
5

Modeling Dynamics in Agile Software
Development

LAN CAO
Old Dominion University
BALASUBRAMANIAM RAMESH
Georgia State University
and
TAREK ABDEL-HAMID
Naval Postgraduate School

Changes in the business environment such as turbulent market forces, rapidly evolving system
requirements, and advances in technology demand agility in the development of software systems.
Though agile approaches have received wide attention, empirical research that evaluates their
effectiveness and appropriateness is scarce. Further, research to-date has investigated individual
practices in isolation rather than as an integrated system. Addressing these concerns, we develop
a system dynamics simulation model that considers the complex interdependencies among the
variety of practices used in agile development. The model is developed on the basis of an extensive
review of the literature as well as quantitative and qualitative data collected from real projects
in nine organizations. We present the structure of the model focusing on essential agile practices.
The validity of the model is established based on extensive structural and behavioral validation
tests. Insights gained from experimentation with the model answer important questions faced by
development teams in implementing two unique practices used in agile development. The results
suggest that due to refactoring, the cost of implementing changes to a system varies cyclically and
increases during later phases of development. Delays in refactoring also increase costs and decrease
development productivity. Also, the simulation shows that pair programming helps complete more
tasks and at a lower cost. The systems dynamics model developed in this research can be used
as a tool by IS organizations to understand and analyze the impacts of various agile development
practices and project management strategies.

Authors’ addresses: L. Cao, College of Business, Old Dominion University, 5115 Hampton Boule-
vard, Norfolk, VA 23529; B. Ramesh (corresponding author), J. Mack Robinson College of Business,
Georgia State University, P.O. Box 3965, Atlanta, GA 30302-3965; email: bramesh@gsu.edu;
T. Abdel-Hamid, Information Sciences Department, Naval Postgraduate School, 1 University
Circle, Monterey, CA 9343.
c©2010 Association for Computing Machinery. ACM acknowledges that this contribution was au-

thored or co-authored by a contractor or affiliate of the [U.S.] Government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purpose only.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 2158-656X/2010/12-ART5 $10.00
DOI 10.1145/1877725.1877730 http://doi.acm.org/10.1145/1877725.1877730

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:2 • L. Cao et al.

Categories and Subject Descriptors: I.6.0 [Simulation and MOdeling]: General

General Terms: Design, Experimentation, Economics

Additional Key Words and Phrases: Agile software development, simulation, process modeling,
system dynamics

ACM Reference Format:
Cao, L., Ramesh, B., and Abdel-Hamid, T. 2010. Modeling dynamics in agile software development.
ACM Trans. Manag. Inform. Syst. 1, 1, Article 5 (December 2010), 26 pages.
DOI = 10.1145/1877725.1877730 http://doi.acm.org/10.1145/1877725.1877730

1. INTRODUCTION

Changes in the business environment such as turbulent market forces, rapidly
evolving system requirements, and advances in technology demand agility
in the development of software systems. In response, many firms have re-
placed their traditional plan-driven development with more adaptive, agile
approaches. According to a recent survey by Forrester Research [West et al.
2010], agile processes have joined the mainstream of information systems de-
velopment approaches with nearly half of the IT professionals using some agile
development practices. Though agile approaches have received wide attention,
empirical research that evaluates their effectiveness and appropriateness is
scarce. Much of the research to-date has focused on studying the impacts of
select agile practices such as pair programming [Williams and Kessler 2000]
and test-driven development [Erdogmus and Williams 2003]. However, we ar-
gue that the dynamic nature of agile practices requires that they be studied
as an integrated system rather than as individual (isolated) practices. For ex-
ample, agile practices magnify the impacts of dynamic project features such
as feedback, (e.g., iterative feedback from customers), time delays (e.g., delays
in implementing change requests), and nonlinear cause-effect relationships
among project components (e.g., relationship between schedule pressure and
adding new personnel). Successful management of agile projects requires an
understanding and exploitation of such dynamic features. Extant literature
does not help integrate the understanding of individual practices and their
implications for the entire development process. Motivated by this concern, our
research uses system dynamic simulation to investigate the impacts of agile
practices by modeling them as a dynamic system.

Although there is strong interest among both researchers and practitioners
on the use of agile methods, current research is fragmented and is restricted
to the study of specific practices. Beyond some case studies and surveys (for
example, Cao et al. [2009], Fitzgerald et al. [2006], Grenning [2001], Ramesh
et al. [2010], Rumpe and Schroeder [2002]), the effectiveness and applicability
of agile methods have not been adequately investigated [Glass 2004]. For exam-
ple, Boehm [2002] observes that it is difficult to scale up agile methods for large
projects because agile development often lacks sufficient architecture planning,
intensely focuses on early results, and may have low test coverage. He also
recommends against using agile methods in the development of mission-critical

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:3

systems. The applicability of agile approach is constrained by several factors
such as project size and type, experience of project personnel, and the availabil-
ity of knowledgeable and committed customers [Erickson et al. 2005; Fitzgerald
et al. 2006]. These studies highlight some fundamental questions that have not
yet been adequately investigated. These include the following: How does the
cost of incorporating changes in the system with agile development compare
with traditional approaches which typically experience exponentially increas-
ing costs over the system development lifecycle? Are critical agile practices
such as pair programming cost effective?

To address these (and similar) questions, we study agile software develop-
ment by modeling it using System Dynamics (SD) simulation. SD modeling
of agile development will help answer difficult but critical questions that re-
searchers and managers face in balancing the needs for quality, cost effec-
tiveness, and speed in software development. The SD model developed in our
research focuses on essential aspects of agile software development. Our model
is developed on the basis of an extensive review of the literature, focused field
interviews in nine organizations that use agile methods, and secondary data.

In the next section, we present the model structure. The following six major
components that represent the essential aspects of agile development are de-
scribed: customer involvement, change management, agile planning and con-
trol, refactoring and quality of design, software production, and human re-
source management. Then we describe an extensive validation of the model,
using both structural and behavioral validation tests. We also present insights
gained from experimentation with the model to answer critical questions faced
by IS managers and developers, specifically investigating two important agile
development practices: refactoring and pair-programming policies. Finally, we
present the conclusions.

2. SYSTEM DYNAMICS MODELING OF SOFTWARE DEVELOPMENT

Simulation is increasingly used to understand software development processes
because it provides a viable laboratory tool to study the complex phenomenon
that is hard to investigate with other tools. Simulation has been used to investi-
gate a variety of aspects in IS development such as reliability [Rus et al. 1999],
requirements management [Höst et al. 2001], and testing [Cangussu 2004].
System Dynamics (SD), first developed by Jay Forrester [Forrester 1961], is a
modeling methodology that uses feedback control systems principles and tech-
niques to represent the dynamic behavior of the managerial, organizational,
and socio-economic systems. SD has been used widely in many research ar-
eas including urban planning, public policy, economics, management, decision
making, healthcare, and organizational learning.

System dynamics uses feedback controls to reflect the interconnection be-
tween elements in a system. Feedback systems can capture the interconnection
between agile practices in a closed sequence of causes and effects. The simula-
tion model provides an integrated environment within which the impact of an
agile practice on the entire development process can be evaluated, mimicking
the real-life environment. Agile practices are tightly related to each other. For

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:4 • L. Cao et al.

example, refactoring is supported by unit testing, continuous integration, and
simple design, while unit testing is supported by pair programming. The dy-
namic nature of agile practices requires that they be studied as an integrated
feedback system rather than as individual (isolated) practices. SD provides an
environment in which such interconnection between agile practices can be fully
represented and studied.

