1 [20] 1.35 1.35 2 1.17 0.98 - - 0.27
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115 MS1 [21] 1.35 1.35 1.75 0.7 0.2 - - 0.18
116 MS1 [20] 1.35 1.35 1.5 2.38 1.19 - - 0.21
117 MS1b [20] 1.35 1.35 2 1.67 1.26 - - 0.25
118 MS1b [20] 1.35 1.35 1.5 3.64 1.85 - - 0.21
119 MS2 [20] 1.35 1.35 2 0.81 0.65 - - 0.26
120 NL3 [20] 1.2 1.8 full 15.68 5.75 - - 0.15
121 NL3 [20] 1.35 2 full 12.85 7.62 - - 0.2
122 NL3 [20] 1.35 1.8 full 18.81 11.31 - - 0.21
123 NL3 [20] 1.2 1.6 full 9.96 5.57 - - 0.19
124 NL3 [20] 1.2 1.5 full 7.95 4.5 - - 0.19
125 NL3 [20] 1.5 1.8 full 8.1 4.94 - - 0.21
126 NL3 [22] 1.25 1.47 fullN 2.3 1.22 - - 0.25
127 NL3 [20] 1.35 1.5 full 2.72 2.25 - - 0.24
128 NL3 [20] 1.2 1.35 full 4.25 2.74 - - 0.21
129 NL3 [20] 2 2 full 1.91 2.18 - - 0.29
130 NL3 [20] 1.8 1.8 full 9.08 7.25 - - 0.24
131 NL3 [20] 1.6 1.6 full 3.74 2.59 - - 0.22
132 NL3 [20] 1.5 1.5 full 1.7 1.04 - - 0.2
133 NL3 [22] 1.36 1.36 fullN 0.015 0.01 - - 0.45
134 NL3 [20] 1.35 1.35 2 1.57 2.03 - - 0.34
135 NL3 [20] 1.35 1.35 1.8 1.6 2.99 - - 0.32
136 NL3 [20] 1.35 1.35 1.5 1.86 1.98 - - 0.3
137 NL3 [20] 1.35 1.35 full 2.09 0.98 - - 0.18
138 NL3 [20] 1.2 1.2 full 2.15 0.91 - - 0.17
139 SFHo [20] 1.2 1.8 full 5.78 10.08 - - 0.34
140 SFHo [20] 1.35 1.8 full 11.76 16.22 - - 0.31
141 SFHo [20] 1.2 1.6 full 16.91 11.1 - - 0.21
142 SFHo [20] 1.2 1.5 full 13.39 8.94 - - 0.22
143 SFHo [20] 1.5 1.8 full 6.34 14.4 - - 0.42
144 SFHo [22] 1.25 1.47 fullN 2.2 1.8 - - 0.25
145 SFHo [23] 1.25 1.45 fullN 11 5.66 - - 0.24
146 SFHo [20] 1.2 1.35 full 5.44 3.86 - - 0.22
147 SFHo [20] 1.35 1.5 full 18.73 13.34 - - 0.23
148 SFHo [23] 1.3 1.4 fullN 6 2.15 - - 0.2
149 SFHo [23] 1.33 1.37 fullN 9 3.55 - - 0.21
150 SFHo [20] 1.8 1.8 full 0.17 0.24 - - 0.29
151 SFHo [20] 1.6 1.6 full 1.13 1 - - 0.21
152 SFHo [20] 1.5 1.5 full 4.1 4.13 - - 0.27
153 SFHo [22] 1.36 1.36 fullN 3.4 1.8 - - 0.25
154 SFHo [20] 1.35 1.35 2 2.96 3.37 - - 0.32
155 SFHo [20] 1.35 1.35 1.8 3.26 4.18 - - 0.34
156 SFHo [20] 1.35 1.35 1.5 3.82 4.14 - - 0.3
157 SFHo [20] 1.35 1.35 full 4.83 3.61 - - 0.23
158 SFHo [23] 1.35 1.35 fullN 11 4.76 - - 0.22
159 SFHo [20] 1.2 1.2 full 1.88 1.26 - - 0.21
160 SFHx [20] 1.2 1.5 full 14.67 7.91 - - 0.19
161 SFHx [20] 1.35 1.35 full 6.16 4.36 - - 0.22
162 SLy [21] 1.25 1.45 1.75 6.5 5.1 - - 0.3
163 SLy [21] 1.35 1.35 1.75 12.2 7.1 - - 0.26
164 SLy4 [20] 1.35 1.35 2 3.99 3.75 - - 0.29
165 SLy4 [20] 1.35 1.35 1.5 6.4 5.53 - - 0.27
166 TM1 [20] 1.2 1.5 full 8.66 3.94 - - 0.17
167 TM1 [20] 1.35 1.35 2 1.37 2.02 - - 0.36
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168 TM1 [20] 1.35 1.35 1.8 1.33 1.77 - - 0.34
169 TM1 [20] 1.35 1.35 1.5 1.53 1.86 - - 0.32
170 TM1 [20] 1.35 1.35 full 1.67 0.74 - - 0.16
171 TMA [20] 1.2 1.5 full 10.21 6.4 - - 0.2
172 TMA [20] 1.35 1.35 full 2.05 1.19 - - 0.18

