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Abstract
Work with STEM students at MTBI advanced the
possibility that quarantine can cause increased
levels of Ebola transmission.1
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Disease, Epidemics, and Models
Since twenty-first-century problems stretch
across disciplines, they require interdisciplinary
approaches. As Steve Strogatz [1] observes:

Cancer will not be cured by biologists work-
ing alone. Its solutionwill require amelding
of both great discoveries of 1953 [the Fermi-
Pasta-Ulam computer experiment and the
Watson and Crick discovery of the chemical
structure of DNA]. Many cancers, perhaps
most of them, involve the derangement of
biochemical networks that choreograph the
activity of thousands of genes and proteins.
As Fermi and his colleagues taught us, a
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complex system like this can’t be under-
stood merely by cataloging its parts and
the rules governing their interactions. The
nonlinear logic of cancer will be fathomed
only through the collaborative efforts of
molecular biologists—the heirs to Dr. Wat-
son and Dr. Crick—and mathematicians
who specialize in complex systems—the
heirs to Fermi, Pasta and Ulam.

Per Strogatz, the future scientists at the Mathe-
matical and Theoretical Biology Institute (MTBI ),
established at Cornell University in 1996, learn
the problem-solving ropes by engaging in collabo-
rative, cross-discipline efforts—often enhanced by
the systematic use of computer experiments and
data science—to answer focused scientific ques-
tions. The interdisciplinary research described in
this note involves the dynamics of deadly diseases
such as Ebola.

Germ Theory and Epidemic Models
Aristotle’s hypothesis on the existence of invisi-
ble microorganisms; Antonie van Leeuwenhoek’s
discovery of such germs; and the germ-theory
framework advanced by Jacob Henle, Robert Koch,
Joseph Lister, and Louis Pasteur served as the foun-
dation for the study of infectious diseases. Daniel
Bernoulli in 1760 introduced a mathematical
model used immediately to assess the effec-
tiveness of inoculation against smallpox virus.
Much later, W. N. Hamer developed and ana-
lyzed a discrete-time mathematical model to help
understand the recurrence of measles epidemics.

In 1902 Sir Ronald Ross was awarded the Nobel
Prize for tying malaria to Plasmodium parasites
carried by mosquitoes. He formulated a nonlinear
system of differential equations that captured its
transmission dynamics. His clear understanding
of host-vector-pathogen dynamics drove him to
consider the impact of such interactions at the
population level. Ross concluded from his analy-
sis that reducing the vector (mosquito) population
below some threshold would drastically decrease
malaria’s devastating impact on the health and
survival of individuals living in malaria-infested
regions. Following Ross’s legacy, Kermack and
McKendrick advanced the concept of epidemic
threshold in the context of communicable dis-
eases such as influenza or tuberculosis. The
ideas of these pioneers were later popularized
by M. Gladwell in his best-selling book The Tip-
ping Point. Important expansions and variations
on these foundational models have given rise to
the field of mathematical epidemiology and its
applications (see e.g. [2]).

Ross also highlighted in his research the power
of abstraction inherent in mathematics by explic-
itly alluding to the applicability of his malaria
framework to the study of sexually transmitted

diseases (STD). Cooke and Yorke followed through
on Ross’s ideas and produced one of the first
STD models in 1973. Hethcote and Yorke later
introduced the concept of core group, a concept
which has had a tremendous impact on policies
aimed at reducing gonorrhea incidence.

Ebola Control and Ebola Spatial Dynamics
As the Ebola outbreak spread acrossWest Africa in
2014–2015, 24/7 cable news coverage ensured that
fear of the disease spread among large subpop-
ulations of individuals living far outside affected
areas.

Whether or not Ebola-infected individuals can
be detected before becoming infectious turned
out to be a central question. MTBI alumnus Diego
Chowell wondered how effective Ebola detection
using Polymerase Chain Reaction (PCR) would be
if deployed at the presymptomatic stage of the
disease. Following the research carried out byMTBI
alumni during the 2003 Canada SARS outbreak,
Chowell et al. [3] proposed the following single
outbreak epidemic model; see also Figure 1, and
Tables 1 and 2.
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Figure 1. Modeling the effect of early detection
of Ebola.