The use of SD methodology in traditional software project management
[Abdel-Hamid and Madnick 1991] represents the first comprehensive use of
this method in IS research. This research develops an extensive and integrative
model that covers issues in human resource management, software production,
and planning and control. This model integrates multiple functions of the soft-
ware development process, and includes both management-type functions (e.g.,
planning, control, and staffing) and software production-type activities (e.g.,
design, coding, review, and testing). This model has been used to investigate
a wide range of areas in software development including software cost and
schedule estimation [Abdel-Hamid 1990, 1993a; Abdel-Hamid and Madnick
1983], the economics of the quality assurance function [Abdel-Hamid and Leidy
1991], project staffing [Abdel-Hamid 1989; Abdel-Hamid et al. 1994; Sengupta
et al. 1999], software reuse [Abdel-Hamid 1993b] and project control with fal-
lible information [Abdel-Hamid et al. 1993; Sengupta and Abdel-Hamid 1996].
More recently, SD modeling has been used extensively in research on the soft-
ware development process [Madachy 2007] including requirements engineering
[Stallinger and Grünbacher 2001], reliably control [Rus et al. 1999], outsourc-
ing [Dutta and Roy 2005; Roehling et al. 2000], information security [Dutta
and Roy 2008], knowledge management [Peters and Jarke 1996], and system
acquisition activities [Choi and Scacchi 2001]. To the best of our knowledge,
our work is the first to apply SD simulation to model essential aspects of agile
software development.

3. MODEL STRUCTURE

3.1 Data Sources

Primary data collected from agile development projects was used to develop
the model structure and specify its parameters. Data from nine organizations
was used to build and refine the model. These organizations use eXtreme Pro-
gramming (XP) or SCRUM, or a combination of the two methods. In addition,
we also used secondary data sources (such as project documentation as well
as online news groups devoted to agile development) which provided access to
extensive discussions on agile practices and principles. Tables I and II provide
details on organizations studied and the secondary data sources used. Each is
identified with a letter code. The description of our model refers to relevant
data sources used in its development.

The SD model developed in this research integrates essential practices in ag-
ile development such as agile planning, short iterations, customer involvement,
refactoring, unit testing, and pair programming. These practices are modeled in
four submodels/sectors (Figure 1): customer involvement, change management,

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:5

Table I. Profile of Interviewees and Organizations

Phase I: Initial Model Development
Organization* Industry and Product Project Information Participants
NetworkSoft
(N)

Network Software
Consulting. Offers
services on developing
network systems, and
architectures. 150+ IT
personal.

Project duration:
8 month

Team size: average
12 people

Method: XP

Senior Software
Engineers (N1, N2,
N3)

Project Manager (N4)

SecuritySoft
(S)

Security Software. Offers
software for Internet
security. Acquired by a
large IT company which
has more than 350k
employees in 2005.

Project duration:
6 month

Team size: 10 people
Method: XP

Product Manager (S1)
Project Manger (S2)
Senior Software

Engineers (S3, S4,
S5) QA (S6)

DataSoft (D) Across several industries.
Offers data management
online. 30+ employees.

Project duration:
7 month

Team size: 5 people
Method: XP

Technical Lead (D1)

EbizSoft (E) Packaged Software
Development. Offers
e-Business connections
and transactions. 3000
product specialists
globally.

Project duration:
10 month

Team size: 15 people
Method: XP and

SCRUM

Project Manager (E1)
Developers (E2, E3,

D4)

HealthSoft
(H)

Healthcare Information
Systems. Offers software
to healthcare facilities.
200+ IT professionals.

Project duration:
8 month

Team size: 10 people
Method: XP

Senior Software
Engineers (H1, H2,
H3)

Phase II: Model Refinement
ConsultSoft
(C)

Software Consulting.
Offers consulting
services on software
development. 1200+
employees globally,
leading agile
development company.

Project duration:
12 month

Team size: 50+ people
Method: XP

Team Lead (C1)
Project Manager (C2)

BankSoft (B) Banking Information
Systems. Offers software
that handles financial
transactions. 50+
employees

Project duration:
36 month

Team size: 22 people
Method: XP

Developers (B1, B2,
B3, B4)

Technical Lead (B5)

WebSoft (W) Across Industries. Offers
to help Brick & Mortar
companies develop web
presence. 20+ employees

Project duration:
5 month

Team size: 4 people
Method: XP

General Manager (W1)

FinSoft (F) Online Financial
Transactions support.
Offers online payments.
50+ employees

Project duration:
8 month

Team size: 6-9 people
Method: XP and

SCRUM

Project Manager (F1)
Developers (F2, F3,

F4)

∗Pseudonyms are used to protect the identity of the participating organizations and interviewees.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:6 • L. Cao et al.

Table II. Secondary Data Sources

Type Description
Project documentation (PD) Design documents, estimation and actual effort data, defect

metrics, status metrics
Agile user group meetings
(UM)

Monthly meetings to discuss issues in agile software development.
The authors attended the meetings for over three years.

Online news group on agile
methods (NA1)

http://groups.yahoo.com/group/xp-location (redacted).

Online news group on agile
methods (NA2)

http://groups.yahoo.com/group/extremeprogramming

Direct correspondence (DC) Emails, phone calls and instant massages with agile developers
(other than those listed in table I)

Fig. 1. Model structure.

agile planning and control, and refactoring and quality of design. Human
resource management and software production subsystems that are necessary
to support agile development (shown in grey) were created by adopting and
extending the work of Abdel-Hamid and Madnick [1991]. Due to space con-
straints, we provide brief descriptions of all the subsystems, and elaborate only
on refactoring and quality of design. A major extension of the human resource
subsystem system in our work involves the modeling of pair programming,
which is unique to agile development. It is described in the online appendix.

3.2 Customer Involvement

Agile development relies on direct face-to-face communication between cus-
tomers and developers for knowledge sharing [Martin 2000]. For example,
XP insists on having an on-site customer [Beck 2000] whose responsibilities
include understanding and representing the needs of multiple customer seg-
ments, specifying and clarifying the features that need to be implemented,

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:7

Fig. 2. Model structure for customer involvement.

developing acceptance tests and verifying that these tests are run correctly,
and participating in the planning of iterations and releases. The success of
an XP project highly depends on the ability of the on-site customer to ade-
quately fulfill these responsibilities. Boehm and Turner [2004] identify several
characteristics of a “good” customer: Collaborative, Representative, Authorized,
Committed, and Knowledgeable (CRACK). Agile methods such as XP thus im-
pose a heavy burden on the customer and assume the availability of such
capable customers. The use of an on-site customer poses several challenges, in-
cluding the lack of customer competency, degree of involvement, and conflicts
of interest among different customers.