3. Ejecta properties

3.1. Ejecta mass

Considering EM signals from BNS mergers, one of the most important quantities

influencing the luminosity of kilonovae and radio flares is the mass of the material

ejected from the system. The authors in [27, 28] proposed fitting formulas for the disk

and ejecta mass for BHNS systems. To our knowledge no fit for the mass of the ejected

material for BNS mergers exists to date.

Our fitting formula

Mfit
ej

10−3M⊙

=

[

a

(

M2

M1

)1/3 (
1− 2C1

C1

)

+ b

(

M2

M1

)n

+ c

(

1−
M1

M∗
1

)

]

M∗

1 + (1 ↔ 2) + d.

(1)

is an extension of the work done for BHNS systems to a system consisting of two neutron

stars. We denote the mass in isolation of the i-th star as Mi, the baryonic mass as M∗

i ,

and the compactness as Ci. Let us emphasize that although it has been shown that for

BNS mergers a significant part of the ejecta is produced by shocks, e.g., [19], (1) gives

a robust estimate for the ejecta for almost all considered configurations. For our data

we obtain the following fitting parameters:

a = −1.35695, b = 6.11252, c = −49.43355, d = 16.1144, n = −2.5484. (2)

The left panels of figure 2 show our results for the ejecta mass. In the upper panel

we presentMej for the numerical simulation (blue circles) and for our fitting formulaMfit
ej

(red crosses). Both quantities are plotted as a function of the simulation-ID introduced

in table 1. The bottom panel shows the absolute residual ∆Mej = Mfit
ej − Mej. We

include as shaded regions the 1σ (∆M1σ
ej = 4.4× 10−3M⊙) and 2σ confidence intervals.

Our model function has an average residual of ∆M̄ej = 2.9×10−3M⊙, which corresponds

to a fractional error of ∼ 72%.

Overall, because of the difficulties computing the ejecta properties, see section 2,

∆M̄ej is of the same order as the numerical uncertainty of the NR data points and

therefore can be considered as a possible estimate.

Additionally, we present the results obtained from the fit in Fig. 3, where the

absolute and relative difference between the NR data and the fit are shown as a function

of the mass ratio and the compactnesses of the stars. Obviously for equal mass setups

the relative difference is larger because of the smaller ejecta mass. Those setups also

have the highest NR uncertainty. Considering the influence of the compactnesses, we

find that for larger compactness of the lighter star the absolute error increases.
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Figure 2. From left to right: ejecta mass Mej, kinetic energy of the ejecta Tej, and

velocity of the ejecta vej. The top panels show the NR data and the results obtained

by our phenomenological fits. The bottom panels show the absolute difference between

the fit and the NR data, as shaded regions we also include the 1-σ and 2-σ confidence

interval.

Let us also mention the possibility of obtaining fits for the ejecta mass (and other

quantities) which are independent of the compactness of the stars and solely depend

on the mass and tidal deformability, i.e. on quantities directly accessible by a GW

observation without assuming an EOS. One possibility might be the usage of quasi-

universal compactness-Love relations as mentioned in [29] to substitute the compactness

in (1), also the baryonic mass could be represented by the gravitational mass with

introducing deviations to the NR only slightly larger than those of the current fits ‡.

We are not following this approach here, since it did not allowed a better representation

of the NR data and we tend to stay closer to the work previously presented for BHNSs

systems.

3.2. Kinetic energy

To estimate the kinetic energy of the ejecta we use a similar approach as for the unbound

mass, i.e.,

T fit
ej

1050erg
=

[

a

(

M2

M1

)1/3 (
1− 2C1

C1

)

+ b

(

M2

M1

)n

+ c

(

1−
M1

M∗
1

)

]

M∗

1+(1 ↔ 2)+d. (3)

The fitting parameters for the kinetic energy are:

a = −1.94315, b = 14.9847, c = −82.0025, d = 4.75062, n = −0.87914. (4)

The average residual between our fit and the pure NR data is ∆T̄ej = 1.74 × 1050erg,

which corresponds to a difference of 79%. Thus, the kinetic energy is slightly worse

represented by our fit than the ejecta mass. The middle panels of figure 2 represent

‡ We thank Nathan K. Johnson-McDaniel for pointing this out.
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Figure 3. Difference between the ejecta mass of the NR simulation and the proposed

fit. Top panels show the absolute difference ∆Mej = MNR
ej −Mfit

ej between the fit and

the NR data and bottom panels the relative difference 2∆Mej/(M
NR
ej +Mfit

ej .

our results for the kinetic energy, where again the 1σ and 2σ intervals are included

(∆T 1σ
ej = 2.4× 1050erg ).