̇𝑆 = −𝛽𝑆(𝐼 + 𝑙𝐽𝑁 ) ,
̇𝐸1 = 𝛽𝑆(𝐼 + 𝑙𝐽𝑁 )− 𝜅1𝐸1,̇𝐸2 = 𝜅1𝐸1 −𝜅2𝐸2 − 𝑓𝑇𝐸2,̇𝐼 = 𝜅2𝐸2 − (𝛼+𝛾)𝐼,̇𝐽 = 𝛼𝐼 + 𝑓𝑇𝐸2 −𝛾𝑟𝐽,𝑅̇ = 𝛾(1 − 𝛿)𝐼 + 𝛾𝑟(1 − 𝛿)𝐽,𝐷̇ = 𝛾𝛿𝐼 + 𝛾𝑟𝛿𝐽,𝑁 = 𝑆+ 𝐸1 +𝐸2 + 𝐼+ 𝐽+𝑅.

Table 1. Variables of the Model.

Class Description𝑆 Susceptible𝐸1 Latent undetectable𝐸2 Latent detectable𝐼 Infectious and symptomatic𝐽 Isolated𝑅 Recovered𝐷 Ebola-induced death𝑃 𝐷+𝑅
April 2016 Notices of the AMS 367



Table 2. Parameters of the Model.

Parameter Description Value𝛽 Mean transmission rate 0.3331/𝑘1 Mean period between undetectable state and latent detectable state 4 days1/𝑘2 Mean period between latent detectable state to infectious state 3 days1/𝛼 Mean period between infectious state and isolation state 3 days1/𝛾 Mean period between infectious state and recovery or Ebola-induced death state 6 days1/𝛾𝑟 Mean period between isolation state and recovery or Ebola-induced death state 7 days𝑓𝑇 Fraction of latent individuals diagnosed before onset of symptoms (0.1)𝛿 Fatality rate 0.7𝑙 Relative transmissibility of isolated individuals (0.1)

This transmission model was parameterized
using prior MTBI research on Ebola dynamics. It
was determined, via simulations, that the use of
modern technologies (PCR) are indeed insufficient
to stop an Ebola outbreak unless enough facilities
are available to isolate a significant proportion of
Ebola-diagnosed individuals (see Figure 2). More-
over, the DNApolymerase used in the PCR reaction
is prone to errors and can lead to mutations in the
fragment generated. Additionally, the specificity
of the generated PCR product may be changed by
nonspecific binding of the primers to other similar
sequences on the template DNA. Furthermore, in
order to design primers to generate a PCR product,
some prior information on the sequence is usually
necessary.
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Figure 2. Modeling the effect of early detection
of Ebola. The attack rate is defined as the total
number of Ebola cases per population size.

The research carried out in response to the
2002–2003 SARS outbreak identified specific ap-
proaches that made it possible to assess the
potential of a disease outbreak with limited data.
Today, epidemiologists using single outbreak epi-
demiologicalmodels in conjunctionwith incoming
reported outbreak data can estimate the basic re-
production numberℛ0 and often also the typically
decreasing effective reproductive number ℛeff(𝑡).
That is, it is possible to estimate the initial epidemic
growth rate andassociated typicallydeclining rates
of growth over time, the result of the depletion
of susceptible individuals over the course of an
outbreak. Towers et al. [4] found out that the rate
of growth inWest Africa was in fact not decreasing
over time but increasing (see Figure 3). This group
of researchers used changing epidemic growth
estimates to forecast 6, 800 cases by the end of

September 2014, quite close to 6,553, the actual
number of cases reported by the World Health
Organization.

Figure 3. Time series of recorded average
number of new EVD cases per day during the
initial phase of the 2014 West African
outbreak for Guinea, Sierra Leone, and Liberia
(dots). The green lines show a selection of the
piecewise exponential fits to the data. The red
lines show moving-window exponential fits
from July 1 onwards.

Our epidemiologically model-driven data anal-
ysis drove us to consider the possibility that the
enforced “cordons sanitaires” mass quarantine
restrictions in West Africa in late summer 2014,
which forcefully restricted the movement of indi-
viduals within the most affected Ebola areas, may
have in fact contributed to increased levels of
Ebola transmission due to overcrowding and poor
sanitation [4].