Figure 2 shows the customer involvement subsystem. Customer learning
about the important aspects of the project and the development process is af-
fected by the level of customer involvement and rate of progress of the project
[Curtis et al. 1988]. Customer learning, in turn, leads to customer trust. The
higher the customer trust, the higher the quality and speed of the feedback pro-
vided by the customer to the development team. Delayed feedback, on the other
hand, may increase the cost of the project because changes that are made late
in the lifecycle are more difficult to implement. The increased cost is reflected in
the perceived performance of the team (modeled as the performance indicator).
The decline in performance and/or inadequately implemented changes results
in decreased customer satisfaction, which in turn affects customer trust. In
addition, the lack of detailed initial design has a negative impact on building
initial customer trust.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:8 • L. Cao et al.

Fig. 3. Change management.

Customer trust is essential in agile development because the development
team relies on the customer to make important decisions on many issues such
as prioritization of product features and project scope or schedule adjustment.
Unwillingness of the customer to adjust the scope of the project will increase
the schedule pressure on the developers, which has been known to cause poor-
quality designs and code.

3.3 Change Management

This subsystem models how agile development handles changes caused by re-
quirements volatility. Embracing change is a core characteristic of agile meth-
ods. The alignment of the development process with a changing environment
is a critical motivation for adopting agile methods. As new requirements are
added to a release, or as existing requirements are deleted or modified, the
product’s cost, schedule, and quality are impacted. Figure 3 shows the change
management process in agile development.

The volume of changes is decided by requirements volatility, defined as the
ratio of changed requirements (added, deleted, and modified) to total require-
ments [Stark et al. 1999]. Changes fall naturally into three main classes [Basili
and Weiss 1984; Lientz et al. 1978; Swanson 1976]: adaptive, corrective, and
perfective. In agile development, perfective change is typically implemented
through refactoring. Therefore, only adaptive and corrective changes are mod-
eled in this subsystem. Adaptive change requests are treated as new require-
ments that are scheduled for future iterations, unless the requested change
significantly affects the scope, schedule, and cost constraints set by the cus-
tomer or management [Highsmith and Cockburn 2001].

Corrective change requests are implemented in the order of their assigned
priority. The rate at which corrective changes are implemented varies depend-
ing on the quality of the design (as described in the subsystem: refactoring

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:9

Fig. 4. Planning and control.

and quality of design). The customer reviews the features as soon as they
are implemented and suggests changes that need to be incorporated in the
next iteration [Beck 2000; Highsmith and Cockburn 2001]. However, the time-
liness with which changes are identified depends on customer involvement.
A more involved customer will request changes earlier, while a less involved
customer may only realize the need for changes after some delay. Both the
literature [Elssamadisy and Schalloil 2002] and our interviews confirmed the
significant effect of delayed customer feedback (N3, N4, D1, F1, F2). There-
fore, at any stage of the project, corrective changes requested by the customer
include changes to the features that have been just developed and those devel-
oped in previous iterations. Delayed changes require more effort to implement
because of their ripple effects which are modeled by the variable “Impact of
Delay”.

3.4 Agile Planning and Control

The planning and control subsystem (Figure 4) adjusts the schedule and scope
of the project based on the progress of the project. It includes two critical
processes: scope adjustment and schedule adjustment.

Scope adjustment. In contrast to traditional development, in agile develop-
ment projects, scope is an extra lever that can be readily manipulated [Beck
2000]. As customers provide feedback continuously and request new features,
project scope is continuously adjusted. Previously planned features can be re-
moved or deferred when the project is behind schedule. In agile planning,
project scope is adjusted as follows (especially when working under schedule
pressure).

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:10 • L. Cao et al.

(1) System functionalities are categorized into two groups: the must-have
or the most important features (stories) which must be implemented first and
the nice-to-have features which may be implemented later. Under schedule
pressure, nice-to-have features are often dropped.

(2) Stories are decomposed into finer pieces, called tasks. Only critical tasks
are implemented and the others are dropped when the project is under schedule
pressure.

When the team realizes that the project scope needs to be adjusted to meet
the delivery schedule, it negotiates with the customer to identify features that
may be eliminated. The customers’ “willingness to adjust scope” depends on
“customer trust” which is described in the customer involvement subsystem.

Schedule adjustment. In agile software development, schedule is adjusted
based on the following constraints.

(1) If a project has a fixed completion date and fixed resources, then the
schedule is fixed as initially planned. If the project is behind schedule, the scope
needs to be reduced by dropping stories or tasks, since it is usually difficult to
change the workforce (and indirectly the budget).

(2) Similar to a traditional development project [Abdel-Hamid and Madnick
1991], an agile project will first adjust the schedule and then the cost. Then,
the agile development team often has the flexibility to negotiate changes in
the scope of the project with the customer by canceling or deferring some tasks
from the current release.

3.5 Refactoring and Quality of Design

This subsystem (shown in Figure 5) models refactoring and its impacts on the
quality of design. In highly volatile environments, detailed up-front design is
considered wasteful because much of the initially identified functionality may
never be fully implemented due to changes in requirements. Refactoring is
used to keep the quality of design at just the acceptable level that meets cur-
rent needs. This practice, often referred to as restructuring [Arnold 1986], has
been used to reduce software complexity by incrementally improving internal
software quality. In agile development, the intensity with which refactoring is
practiced, especially due to the lack of detailed initial design, makes it very
critical and unique. Fowler [1999] defines refactoring as “[a] change made to
the internal structure of software to make it easier to understand and cheaper
to modify without changing its observable behavior.” In object-oriented devel-
opment, for example, the key idea behind refactoring is to redistribute classes,
variables, and methods across the class hierarchy in order to facilitate future
adaptations and extensions [Mens and Tourwe 2004; Opdyke 1992]. Using
refactoring, a software developer can improve the design of software, make
software easier to understand, find bugs, and develop programs faster [Fowler
1999]. Agile methods rely on refactoring to build up the design continuously
during development, instead of spending much effort on up-front design. Fowler
[1999] claims that refactoring “leads to a program with a design that stays good
as development continues.” Continuous and incremental refactoring is a mech-
anism used to incorporate frequent changes.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:11

Fig. 5. Refactoring and quality of design.

Needed vs. Actual Refactoring Effort.

Needed refactoring effort. Refactoring consumes a major portion of the devel-
opment effort if it is done regularly. Empirical studies on refactoring [Alshayeb
and Li 2005; Li and Henry 1993; Stroulia and Leitch 2003] estimate that the
actual effort ranges from 6% to 39% of the total development effort. Also, these
studies note that many programmers mix refactoring and new work and there-
fore, it is difficult to measure the actual amount of refactoring effort. Our data
(NA1, NA2, DC) also suggests that it is difficult for developers to separate
refactoring from other development. Before implementing a new feature, often
developers refactor existing code. In the model, we use the average effort re-
ported by the study participants, which at 30% represents a significant part of
the total development effort.

Three factors affect the effort needed for refactoring: quality objectives, the
starting status of the project [Harrison 2003; Hodgetts 2004], and the coverage
of unit tests [Beck 2000; Beck 2003; George and Williams 2002; Jeffries et al.
2001]. Quality objectives refer to the expected quality goals of the project. The
starting status refers to the quality of the up-front design before coding starts.
Unit tests provide a safety net of regression tests and validation tests so that
refactoring and integration can be done effectively. Without sufficient coverage
of unit tests, more effort is needed to validate the code which may change due
to refactoring. Unit tests are used to test the correctness of a particular module

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:12 • L. Cao et al.

of source code [Beck 1994]. A common practice is to write test cases for every
nontrivial function or method in the module. Unit tests are written before or
in conjunction with production code; they are maintained with production code
and are used by every developer working on the software.