3.3. Ejecta velocities

For the velocity we simplify our fitting function and restrict our analysis to the first

66 data points in table 1. For these data points the velocities inside the orbital plane

and perpendicular to it are given. For BHNSs it is known that the velocity depends

linearly on the mass ratio of the system, see [28]. It was shown in [24] that the same

functional dependence holds for BNSs with high mass ratio or systems employing a stiff

EOS. However, shock produced ejecta have a higher velocity component orthogonal to

the orbital plane and should be included for a reliable estimate. Thus, we introduce an

EOS dependent fitting function by including a first order polynomial depending on the

compactness (1 + c C1,2), which leads to

vρ =

[

a

(

M1

M2

)

(1 + c C1)

]

+ (1 ↔ 2) + b. (5)

The parameters are:

a = −0.219479, b = 0.444836, c = −2.67385. (6)

Employing these parameters the NR data are represented with an average error of

∆v̄ρ = 0.020, which corresponds to a percentile difference of 13%.

The same expression is used for the velocity orthogonal to the orbital plane:

vz =

[

a

(

M1

M2

)

(1 + c C1)

]

+ (1 ↔ 2) + b. (7)

As discussed, e.g., [19], torque produced ejecta have much smaller velocities

perpendicular to the orbital plane than inside the orbital plane. Thus, mostly shock
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driven ejecta cause large velocities orthogonal to the orbital plane. The parameters we

obtain for vz are:

a = −0.315585, b = 0.63808, c = −1.00757 (8)

with average residuals of ∆vz = 0.013 and a fractional difference of 33%. The fractional

difference is larger than for vρ since the absolute value of the velocities is smaller.

From vρ and vz we estimate the total ejecta velocity as

vej =
√

v2ρ + v2z . (9)

To check our description of vej we compare all data points (including the remaining 105

data points for which only the total ejecta velocity vej is known) to our fits. In total we

obtain average residuals of ∆v̄ej = 0.036 and an average percentile uncertainty of 15%.

Figure 2 (right panels) shows the ejecta velocities. We find that the residuals are smaller

for the 66 data points which we used to obtain the fits of vρ, vz than for the remaining

105 data points. Overall one sees that the phenomenological fit slightly underestimates

the velocity.

3.4. Other quantities

3.4.1. Geometry: The geometry of the ejecta can be extracted from NR simulations

by considering 3D volume data of the density, but those data are not accessible for most

of the configurations presented in table 1. Thus, we want to present in the following a

model for homogeneously distributed material inside an annular sector moving with the

velocity vej. Inside the ρ − z-plane the ejecta is distributed in a circular sector with a

polar opening angle 2θej. The ejected material has an azimuthal opening angle of φej.

Under the assumption that the ejecta consists of particles moving radially outward with

velocity vej, we obtain by averaging over all particles the following equations for vρ and

vz:

vρ ≈ vej
sin (θej)

θej
, vz ≈ vej

1− cos (θej)

θej
. (10)

For a non-zero, but small θej one gets

θ3ej
24

+
θej
2

−
vz
vρ

≈ 0, (11)

which can be solved for θej:

θej ≈
−24/3v2ρ + 22/3(v2ρ(3vz +

√

9v2z + 4v2ρ))
2/3

(v5ρ(3vz +
√

9v2z + 4v2ρ))
1/3

. (12)

In contrast to the opening angle θej, it is more difficult from our current results

to estimate the azimuthal angle φej. In [28] was assumed that BHNS setups have

an azimuthal angle of φej ≈ π. This is in agreement with high mass ratio BNS
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Figure 4. 2D density plots with rest mass ρ shown from blue to red with increasing

density and the unbound material ρu shown brown to green with increasing density.