MTBI alumnus Edgar Diaz Herrera in his PhD
dissertation [5] looked at the dynamics of visibly
symptomatic diseases such as leprosy or Ebola
on the spatial dynamics of epidemics. He asked
whether individuals will aggregate in particular
spatial patterns as a result of physically visible
symptoms. Diaz Herrera introduced the epidemi-
ological classes of susceptible 𝑆(𝑥, 𝑡), infectious
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asymptomatic 𝐼1(𝑥, 𝑡), and infectious visibly symp-
tomatic 𝐼2(𝑥, 𝑡) via the following nonlinear system
of partial differential equations in response to his
question:𝜕𝑆𝜕𝑡 = − 𝛽1+ 𝐼2𝑆𝐼1 +𝛼𝐼2 +𝐷𝑆 𝜕2𝑆𝜕𝑥2 ,𝜕𝐼1𝜕𝑡 = 𝛽1+ 𝐼2𝑆𝐼1 −𝛿𝐼1 +𝐷1 𝜕2𝐼1𝜕𝑥2 ,

𝜕𝐼2𝜕𝑡 = 𝛿𝐼1 −𝛼𝐼2 +𝐷2 𝜕2𝐼2𝜕𝑥2 .
Diaz Herrera’s model incorporated a modified

mass-action law, where the transmission coeffi-
cient ̂𝛽 was taken to be a decreasing function𝛽1+ 𝐼2 of 𝐼2. The growing population of the visi-
bly infectious is assumed to decrease the contact
rates between individuals. We found [6] that the
above reaction-diffusion system was capable of
supporting diffusive instabilities when 𝐼2 individ-
uals are not infectious for too long. In this case,
aggregation occurs when 𝐷2 > 𝐷1, rapidly when𝐷2 ≫ 𝐷1; see Figure 4.

Lagrangian Approach to Epidemic Models
and Ebola
Lagrangian models (see e.g. [7]) keep track of each
individual at all times. A general Susceptible-
Infectious-Susceptible, or SIS, model involving𝑛-patches is given by the following system of
nonlinear equations:⎧⎪⎨⎪⎩

̇𝑆𝑖 = 𝑏𝑖−𝑑𝑖𝑆𝑖+𝛾𝑖𝐼𝑖−∑𝑛𝑗=1(𝑆𝑖 infected in Patch 𝑗)̇𝐼𝑖 = ∑𝑛𝑗=1(𝑆𝑖 infected in Patch 𝑗) − 𝛾𝑖𝐼𝑖 −𝑑𝑖𝐼𝑖𝑁̇𝑖 = 𝑏𝑖 −𝑑𝑖𝑁𝑖,
where 𝑏𝑖, 𝑑𝑖, and 𝛾𝑖 denote the per capita birth,
natural death, and recovery rates respectively.
Infection is modeled as follows:[𝑆𝑖 infected in Patch 𝑗] = 𝛽𝑗⏟

the risk of infection in Patch 𝑗× 𝑝𝑖𝑗𝑆𝑖⏟
susceptible from Patch 𝑖 who are currently in Patch 𝑗

× ∑𝑛𝑘=1 𝑝𝑘𝑗𝐼𝑘∑𝑛𝑘=1 𝑝𝑘𝑗𝑁𝑘⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
proportion of infected in Patch 𝑗

,
where the last term accounts for the effective
infection proportion in Patch 𝑗 at time. The model
reduces to the 𝑛-dimensional system

̇𝐼𝑖 = 𝑛∑𝑗=1(𝛽𝑗𝑝𝑖𝑗(𝑏𝑖𝑑𝑖 − 𝐼𝑖) ∑𝑛𝑘=1 𝑝𝑘𝑗𝐼𝑘∑𝑛𝑘=1𝑝𝑘𝑗 𝑏𝑘𝑑𝑘 )−(𝛾𝑖+𝑑𝑖)𝐼𝑖,
𝑖 = 1, 2,… ,𝑛,

with a basic reproduction number ℛ0 that is a
function of the risk vectorℬ = (𝛽1, 𝛽2,… ,𝛽𝑛)𝑡 and
the residence timesmatrixℙ = (𝑝𝑖,𝑗), 𝑖, 𝑗 = 1,… ,𝑛,

where 𝑝𝑖,𝑗 denotes the proportion of the time
that an 𝑖-resident spends visiting Patch 𝑗. We
show that when ℙ is irreducible (patches are
strongly connected), the Disease Free State is
globally asymptotically stable (g.a.s.) if ℛ0 ≤ 1,
while whenever ℛ0 > 1 there exists a unique
interior equilibrium which is g.a.s.

The patch-specific basic reproduction number
is given by

ℛ𝑖0(ℙ) = ℛ𝑖0 × 𝑛∑𝑗=1(𝛽𝑗𝛽𝑖 )𝑝𝑖𝑗 ( 𝑝𝑖𝑗 𝑏𝑖𝑑𝑖∑𝑛𝑘=1𝑝𝑘𝑗 𝑏𝑘𝑑𝑘 ) ,
from where we see, for example, that if 𝑝𝑘𝑗 =0 for all 𝑘 = 1,… ,𝑛, and 𝑘 ≠ 𝑖, then the disease
dies out in Patch 𝑖.