The effort needed to make a single change is much higher when unit testing
is not done. One developer (C1) described his experience of a project without
unit testing as follows: “. . . any change in one area, we had to test three or four
use cases because we were reusing the code as much as we could. So you make
one change, you have to walk through three or four use cases. And that slowed
us down because we didn’t have the unit tests.” The relationship between test
coverage and the developer’s confidence in the software and the effort needed
to make changes is not linear. One developer (N2) describes his experience on
a project that has partially covered unit testing as follows: “the benefit of unit
testing is not proportional to unit test coverage. If unit test coverage is low, then
the benefits are significantly low.” The actual coverage of unit tests depends
on the planned coverage as well as the degree of schedule pressure and pair
programming. Under schedule pressure, developers will reduce unit testing and
focus more on coding [Beck and Gamma 1998]. Paired developers are generally
more disciplined than individuals in writing unit tests [Williams 2001].

Actual refactoring effort. Developers almost never spend enough effort on
refactoring [Opdyke 1995]. In the model, insufficient refactoring is modeled us-
ing the variable “lack of refactoring.” Our interviews (S3, S5, H1, B5) with agile
developers confirmed this tendency. Our data (S3, S5, H1, B5, PD, UM) also
highlighted the effects of schedule pressure and pair programming on refactor-
ing. The effect of schedule pressure on refactoring effort has been observed in
several studies [Berry 2002; Fowler 1999; Opdyke 1992; Whiler 2003]. In our
interviews (N4, E1), project managers acknowledged that refactoring will be
largely ignored when working under a tight schedule. Also, prior studies [Beck
2000; Williams and Kessler 2000] observe that pair pressure can force devel-
opers to frequently refactor the code. Our data (S1, S2, S6, H2) suggests that
developers will decrease their refactoring activity by about 50% if not paired
with others. When the project is close to the deadline, developers choose not
to refactor because productivity gain from refactoring would be realized only
after the deadline [Fowler 1999].

The gap between the needed and actual refactoring effort, which may be
considered a “technical debt” [Cunningham 1992], leads to unclean code, which
in turn leads to corrupt designs. As requirements change during development,
the design is not updated to encompass the new requirements since changing
the design would involve refactoring large amounts of code. Therefore, changes
are made in the most expedient manner possible and the design of the system
becomes increasingly corrupt and brittle. Then, the developers have to per-
form “major refactoring,” that is investing a large amount of effort to clean up
the code. The deferred refactoring requires extra effort to clean up the code
later [Cunningham 1992; Elssamadisy and Schalloil 2002] because of the large
number of features involved [Gorts 2004].

Quality of design. In agile development, it is claimed that the “source-code
is the design,” design activity is part of the programming process, and design

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:13

evolves with the code [Shore 2004]. The effect of refactoring on maintainabil-
ity has been evaluated using metrics such as coupling [Kataoka et al. 2002].
However, in agile development, Cockburn points out “there is no agreed upon
measure of quality of a design. Therefore there is no single-valued dimension
to ‘improve’ along. The quality of a design is subject (not only to the viewer’s
preconceptions) to the circumstances in which it is located—its purpose and
future life.”1 For this reason, in the model, we represent the perception of the
quality of design as a variable with values ranging from 0 to 1.

The quality of design is modeled as a stock. The initial value is set to 1, which
means that at the beginning of the project, the quality of design is at its desired
value since no activities that deteriorate the design have been conducted. As
the project progresses, this high level of quality needs to be maintained by
refactoring. Insufficient refactoring reduces the quality of design while major
refactoring brings the quality of design back to an acceptable level.

3.6 Software Production and Human Resource Management

Human resource management and software production subsystems are
adapted from the work of Abdel-Hamid and Madnick [1991]. A major exten-
sion is the modeling of pair programming, which is unique to agile development.
Nosek [1998] examined the role of collaboration in a study of 15 full-time, expe-
rienced programmers working on a challenging problem. This study concludes
that collaboration improves both the programmers’ performance and their en-
joyment of the problem solving process. Williams et al. [2000] conducted a
structured experiment comparing pair programming with solo programming
in a classroom setting. The results show that pair programming yields a better
product with higher quality in less time and that the developers using this
approach enjoy the process more. However, pair programming allocates two
persons to each task, which increases labor costs. Therefore, its cost effective-
ness over the project lifecycle requires examination.

—Pair Programming and Productivity. Although pair programming uses two
persons in each task, some studies find that paired developers take less time
on each task. The results from empirical studies on the overall impact of pair
programming on productivity are mixed [Karlström 2002; Parrish et al. 2004;
Williams and Kessler 2000; Williams et al. 2000]. Therefore, we used the data
from our interviews (N1, N3, E2, C1) which suggest that pair programming
in a typical project consumes about 30% more effort than solo programming.

—Pair Programming and Rework. Prior studies report that pair programming
results in 40% to 90% fewer defects [Erdogmus and Williams 2003; Williams
et al. 2000]. Our data (S1, S2, S4, E1) collected from real projects indicates
that pair programming results in the reduction of defects by more than 50%.

—Pair Programming and Refactoring and Unit Testing. As discussed earlier,
pair programming also impacts the effort spent on refactoring and unit
testing. Our interviews (S1, H3) indicate that when developers are working
alone, the probability that they will engage in refactoring is reduced by half

1(http:/c2.com/cgi/wiki?WhyDidYouRefactorThat).

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:14 • L. Cao et al.

because they are not likely to be as disciplined as a paired team. Similarly,
paired developers are more disciplined than individuals in writing unit tests.
Our data (N4, S3) suggests that when developers are working individually,
they will reduce the coverage of unit testing.

In summary, our SD model represents essential practices used in agile devel-
opment. It represents agile development as an integrated system of practices
rather than in isolation, and incorporates dynamic features such a feedback,
time delays, and nonlinear cause-effect relationships. Therefore, this model can
be used to examine the dynamic nature of the impact of various practices on
critical project outcomes such as cost, schedule, and quality.

3.7 Model Validation

Our model has been thoroughly validated after it was developed and refined.
Model validation is concerned with creating sufficient confidence in a model
for its results to be acceptable. System dynamics research emphasizes a wide
range of tests, including tests of model structure, and the ability of the model
to reproduce real-life behavior [Barlas 1989; Forrester 1961; Forrester and
Senge 1980; Sterman 2000]. The identification of the appropriate structure
is the first step in establishing validity of a SD model because the structure
drives its behavior [Forrester 1961]. Once the structural validity is sufficiently
established, behavior validity, that is, how well the model-generated behavior
mimics the observed behavior of the real system, is assessed to achieve the
overall validity of the model [Sterman 2000].

In the online appendix, we report in detail the procedures and results of
our extensive model validation. First, results from structural validation are
presented. In his seminal work Sterman [2000] identifies a dozen tests that
may be used for structural validation. A variety of tests that focus on different
aspects of a model are used to ensure that the model satisfies the purpose
for which it was developed [Sterman 2000]. It should be noted that there is
no single test that can be used to either validate or invalidate the structure
of a model. The following nine tests that were relevant for the study were
used in our validation: boundary adequacy, structure assessment, dimensional
consistency, parameter assessment, extreme conditions, behavior anomaly, and
surprise behavior. The results from all the structural validation tests suggest
that our model structure closely reflects real agile development processes. Then,
we conducted behavioral validation using data from an independent case study
of a real-life agile development project. The objective of the case study was to
examine the model’s ability to reproduce the dynamic patterns observed in an
agile software development project.