Geometric units are employed. We use the velocity as extracted from the numerical

simulation and show θej and φej as approximated from (12) and (13). Left: Simulations

#66 (SLy,1.375M⊙,1.375M⊙) Right: Simulation #55 (MS1b,1.000M⊙,1.750M⊙).

mergers employing stiff EOSs [24], i.e. for setups where torque is the dominant ejection

mechanism. Contrary if shock ejecta are present, e.g. for softer EOSs, the azimuthal

angle even increases up to 2π, i.e. there exists a correlation between θej and φej. Assuming

that the opening angles vary between θej ∈ [π/8, 3π/8] and φej ∈ [π, 2π], and that θej
and φej are linearly correlated, we obtain

φej = 4θej +
π

2
. (13)

To test our approximations, we present snapshots of the density profile in the x-y

and x-z plane for the simulations #55 and #66 in figure 4. We show the rest-mass

density ρ (color bar ranging from blue to red) and the unbound rest mass density ρu
(color bar ranging from brown to green). The two cases present two rather extreme

setups, namely a stiff EOS with a large mass ratio and a soft EOS for an equal mass

system. In figure 4 we also include the approximations for θej and φej obtained from (12)

and (13). The examples show that the geometry of the higher density ejecta regions can

be described reasonably well with our model.

3.4.2. Composition: Caused by different ejecta mechanisms the composition and

electron fraction of the ejecta varies depending on the EOS, mass ratio, and total mass.

As pointed out in the literature, unbound material ejected due to torque in the tidal
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Table 2. Columns refer to: The data ID as in table 1, the mass of the first star M1,

the mass of the second star M2, the ejecta mass Mej, the kinetic energy of ejecta Tej,

the ejecta velocity vej, and the electron fraction Ye. All setups have been simulated

in [23].

# EOS M1 M2 Mej Tej vej Ye
[M⊙] [M⊙] [10−3M⊙] [1050erg] [c]

85 DD2 1.25 1.45 5 1.61 0.19 0.2

88 DD2 1.3 1.4 3 0.87 0.18 0.26

98 DD2 1.35 1.35 2 0.46 0.16 0.3

145 SFHo 1.25 1.45 11 5.66 0.24 0.18

148 SFHo 1.3 1.4 6 2.15 0.2 0.27

149 SFHo 1.33 1.37 9 3.55 0.21 0.3

158 SFHo 1.35 1.35 11 4.76 0.22 0.31

tail of the NSs has a low electron fraction, see e.g., [30]. Contrary ejecta produced via

shock heating have overall a broader range in electron fraction, e.g., [23]. Table 2 shows

the fraction of data from table 1 for which we also know the average electron fraction.

Note that the electron fraction of the ejected material varies significantly among different

implementations for the neutrino transport, e.g., [31, 32, 22] find overall smaller electron

fractions of the unbound material than reported in [23]. Consequently the presented

results have to be taken with care and the following should be regarded as a qualitative

discussion.

Figure 5 summarized the important results from table 2. As shown in figure 1 the

DD2 EOS is softer than SFHo. Considering the left panel of figure 5 we observe that

for both EOSs an increasing mass ratio leads to a smaller electron fraction. This is

expected since more ejecta are produced due to torque independent of the EOS. The

right panel shows the dependence between the ejecta mass and the electron fraction.

For all setups more massive ejecta are produced for the softer EOS, e.g., for q = 1

more than five times more mass is ejected for the SFHo EOS. For this mass ratio the

dominant ejection mechanism for SFHo is shock heating, which seems to be suppressed

for increasing mass ratios. Thus, the ejecta mass and the electron fraction decreases

for increasing q (see also the explanation in [23]). Interestingly is that while for DD2

Ye(Mej) is monotonic, this is not true for SFHo, where beyond a mass ratio of q ≈ 1.1

the ejecta mass is growing again. We propose that for q > 1.1 also SFHo setups become

dominated by torque produced ejecta and shocks are suppressed.

Finalizing our consideration of the composition, we want to present a fit for the

electron fraction as a function of the mass ratio for a total mass of M = 2.7M⊙ for the

data of [23]:

Ye = 0.306− 0.318(q − 1)− 2.568(q − 1)2. (14)

The fit is shown as a black dashed line in figure 5 (left panel). To generalize (14)

to different total masses and higher mass ratios more simulations including realistic
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Figure 5. Left panel: Electron fraction Ye as a function of the mass ratio q. Right

panel: Electron fraction Ye as a function of the ejecta mass Mej. We present data for

two different EOSs: SFHo (blue dashed dotted line ) and the stiffer DD2 (red solid

line). In the left panel we also include as a black dashed line the fit of (14).

microphysical treatments are required.

3.4.3. Spin effects: Let us also briefly comment on the effect of the star’s intrinsic

rotation on the ejecta quantities. We summarize in tab. 3 the spinning configurations

of [33]. Figure 6 visualizes these data and shows the influence of the mass ratio and

of the spin of the secondary (less massive star) on the ejecta mass. The figure shows

two distinct effects (i) for an increasing mass ratio more material becomes unbound (as

already discussed above), (ii) if the spin of the secondary star is aligned to the orbital

angular momentum (positive) then the ejecta mass increases even further.