The behavioral validation was done with data from RealSoft2 located in a
Rocky Mountain state. This company is not only a major vendor of tools used
in agile development, but it also uses these tools and agile methods in its
development process. The project followed an iterative approach, with each
iteration lasting two weeks. At the time of data collection, the project was

2To ensue anonymity of the participating organization, a pseudonym is used.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:15

Fig. 6. Estimated number of stories (simulated and actual) of RealSoft project.

ongoing and had plans for several more releases in the future. The development
teams consisted of four developers, one quality assurance engineer, and one
product manager (who also acted as a surrogate customer). Other relevant
details on the organization and project are described in the online appendix.

The parameters of the model were set to values that reflected the RealSoft
environment. Once the model was parameterized, it was run to simulate the
RealSoft project in the STELLA� simulation environment. We examined the
dynamic behavior of the following three critical project variables: (1) estimated
number of stories, (2) productivity, and (3) number of defects. We compare the
model’s simulated behavior over time with actual project results. The model
replicates the actual RealSoft project behaviors closely in the three variables ex-
amined. Due to space limitation, we only present results on the examination of
the first variable. The remaining results are presented in the online appendix.

Estimated number of stories. Figure 6 depicts the actual and simulated es-
timated number of stories. The figure shows that the estimated project scope
changed over time. The growth and decline of scope are caused by two factors
which impact scope adjustment in opposite directions: (1) scope extension: the
scope tends to increase as new tasks are discovered and the customer requests
new features, (2) scope shrinkage: the scope is reduced to meet the deadline be-
cause the project is considered to be behind schedule. The scope is extended or
reduced depending on the factor that has a stronger impact. In this case study,
scope extension is dominant during the first 80 days (marked by arrow 1) be-
cause the completion date is extended during that period. However, when the
maximum tolerant completion date is reached, the impact of the schedule con-
straint is greater and the scope is reduced to meet the scheduled delivery date.

The model estimates the number of stories to be 168, which is slightly lower
than the actual for the last two releases (181). A plausible reason for this
slight difference is that the model assumes that the project concludes at the
end of the modeled cycles. Towards the end of the project, management is

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:16 • L. Cao et al.

more likely to adjust the scope of the project to accommodate deadlines. In
the model, the customer’s willingness to change project scope is a variable
that increases with time. However, RealSoft was an ongoing project and more
releases were in planning or under development. Both the simulated scope and
the actual scope move upward again around day 120 (marked by arrow 2).
A careful examination of the model behavior suggests that this is due to the
dynamics of productivity (see Figure 2 in the online appendix). After a major
refactoring done by day 100 in the project, design quality is much improved
and the productivity increases for four iterations. The increased productivity
causes an increase in the estimated number of tasks that can be finished.

In summary, the behavioral validation demonstrates that the SD simulation
model developed in our research clearly predicts the dynamic behavior of criti-
cal project outcomes. In conjunction with the tests for structure validation, this
behavioral validation establishes that the model is valid and very well reflects
a typical agile software development project. Though none of these tests in iso-
lation is sufficient for ensuring the validity of the model, in combination they
provide a formidable filter to evaluate the performance of a model. The results
from the well-established tests conducted in our study confirm that our model
is sufficiently adequate and appropriate for use to investigate the dynamics of
agile software development.

4. INSIGHTS FROM MODEL EXPERIMENTATION

After the model was validated, we conducted an experiment to examine two
critical practices in agile software development. Specifically, we examined the
role and impacts of refactoring on project performance and economics of pair
programming using data from the RealSoft project. The RealSoft project was se-
lected because it represented a typical medium-sized agile development project,
following a hybrid methodology that uses practices from XP and SCRUM. The
parameters of the model were set to values that reflected the RealSoft project
environment. The SD model was specified in the STELLA� environment and
its behavior was simulated to understand the dynamic effects of refactoring and
pair programming. This experimentation illustrates the use of our SD simu-
lation model as a “flight simulator” for agile development projects. IS project
managers and project personnel can use our SD simulation to examine the
impact of a variety of agile development practices and management policies as
illustrated in the following subsections.

4.1 Refactoring and Its Impact

In real projects, the need for refactoring is not always obvious. Also, manu-
ally performing this task is fairly time consuming. Further, under schedule
pressure, programmers will not perform refactoring [Roberts 1999]. Similarly,
experienced programmers loathe modifying code that is working for fear of in-
troducing unexpected errors. The aphorism “if it ain’t broke, don’t fix it” is the
norm. Developers may get overly focused on delivering functionality and ne-
glect critical needs for refactoring [Opdyke 1995]. As a result, actual refactoring
effort is almost always less than the needed refactoring effort [Roberts 1999].

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:17

Fig. 7. Feedback structures of refactoring and design quality.

Figure 7 shows the feedback structures of refactoring and quality of design
with a balancing loop (Loop B) and a reinforcing loop (Loop R). At the core
is a balancing feedback loop with delay. Starting from the left, insufficient
refactoring leads to poor design quality. Though project requirements change
during development, the design is not updated immediately to accommodate
new requirements. Changes are made in the most expedient way possible and
the design of the system becomes increasingly ineffective and brittle. As design
deteriorates, so does the ability to understand and evolve the code effectively.
Not only does this make the software harder to change, but also it makes
bugs easier to breed, as well as harder to detect and safely remove. Poorly de-
signed code usually requires more effort to incorporate a new feature, and slows
down development [Fowler 1999]. Therefore, the cost of making modifications
increases. However, there is a threshold beyond which cost of modifications
cannot be allowed to escalate. The development can proceed until this cost is
below a threshold. Thus, there is a delay in perceiving the increased cost of
making modifications caused by poor design quality until it reaches a point
when the cost is above the threshold, or the delay in incorporating modifi-
cations is unacceptably long. Then, developers have to stop development and
clean up the messy code (i.e., perform “major refactoring”). After major refac-
toring, the design is at an acceptable level of quality such that the developers
can continue with another development cycle (completing/closing the balancing
Loop B).

The more the design suffers from insufficient refactoring, the faster the
decay in the quality of design. As a result, productivity declines and sched-
ule pressure increases. In response, developers spend less time on refactoring
and focus on finishing the development tasks assigned to them, which in turn

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:18 • L. Cao et al.

Fig. 8. Cost of change (person-days/change) in RealSoft project.

leads to further deterioration in design quality (completing the reinforcing
Loop R).

Next, we discuss the impact of refactoring on cost of making modifications
and the use of pair programming. It is long established that in traditional
development the cost of modifying software increases exponentially with time
[Boehm 1981]. Therefore, traditional methods emphasize the importance of
accurate requirements and detailed up-front design. In agile development,
the customer provides continuous feedback [Beck 2000] and the features that
needed to be modified are identified as soon as they are developed. Resulting
changes are likely to be small and inexpensive to implement, and as a result,
it is claimed that the cost of making modifications is constant instead of in-
creasing exponentially [Beck 2000]. However, since this claim has not been
adequately verified by prior research, we examine it with our SD simulation of
the RealSoft project.

The cost-of-change curve produced by the model is shown in Figure 8. It
shows the person-days needed for each change. The cost per change increases
over time and more interestingly, the curves go up and down in several cy-
cles. Further, we find that the cost of change increases quickly within each
small cycle. This increase is directly related to the need for refactoring. Ide-
ally, developers should keep refactoring the code to maintain the quality of
design. However, a lot of factors, such as schedule pressure, degree of pair
programming, and most importantly, the lack of motivation, affect the ac-
tual degree of refactoring. Insufficient refactoring will decrease the quality
of the design, and therefore accommodating change requests gets difficult
over time, until developers start cleaning up the messy code by engaging in
a significant refactoring exercise. Design is improved dramatically by sig-
nificant refactoring and then the cost per change drops. However, the need
for another cycle of refactoring begins right after a major refactoring ac-
tivity. Figure 9 shows how design quality varies over time with insufficient
refactoring.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:19

Fig. 9. Quality of design in RealSoft project.

The cost per change (person-days needed per change) ranges between 0.65
and 2.47 person-days. Our experiment suggests that in a typical agile project:
(1) cost of change is not constant, but rather, its value changes cyclically;
(2) overall, the cost of change increases over time but to a much lesser degree
(4:1) than in traditional approach (100:1). The result has significant implica-
tion for agile methods: the smaller range of cost of change appears to make
iterative development feasible. However, its applicability largely relies on the
refactoring practice. Even though short iterations and frequent releases reduce
the magnitude of changes dramatically, the cost of change can increase quickly
if the design is not cleaned up regularly. This reveals a potential risk in agile
development: if refactoring is not carefully done, the development process will
be ineffective.

Next, we test the impact of refactoring behavior on development cost. Ma-
jor refactoring is triggered when design quality drops to a level such that the
effort needed for making a change (such as adding a new feature or modi-
fying developed tasks) is much more than the normal effort. The developers
recognize this problem, and then begin to clean up the system, which starts
major refactoring. Figures 10 and 11 show how the delay in refactoring im-
pacts project performance. The delay is represented by the value of quality of
design when major refactoring is triggered. Quality of design is modeled as a
variable with values ranging from zero (representing situations in which no
major refactoring is done at all) to one (representing situations in which the
code is continuously refactored). Figures 10 and 11 clearly show that project
performance is very sensitive to the delay in major refactoring. In a project with
a fixed schedule, more delay causes higher cost and fewer delivered stories. It
is interesting to find that when delay is more than a certain threshold (in this
case quality of design = 0.4), the increased delay results in lower costs and more
delivered stories. The reason might be that the extra effort spent on major refac-
toring is not cost effective if it is done after much delay. However, without any

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:20 • L. Cao et al.

Fig. 10. Impact of delay of major refactoring on cost per story in RealSoft project.

major refactoring (quality of design close to zero), the project delivers the fewest
stories at the highest cost per story.

The simulation shows that, in general, the higher the level of refactoring,
the lower the overall development cost. However, since projects almost always
suffer from insufficient refactoring, major refactoring is unavoidable. In such
situations, development teams should plan for major refactoring in the release
plan. Figures 10 and 11 show that major refactoring should be planned fre-
quently. After the design quality drops beyond a minimally acceptable level,
the cost of adding new features increases sharply.

In summary, refactoring is critical to agile software development, and project
performance is very sensitive to delays in major refactoring.

4.2 Economics of Pair Programming

Studies have shown that pair programming results in less defects in code and
higher speed than solo programming [Williams et al. 2000]. However, pair
programming allocates two persons to each task, which increases labor costs.
We use the SD simulation model of the RealSoft project to investigate the
economics of pair programming.

We compare the results of two situations: (1) with 100% pair programming,
and (2) no pair programming. The impacts on a variety of variables such as
total cost of the project, cost of rework, cost of change, tasks delivered, and cost
per task are shown in Table III.

With no pair programming, fewer tasks are delivered than with 100% pair
programming. The cost per task delivered with no pair programming is 10%
higher than that with pair programming. We compared the cost of rework
and making changes with and without pair programming. The cost of rework

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:21

Table III. Comparing Pair Programming with No Pair Programming

No Pair Programming 100% Pair Programming
Total cost (person-days) 848 853
Cost of rework (person-days) 120 88
Cost of change (person-days) 96 87
Tasks delivered 166 182
Cost of refactoring (person-days) 306 273
Cost per task (person-days) 5.17 4.68

Fig. 11. Impact of delay of major refactoring on number of stories delivered in RealSoft project.

with no pair programming is 36% higher than that with pair programming.
This results from the lower defects rate with pair programming. Also, with no
pair programming, the cost of making changes is 10% higher and the cost of
refactoring is 12% higher. This explains why the cost of delivering a task by
paired teams is less than that without paired teams.

This experiment was conducted by keeping the degree of pair programming
constant over time. In reality, the degree of pair programming is impacted by
schedule pressure. The model accommodates this possibility as well. Generally
speaking, in the simulated project, pair programming not only results in lower
costs per task delivered but also increases the number of tasks delivered.

The behavior of the project with refactoring is examined to investigate the
influence of pair programming. Figure 12 shows the effect of refactoring activ-
ities with and without pair programming. The actual minor refactoring effort
with pair programming is higher than that with no pair programming. As
a result, less “technical debt” is accumulated over time and only two major
refactoring efforts are undertaken. The first happens around day 50 with pair
programming compared to day 40 without it. Also, without pair programming
this project requires three major refactoring activities.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:22 • L. Cao et al.

Fig. 12. Refactoring fractural with and without pair programming in RealSoft project.

Figure 12 clearly shows the impact of pair programming on refactoring be-
havior. With pair programming, the developers are more diligent in refactoring
their code, and as a result the effort needed for major refactoring is less. Ma-
jor refactoring is more costly than minor refactoring because “technical debt”
increases the costs. Thus the total cost of refactoring is less with pair pro-
gramming. Moreover, the need for fewer pauses in development due to major
refactoring makes a smoother development process.

The model shows that pair programming results in higher total development
cost. Also, some of the benefits of pair programming are realized through other
practices such as refactoring. If these practices are enforced by certain mecha-
nisms such as planned “hardening” iterations in RealSoft, then the benefit of
pair programming might be less significant.

In summary, the experimentation with the SD simulation provides valuable
insights on how two agile development practices affect critical project outcomes
and behaviors. Similarly, the SD simulation model presented here can be used
to examine the impacts of other agile development practices and managerial
policies.

5. CONCLUSIONS

The objective of this research is to answer important questions of IS orga-
nizations concerning the use of agile methods. This research enhances our
understanding of agile software development, especially the dynamic nature
of agile practices when viewed as an integrated system. We have developed an
integrative system dynamics model of agile software development, validated
its structure and behavior, and used it to study the dynamic implications of two
important practices (refactoring and pair programming) using a case study of
a real project. The integrated model describes the behavior generated by the
interaction of agile practices and project management including project scope,
schedule, and cost.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:23

The contributions of the research include the development of a new research
tool to understand and analyze the impacts of agile development practices.
Specifically, this tool helps investigate the following critical areas in agile
development: customer involvement, change management, refactoring, agile
planning and control, pair programming, and other commonly used agile prac-
tices. This research contributes to the literature on software development by
providing a mechanism to study agile development as a dynamic system of
practices rather than with a static view and in isolation. The model itself pro-
vides several building blocks that can be used in future research. Finally, the
results from this study are expected to be of significant interest to IS orga-
nizations and practitioners of agile practices. This research provides them a
simulation environment to examine the impact of their practices and policies.