As pointed out in [33] spin aligned to the orbital angular momentum enhances

the ejection, while contrary antialigned spin leads to lower massive ejecta. This can

be understood by considering the fluid velocity inside the tidal tail, which at lowest

order can be approximated as the sum of the orbital fluid velocity and the fluid velocity

connected to the intrinsic rotation of the star. In cases where the individual star also has

spin parallel to the orbital angular momentum the fluid velocity inside the tail is higher

and consequently material gets unbound and leaves the system. This effect becomes

most prominent for systems for which material ejection is caused by torque, e.g. by

unequal mass systems. Because in unequal mass systems the mass ejection happens

mostly from the tidal tail of the lower massive star, the determining quantity is the spin

of the secondary star χ2 as shown in figure 6.

4. Kilonovae

It is expected that the ejected material is heated up because of the radioactive decay of

r-process elements and consequently triggers EM emission called kilo- or macronovae,
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Table 3. Overview about the spinning simulations taken from [33]. The columns

refer to: EOS, individual masses M1,2, dimensionless spins of the stars χ1,2, the ejecta

mass Mej, kinetic energy of the ejecta Tej, velocity inside the orbital plane vρ and

perpendicular to it vz.

EOS M1 χ1 M2 χ2 Mej Tej vρ vz
[M⊙] [M⊙] [10−3M⊙] [1050erg] [c] [c]

ALF2 1.375 0.102 1.375 -0.102 4.1 0.55 0.12 0.07

ALF2 1.375 0.102 1.375 0.000 2.0 0.36 0.13 0.05

ALF2 1.375 0.102 1.375 0.102 1.6 0.32 0.16 0.05

ALF2 1.528 0.104 1.223 -0.102 4.5 1.7 0.15 0.11

ALF2 1.528 0.104 1.222 0.000 5.5 2.1 0.16 0.13

ALF2 1.528 0.104 1.223 0.102 6.7 2. 0.16 0.08

ALF2 1.651 0.107 1.100 -0.101 11 3.6 0.18 0.05

ALF2 1.651 0.107 1.100 0.000 14 4.1 0.18 0.04

ALF2 1.651 0.107 1.100 0.101 24 7.5 0.18 0.04

H4 1.375 0.100 1.375 -0.100 1.5 0.62 0.16 0.10

H4 1.375 0.100 1.375 0.000 0.7 0.23 0.17 0.10

H4 1.375 0.100 1.375 0.100 2.0 0.78 0.15 0.07

H4 1.528 0.100 1.223 -0.100 4.1 1.7 0.17 0.09

H4 1.528 0.100 1.222 0.000 6.4 3.2 0.18 0.08

H4 1.528 0.100 1.223 0.100 7.8 3.0 0.18 0.11

H4 1.651 0.101 1.100 -0.099 9.5 2.4 0.17 0.03

H4 1.651 0.101 1.100 0.000 19 5.5 0.17 0.03

H4 1.651 0.101 1.100 0.099 27 7.5 0.17 0.02
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Figure 6. Ejecta mass for the spinning configurations of table 3 as a function of the

mass ratio q and the spin of the secondary star χ2 for the ALF2 EOS (left) and the

H4 EOS (right).

see among others [34, 35, 36, 12, 8, 37, 14, 15, 38, 39] and for overview articles [40, 25].

Up to date there are three possible kilonovae candidates for which a connection to a

GRB has been made: GRB 050709 [10], GRB 060614 [9], GRB 130603B [8]. The most
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Figure 7. Kilonovae properties: upper panel shows the time when the peak luminosity

is reached; middle panels show the corresponding luminosity, and the bottom panel the

corresponding temperature. We present results for four different EOSs, from left to

right: APR4, MPA1, MS1b, NL3, i.e., the compactness is from left to right decreasing,

see figure 1. The quantities are given in terms of the individual masses of the stars

M1,M2.

likely origin of these kilonovae candidates are compact binary mergers.

4.1. Peak quantities

Based on the work of [14] we will present some important kilonovae properties. The

time tpeak at which the peak in the near-infrared occurs, the bolometric luminosity at

this time Lpeak, and the corresponding temperature Tpeak are given as:

tpeak = 4.9 days×

(

Mej

10−2M⊙

)
1

2
(

κ

10cm2g−1

)
1

2 ( vej
0.1

)−
1

2

, (15a)

Lpeak = 2.5 · 1040erg s−1 ×

(

Mej

10−2M⊙

)1−α

2
(

κ

10cm2g−1

)−
α

2 ( vej
0.1

)
α

2

, (15b)

Tpeak = 2200K×

(

Mej

10−2M⊙

)−
α

8
(

κ

10cm2g−1

)−
α+2

8 ( vej
0.1

)
α−2

8

. (15c)
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In [14] the authors assume that the energy release due to the radioactive decay is

proportional to ∼ t−α with α = 1.3. We set the average opacity to κ = 10 cm2g−1 §.