Important feedback structures in agile software development are identified.
The model behavior clearly shows that these feedback structures indeed de-
termine important behaviors in agile development. The complex interactions
between elements in agile software development are explicitly identified and
represented in the model. Therefore, the model can be considered as a “the-
ory” of agile software development and can be used to guide future research in
this area. Our research investigates several claims about agile projects such
as potential trade-offs among performance measures and reveals new insights
about the dynamics of agile projects. For example, the model can be used by
organizations to investigate the impacts of specific practices such as pair pro-
gramming on project performance. The model can also be used to design and
analyze project management policies.

An experiment with the model suggests that refactoring impacts the cost of
making changes to the system. The cost changes cyclically and increases over
time. This pattern is the result of refactoring behavior which is critical to the
success of agile development. Also, in a project with a fixed schedule, delays
with major refactoring lead to higher project cost and fewer delivered stories.

The impacts of pair programming on productivity, rework, refactoring, and
unit testing were studied. The results show that with no pair programming,
fewer tasks are delivered than with pair programming. The cost for each task
delivered and the cost of rework and change with no pair programming are
much higher than with pair programming. With pair programming, the need
for major refactoring is less and the total cost of refactoring is reduced.

The model can help practitioners improve software development practice by
facilitating the understanding of agile project dynamics. First, the model can be
used to investigate the impacts of specific practices such as level of customer in-
volvement on project performance. Second, the model can be used to design and
analyze project management policies. For example, effort allocation between
refactoring and development can be explored to find the optimal level of refac-
toring effort. Third, the model can be used to examine the sensitivity of agile
development process to a variety of internal and external factors. For example,
the sensitivity of agile process to team size, length of iteration duration, and
the requirement volatility can be examined using the model. In summary, this
research provides researchers a tool to study agile development, and helps prac-
titioners make better decisions and formulate appropriate software processes.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:24 • L. Cao et al.

REFERENCES

ABDEL-HAMID, T. K. 1989. The dynamics of software project staffing: A system dynamics based
simulation approach. IEEE Trans. Softw. Engin. 15, 109–119.

ABDEL-HAMID, T. K. 1990. Investigating the cost/schedule trade-off in software development.
IEEE Softw. 7, 97–105.

ABDEL-HAMID, T. K. 1993a. Adapting, correcting, and perfecting software estimates: A mainte-
nance metaphor. IEEE Comput. 26, 20–29.

ABDEL-HAMID, T. K. 1993b. Modeling the dynamics of software reuse: An integrating system
dynamics perspective. In Proceedings of the 6th Workshop on Institutionalizing Software Reuse.

ABDEL-HAMID, T. K. AND LEIDY, F. H. 1991. An expert simulator for allocating the quality assurance
effort in software development. Simul. 56, 233–240.

ABDEL-HAMID, T. K. AND MADNICK, S. E. 1983. The dynamics of software project scheduling. Comm.
ACM 26, 340–346.

ABDEL-HAMID, T. K. AND MADNICK, S. E. 1991. Software Project Dynamics: An Integrated Approach.
Prentice Hall, Englewood Cliffs, NJ.

ABDEL-HAMID, T. K., SENGUPTA, K., AND HARDEBECK, M. J. 1994. The effect of reward structures
on allocating shared staff resources among interdependent software projects: An experimental
investigation. IEEE Trans. Engin. Manag. 41, 115–125.

ABDEL-HAMID, T. K., SENGUPTA, K., AND RONAN, D. 1993. Software project control: An experimen-
tal investigation of judgment with fallible information. IEEE Trans. Softw. Engin. 19, 603–
612.

ALSHAYEB, M. AND LI, W. 2005. An empirical study of system design instability metric and design
evolution in an agile software process. J. Syst. Softw. 74, 269–274.

ARNOLD, R. S. 1986. An introduction to software restructuring. In Tutorial on Software Restruc-
turing, R. S. Arnold Ed., IEEE Computer Society Press, Los Alamitos, CA.

BARLAS, Y. 1989. Multiple test for validation of system dynamics type of simulation models. Euro.
J. Oper. Res. 42, 59–87.

BASILI, V. R. AND WEISS, D. M. 1984. A methodology for collecting valid software engineering data.
IEEE Trans. Softw. Engin. 10, 728–737.

BECK, K. 1994. Simple smalltalk testing: With patterns. Smalltalk Rep. 4.
BECK, K. 2000. Extreme Programming Explained: Embrace Change. Addison-Wesley, Boston,

MA.
BECK, K. 2003. Test Driven Development: By Example. Addison-Wesley Professional.
BECK, K. AND GAMMA, E. 1998. Test infected: Programmers love writing tests. Java Rep. 3, 37–

50.
BERRY, D. M. 2002. The inevitable pain of software development, including of extreme pro-

gramming, caused by requirements volatility. In Proceedings of the International Workshop On
Time-Constrained Requirements.

BOEHM, B. 1981. Software Engineering Economics. Prentice-Hall, Englewood Cliffs, NJ.
BOEHM, B. 2002. Get ready for agile methods, with care. IEEE Comput. 35, 64–69.
BOEHM, B. AND TURNER, R. 2004. Balancing Agility and Discipline: A Guide for the Perplexed.

Addison Wesley.
CANGUSSU, J. W. 2004. A software test process stochastic control model based on cmm character-

ization. Softw. Process. Improv. Pract. 9, 55–66.
CAO, L., MOHAN, K., XU, P., AND RAMESH, B. 2009. A framework for adapting agile development

methodologies. Euro. J. Inform. Syst. 18, 332–343.
CHOI, S. J. AND SCACCHI, W. 2001. Modeling and simulating software acquisition process archi-

tectures. J. Syst. Softw. 59, 343–354.
CUNNINGHAM, W. 1992. The Wycash portfolio management system. In Proceedings of the Confer-

ence on Object Oriented Programming Systems Languages and Applications (OOPSLA). ACM
Press, New York.

CURTIS, B., KRASNER, H., AND ISCOE, N. 1988. A field study of the software design process for large
systems. Comm. ACM 31, 1268–1287.

DUTTA, A. AND ROY, R. 2005. Offshore outsourcing: A dynamic causal model of counteracting
forces. J. Manag. Inform. Syst. 22, 15–35.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

Modeling Dynamics in Agile Software Development • 5:25

DUTTA, A. AND ROY, R. 2008. Dynamics of organizational information security. Syst. Dynam. Rev.
24, 349–375.

ELSSAMADISY, A. AND SCHALLOIL, G. 2002. Recognizing and responding to ‘bad smells’ in xp. In
Proceedings of the ACM/IEEE International Conference on Software Engineering.

ERDOGMUS, H. AND WILLIAMS, L. 2003. The economics of software development by pair program-
mers. Engin. Econom. 48, 283–319.

ERICKSON, J., LYYTINEN, K., AND SIAU, K. 2005. Agile modeling, agile software development, and
extreme programming: The state of research. J. Data. Manag. 16, 88–99.

FITZGERALD, B., HARTNETT, G., AND CONBOY, K. 2006. Customizing agile methods to software prac-
tices at Intel Shannon. Euro. J. Inform. Syst. 15, 200–213.

FORRESTER, J. W. 1961. Industrial Dynamics. MIT Press, Cambridge, MA.
FORRESTER, J. W. AND SENGE, P. M. 1980. Tests for building confidence in system dynamics models.

TIMS Stud. Manag. Sci. 14, 209–228.
FOWLER, M. 1999. Refactoring: Improving the Design of Existing Code. Addison-Wesley.
GEORGE, B. AND WILLIAMS, L. 2002. An initial investigation of test-driven development in industry.

In Proceedings of the ACM Symposium on Applied Computing.
GLASS, R. 2004. Matching methodology to problem domain. Comm. ACM 47, 19–21.
GORTS, S. 2004. Refactoring in the large. http://www.refactoring.be/thumbnails/large/large.html
GRENNING, J. 2001. Launching xp at a process-intensive company. IEEE Softw. 18, 3–9.
HARRISON, B. 2003. A study of extreme programming in a large company.

http://www.agilealliance.org/articles/articles/ALR-2003-039-paper.pdf
HIGHSMITH, J. AND COCKBURN, A. 2001. Agile software development: The business of innovation.

IEEE Comput. 34, 120–122.
HODGETTS, P. 2004. Refactoring the development process: Experiences with the incremental

adoption of agile practices. In Proceedings of the IEEE Agile Development Conference.
HÖST, M., REGNELL, B., DAG, J. N. O., NEDSTAM, J., AND NYBERG, C. 2001. Exploring bottlenecks

in market-driven requirements management processes with discrete event simulation. J. Syst.
Softw. 59, 323–332.

JEFFRIES, R., ANDERSON, A., AND HENDRICKSON, C. 2001. Extreme Programming Installed. Addison-
Wesley, Boston, MA.

KARLSTRÖM, D. 2002. Introducing extreme programming—An experience report. In Proceedings
of the 3rd International Conference on eXtreme Programming and Agile Processes in Software
Engineering (XP’02).

KATAOKA, Y., IMAI, T., ANDOU, H., AND FUKAYA, T. 2002. A quantitative evaluation of maintain-
ability enhancement by refactoring. In Proceedings of the International Conference on Software
Maintenance. 576–585.

LI, W. AND HENRY, S. 1993. Object-Oriented metrics that predict maintainability. J. Syst. Softw.
23, 111–122.

LIENTZ, B. P., SWANSON, E. B., AND TOMPKINS, G. E. 1978. Characteristics of application software
maintenance. Comm. ACM 21, 466–471.

MADACHY, R. 2007Software Process Dynamics . Wiley-IEEE Press, Los Alamitos, CA.
MARTIN, R. C. 2000. Extreme programming development through dialog. IEEE Softw. 17, 12–

13.
MENS, T. AND TOURWE, T. 2004. A survey of software refactoring. IEEE Trans. Softw. Engin. 30,

126–139.
NOSEK, J. T. 1998. The case for collaborative programming. Comm. ACM 41, 105–108.
OPDYKE, W. F. 1992. Refactoring: A program restructuring aid in designing object-oriented appli-

cation frameworks. Ph.D. thesis, University of Illinois at Urbana-Champaign.
OPDYKE, W. F. 1995. Refactoring object-oriented software to support evolution and reuse. In Pro-

ceedings of the 7th Annual Workshop on Institutionalizing Software Reuse.
PARRISH, A., SMITH, R., HALE, D., AND HALE, J. 2004. A field study of developer pairs: Productivity

impacts and implications. IEEE Softw. 21, 76–79.
PETERS, P. AND JARKE, M. 1996. Simulating the impact of information flows in networked organi-

zations. In Proceedings of the International Conference on Information Systems (ICIS).
RAMESH, B., CAO, L., AND BASKERVILLE, R. 2010. Agile requirements engineering practices and

challenges: An empirical study. Inform. Syst. J. 20, 5, 449–480.

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

5:26 • L. Cao et al.

ROBERTS, D. 1999. Practical analysis for refactoring. Ph.D. thesis, University of Illinois at Urbana
Champaign.

ROEHLING, S. T., COLLOFELLO, J. S., HERMANN, B. G., AND SMITH-DANIELS, D. E. 2000. System dy-
namics modeling applied to software outsourcing decision support. Softw. Process. Improv. Pract.
5.

RUMPE, B. AND SCHROEDER, A. 2002. Quantitative survey on extreme programming project. In
Proceedings of the 3rd International Conference on eXtreme Programming and Agile Processes in
Software Engineering. 95–100.

RUS, I., COLLOFELLO, J., AND LAKEY, P. 1999. Software process simulation for reliability manage-
ment. J. Syst. Softw. 46, 173–182.

SENGUPTA, K. AND ABDEL-HAMID, T. K. 1996. The impact of unreliable information on the manage-
ment of software projects: A dynamic decision perspective. IEEE Trans. Syst. Man Cybernet. 26,
177–189.

SENGUPTA, K., ABDEL-HAMID, T. K., AND BOSLEY, M. 1999. Coping with staffing delays in software
project management: An experimental investigation. IEEE Trans. Syst. Man Cybernet. A29, 77–
91.

SHORE, J. 2004. Continuous design. IEEE Comput. 21, 20–22.
STALLINGER, F. AND GRÜNBACHER, P. 2001. System dynamics modeling and simulation of collabo-

rative requirements engineering. J. Syst. Softw. 59, 311–321.
STARK, G. E., OMAN, P., SKILLICORN, A., AND AMEELE, A. 1999. An examination of the effects of

requirements changes on software maintenance releases. J. Softw. Maint. Res. Pract. 11, 293–309.
STERMAN, J. D. 2000. Business Dynamics: System Thinking and Modeling for a Complex World.

McGraw-Hill.
STROULIA, E. AND LEITCH, R. 2003. Understanding the economics of refactoring. In Proceedings of

the 5th ICSE Workshop on Economics-Driven Software Engineering Research.
SWANSON, E. B. 1976. The dimensions of maintenance. In Proceedings of the 2nd Conference on

Software Engineering. 492–497.
WEST, D., GRANT, T., GERUSH, M., AND D’SILVA, D. 2010. Agile Development: Mainstream Adoption

Has Changed Agility. Forrester Research.
WHILER, O. 2003. Refactoring. Methods & Tools Spring.
WILLIAMS, L. 2001. Integrating pair programming into a software development process. In Pro-

ceedings of the 14th Conference on Software Engineering Education and Training.
WILLIAMS, L. AND KESSLER, R. R. 2000. The effects of “pair-pressure” and “pair-learning” on soft-

ware engineering education. In Proceedings of the 13th Conference of Software Engineering Ed-
ucation and Training.

WILLIAMS, L., KESSLER, R. R., CUNNINGHAM, W., AND JEFFRIES, R. 2000. Strengthening the case for
pair-programming. IEEE Softw. 17, 19–25.

Received February 2010; revised September 2010; accepted September 2010

ACM Transactions on Management, Information Systems, Vol. 1, No. 1, Article 5, Publication date: December 2010.