In figure 7 we present tpeak, Lpeak, Tpeak for four different EOSs as a function of

the individual masses M1,M2. We find for all setups that an increasing mass-ratio

increases tpeak, Lpeak and decreases Tpeak. Furthermore an increasing total mass leads

to a decreasing tpeak. Considering the influence of the EOS, softer EOSs lead to more

luminous kilonovae in particular for equal mass merger. This can be explained by smaller

ejecta mass caused by the absence of shock driven ejecta for stiff EOSs. For systems

close to equal mass the temperature of the kilonovae is higher. Interesting is also that for

equal mass systems the luminosity and the temperature have saddle points, see middle

and lower panels. This means that keeping the mass ratio fixed a local extrema exist for

which the luminosity becomes maximal and that also a local extrema exists for which

the temperature becomes minimal. Both points do not have to coincide. It would be

interesting to test with further NR simulations whether such a saddle point exists or is

just an artifact of the employed fit.

4.2. Time evolution

4.2.1. Luminosity: To determine the luminosity of the kilonovae, we follow the

discussion of [28], which we briefly summarize below. As described in section 3.4.1

the ejecta is modeled as a partial sphere in the latitudinal and longitudinal direction.

We further assume that the material is homogeneously distributed inside the ejecta and

that photons purely escape from the latitudinal edge. This agrees with the assumptions

made in [28] and also gives valid results for BNS mergers as shown below. Considering

that the optical depth increases with decreasing density, the whole region becomes visible

after

tc =

√

θejκMej

2φej(vmax − vmin)
, (16)

with vmax, vmin being the maximum and the minimum speed of the ejecta. The mass of

the photon escaping region is then given by Mobs = Mej(t/tc) for times t < tc. In [37, 42]

was shown that the specific heating for energy release caused by radioactive decay can

be approximated by ǫ̇ ≈ ǫ̇0

(

t
1day

)−α

. This allows to write the bolometric luminosity as

L(t) = (1 + θej)ǫthǫ̇0Mej







t
tc

(

t
1 day

)−α

, t ≤ tc
(

t
1 day

)−α

, t > tc
, (17)

where we will use ǫ̇0 = 1.58× 1010erg g−1 s−1 and α = 1.3 for our considerations ‖.

§ Notice that as shown in e.g., [15, 41] the typical opacity for a kilonovae is significantly higher than

for typical supernovae explosions, which is caused by the presence of lanthanides. The exact value of

the opacity depends on the composition of the material, which is not included in our models.
‖ Note that as discussed in [28] (17) also used the assumption of a small opening angle θej which is

valid for BHNSs but might be violated for BNS systems. However, figure 8 reveals that reasonable

results are also obtained for BNS systems with larger opening angles, see e.g., SLy (1.35,1.35).
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Figure 8. Comparison of the bolometric luminosity given by (17) (dashed lines)

and a radiative transfer simulation (solid lines). The results of the radiative transfer

simulation was presented in [15, 43] and is public available at [44]. The legend

characterizes the EOS and the individual masses of the NSs are given in solar masses.

In figure 8 a comparison between (17) and the radiative transfer simulations

of [15, 44] is presented. One sees remarkable agreement between the simple model

function and the radiative transfer simulations. As input variables for (17), we have

used the stated ejecta masses from [44]. This is necessary since Lbol depends strongly

on Mej such that a difference in Mej produces a large difference in Lbol and a comparison

would not test the assumptions made for (17), but how (1) approximates this particular

setup. Furthermore, vmin is set to 0.02, vmax = 2vej − vmin, and θej and φej are chosen

according to (12) and (13). Figure 8 proves that (17), which was originally proposed

for BHNS setups in [28] also allows to describe BNS mergers and the time evolution of

the kilonovae.

4.2.2. Lightcurves: From the given luminosity the bolometric magnitude can be

computed according to:

Mbol ≈ 4.74− 2.5 log10

(

Lbol

L⊙

)

, (18)

with L⊙ denoting the bolometric luminosity of the sun. To compute the magnitude in

each wavelength, we have to know the spectra of the kilonovae. One possible approach

to compute the spectra is by considering the effective temperature of the photosphere

T ≈

(

L(t)

σS(t)

)1/4

, (19)

with S(t) being the surface of the latitudal edge, and to assume that the spectrum of a

kilonovae can be approximated by a pseudo black body spectrum, e.g., [41].
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Figure 9. Bolometric corrections for the ugriz-bands (left) and KHJ-bands (right) as

a function of the rescaled time t′ = t[days](0.01M⊙/M)1/3.2. We use public available

results of [44] and show them as dashed and dot-dashed lines. The average of the

available data for each individual band is shown as a black solid line and a fit of the

average is visible as a red solid line. The parameters for the fit are given in (22a)-(22h).

Another approach enabling us to compute the spectrum are bolometric corrections

(BC) as discussed in [28]. The final magnitude in each band (denoted by the subscript

X) is then given by

MX(t) = Mbol(L(t))− BCX(t). (20)

To compute the bolometric corrections we use the public available light curves of [44].

It was shown in [28] that the time evolution of the BCs for BHNSs agrees once the

elapsed time is rescaled by t′ = t · (10−2M⊙/Mej)
1/3.2. Figure 9 shows that the same

rescaling can be used for BNS data. We present for five different setups [44] the BCs

for the ugriz-band in the left and for the KHJ-band in the right panel. The difference

among the different setups of the BC is about 1 magnitude. To obtain the final BC, we

average the results of all five configurations (black solid line) and fit the average with a

polynomial (red solid lines)

BCX = a0 + a1t
′ + a2t

′2 + a3t
′3 + a4t

′4. (21)

The final parameters for the polynomials fits are

BCz : (1.072, 0.3646,−0.1032, 0.00368, 0.0000126) t′ ∈ [2, 15] (22a)

BCi : (0.6441, 0.0796,−0.122, 0.00793,−0.000122)t′ ∈ [2, 15] (22b)

BCr : (−2.308, 1.445,−0.5740, 0.0531,−0.00152) t′ ∈ [2, 15] (22c)

BCg : (−6.195, 4.054,−1.754, 0.2246,−0.009813) t′ ∈ [2, 8.5] (22d)

BCu : (40.01,−56.79, 25.73,−5.207, 0.3813) t′ ∈ [2, 5] (22e)

BCK : (−7.876, 3.245,−0.3946, 0.0216,−0.000443) t′ ∈ [2, 15] (22f )

BCH : (−2.763, 1.502,−0.2133, 0.0128,−0.000288) t′ ∈ [2, 15] (22g)

BCJ : (−1.038, 1.348,−0.2364, 0.0137,−0.000261) t′ ∈ [2, 15]. (22h)
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Figure 10. Absolute Magnitudes in the ugridz-bands (left panels) and JHK-bands

(right panels) for the equal mass SLy (1.35,1.35) and the unequal mass H4 (1.20,1.50)

setups. The solid lines represent the data reported in [15, 44]. The dashed lines

represent data obtained from (17) including the computed BC corrections. We also

include as a thin dashed dotted line results obtained with the public available code

of [45].

As an example we compare the lightcurves obtained from the discussed model and

computed with the radiative MC code of [15, 44] for two systems: one equal mass system

employing a soft EOS (SLy (1.35M⊙, 1.35M⊙) ) and one unequal masses case with a

stiffer EOS (H4 (1.20M⊙, 1.50M⊙) ). As for figure 8 we use here the ejecta mass stated

in [44] to compute the bolometric luminosities. Figure 10 shows that after applying the

BCs, the MC results and those obtained by the simple model agree well. Additionally, we

also include lightcurves computed with the public available code of [45] (thin dot dashed

lines), which was developed for BHNS mergers and which shows a larger disagreement

to the MC results. The difference between the MC simulation and the model presented

here is smaller because of the particular choice of the BCs.

5. Radio flares

In addition to kilonovae, it is possible that sub-relativistic outflows produce radio flares

with peak times of a few month up to years after the merger of the compact binary.
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Figure 11. Radio flares properties: upper panel shows the time once the peak in the

radio band is observable after the merger of the two neutron stars; lower panel shows

the radio fluency at this time. We present results for four different EOSs, from left to

right: APR4, MPA1, MS1b, NL3, i.e., the compactness is from left to right decreasing,

see figure 1. The quantities are given in terms of the individual masses of the stars

M1,M2.

In order to estimate the radio emission, we use the model of [11]. The strongest

signal is expected at a time

tradpeak = 1392 days×

(

Tej

1049erg

)
1

3 ( n0

cm−3

)−
1

3
( vej
0.1

)−
5

3

(23)

after the merger of the system. The radio fluence at this time is

F ν rad
peak = 0.3 mJy ×

(

Tej

1049erg

)

( n0

cm−3

)
p+1

4
( ǫB
0.1

)
p+1

4

×
( ǫe
0.1

)p−1 (vej
1

)
5p−7

2

(

D

1027cm

)−2
( νobs
1.4GHz

)−
p−1

2

(24)

for an observation frequency νobs higher than the self-absorption and synchrotron peak

frequency at a distance D. The parameters ǫB and ǫe, both set to 0.1, determine how

efficient the energy of the blast wave is transfered to the magnetic field and to electrons.

n0 denotes the surrounding particle density and is set to 0.1cm−3 ¶. Additionally we

assume p = 2.3 and νobs = 1.4GHz, as done in [11].

In figure 11 we present for four different EOSs the expected peak time tpeak (upper

panel) and radio fluence F ν rad
peak (lower panel). We find that for an increasing total

¶ Notice that the overall uncertainty on the density of the surrounding material is rather large. To

constrain the EOSs or extract the binary parameters from radio observations strict bounds on n0 will

be needed.
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mass the peak time tradpeak decreases while the peak fluency F ν rad
peak increases. For larger

mass ratios the peak fluency is largest. Considering different EOSs we find significant

differences. In general the observable peak time in the radio band, i.e. tradpeak, happens

later for softer EOSs, for those setups also the peak fluency is higher.

6. Conclusion

6.1. Summary

In this work we have derived fitting functions for the main ejecta properties from binary

neutron star mergers, namely the mass, kinetic energy, and velocity of the unbound

material. Our work is (as a first step) restricted to dynamical ejecta for which a large

number of numerical simulation data are available. In total we use a sample of 172

numerical simulations of binary neutron star mergers to derive our fits. The high

number of data points allows to cover a large region of the possible binary neutron

star parameter space including 23 different EOSs, total masses between 2.4M⊙ and

4M⊙, and mass ratios between q = 1.0 and q ≈ 2.1. The residual errors of the fitting

functions are of the order of the uncertainty of the numerical relativity results.

Additionally, we presented estimates for the geometry of the ejected material and

compared those with numerical relativity simulations. We found that the high density

region of the ejected material can be approximated by a three dimensional annular

sector, i.e. a crescent-like structure.

Using the results of [23] we also discussed the influence of the EOS and mass ratio

on the electron fraction inside the ejected material, where in general softer and higher

mass ratio configurations are characterized by lower electron fractions. Following [33]

we presented how the intrinsic rotation on the individual neutron stars affects the ejecta

mass, where we found in particular that for high mass ratios the aligned spin of the lower

star increases the amount of the ejected material.

Based on estimated ejecta properties we studied possible electromagnetic

observables for binary neutron star mergers. In particular, we have focused on the

possibility of the formation of kilonovae and radio flares. Considering kilonovae,

analytical models have been employed to determine the time when the kilonovae

is brightest as well as the corresponding luminosity and temperature. While these

estimates just represent the properties of the EM counterpart at a fixed time, we also

used the model proposed in [28] to derive the time evolution of the luminosity and light

curve. We checked the model against radiative transfer simulations of [44] and found

good agreement.

Finally, we estimated the peak time and peak fluency of the radio flares produced

after the binary neutron star merger. Those flares will be observable month up to years

after the merger.



Dynamical Ejecta and Electromagnetic Counterparts of BNS mergers 23

6.2. Consequences for future observations

The first two GW detections GW150914 and GW151226 have proven that pipelines for

EM follow studies are in place and work reliably. Detailed informations can be found

in [46] and references therein. However, in case of an upcoming GW detection of a BNS

system an estimate about corresponding kilonovae and radio flares may support follow

up studies.

Once a GW is detected the first parameter estimates for the binary properties are

produced within the first minutes after the detection. This time is small enough to allow

observations in the visible, near-infrared, and radio band.

On a practical term it is important to point out that the time between the GW

detection and the kilonovae observation is too short to perform full NR simulations,

which typically have run times of the order of weeks to months. Thus, once the first

knowledge about the properties of the binary is available phenomenological formulas,

as presented here, are needed to obtain estimates for possible EM counterparts. After

the kilonovae observation NR simulations with microphysical descriptions as neutrinos

transport, tabulated EOS, and magnetic fields can be performed to obtain more reliable

results. At this stage, our estimates help to reduce the region in the parameter space

which have to be covered by NR simulations.

Notice that the situation is different for radio flares, which are detectable on the

order of years after the merger. Full-NR simulations for a variety of parameters can be

performed between the detection of the GWs and the observation of the radio signal.

Overall, our work represents a first step towards a systematic combination between

binary parameters accessible from gravitational wave observations and electromagnetic

counterparts for a large range of the binary neutron star parameter space. In the future

even more setups have to be included testing extreme corners of the parameter space.

Furthermore, a detailed microphysical description in numerical simulations will help to

account for other effects as e.g., magnetic fields and the ejecta produced by the disk

wind after the formation of the merger remnant.
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