Figure 4. The densities for the asymptomatic
infectious 𝐼1 are plotted for 𝛼 = 0.05, 𝛽 = 1 and𝛿 = 1.3 for the Diaz Herrera model. Slow
spatial aggregation of individuals (top) occurs
when the coefficients 𝐷2 > 𝐷1
(𝐷1 = 10,𝐷2 = 20), and fast spatial aggregation
(bottom) occurs when 𝐷2 ≫ 𝐷1
(𝐷1 = 10,𝐷2 = 80).

Ongoing MTBI alumni work [7] uses this model
to testwhethermovement restrictions reduce over-
all transmission. We embed susceptible, exposed,
infectious, dead, and removed categories into the
simple and basic single-patch (S E I D R) model
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Table 3. Variables and Parameters of the Contagion Model.

Parameter Description Base model values𝛼 Rate at which asymptomatic individuals recover
(not infectious due to acquired immunity) 0 − 0.458 day−1𝛽 Per susceptible infection rate 0.3056 day−1𝛾 Rate at which an infected recovers or dies 16.5 day−1𝜅 Per capita progression rate 17 day−1𝜈 Per capita body disposal rate 0.5 day−1𝑓dead Proportion of infected who die due to infection 0.708𝜀 Scale: Ebola infectiousness of dead bodies 1.5
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Figure 5. Dynamics of maximum final size in
the one-way case with parameters:𝜀1,2 = 1,𝛽1 = 0.305,𝛽2 = 0.1, 𝑓death = 0.708,𝑘 = 1/7,𝛼 = 0,𝜈 = 1/2,𝛾 = 1/6.5. The initial
populations are 𝑁1 = 𝑁2 = 1,000, 000. For most
values of the one-way mobility from Patch 1
(high risk) to Patch 2 (low risk), the cumulative
final size of the epidemic is smaller than for
no mobility.

given by the following set of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑁 = 𝑆+𝐸+ 𝐼+𝐷+𝑅
̇𝑆=−𝛽𝑆 𝐼𝑁 −𝜀𝛽𝑆𝐷𝑁
̇𝐸 = 𝛽𝑆 𝐼𝑁 + 𝜀𝛽𝑆𝐷𝑁 − (𝜅+𝛼)𝐸
̇𝐼 = 𝜅𝐸−𝛾𝐼

𝐷̇ = 𝑓dead𝛾𝐼 − 𝜈𝐷
𝑅̇ = (1 − 𝑓dead)𝛾𝐼 + 𝜈𝐷+𝛼𝐸.

See Table 3 for a description of the parameters.
The transition from 𝐷 to 𝑅 represents the proper
and appropriate handling of dead bodies during
the burial or ritual services.

In the simplest version of our Lagrangian frame-
work, there is a two-patchworld of “residents” and
“visitors”, connected by a residence time matrix

ℙ = ( 𝑝11 𝑝12𝑝21 𝑝22 ) .
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Figure 6. Dynamics of maximum final size in
the one-way case with parameters: 𝜀1,2 =1,𝛽1 = 0.305,𝛽2 = 0.122, 0.12, 0.118, 𝑓death =0.708, 𝑘 = 1/7,𝛼 = 0,𝜈 = 1/2,𝛾 = 1/6.5. The
initial populations are 𝑁1 = 𝑁2 = 1,000, 000. As
the level of risk 𝛽2 in the low-risk patch
increases, the value of positive mobility
disappears.

We explore, via simulations, the role of restric-
tions in movement between patches. Preliminary
simulations assume that the patches have equal
populations, but the high-risk area is assumed
to have a high population density, poor health
facilities, and limited resources, while the low-risk
area is assumed to host a sparsely distributed pop-
ulation and solid health facilities and resources.
This is a standard hypothesis for communicable
diseases in general, and it applies to Ebola in
particular. The parts of West Africa where Ebola
exploded are poverty-stricken areas, with much
higher density than middle or upper middle class
neighborhoods, so the hypothesis is reasonable.
Figures 5 and 6 show how mobility and risk af-
fect the final size of the epidemic. Sometimes
quarantining the high-risk area yields a larger
epidemic.

All differences are assumed to be captured by
the assigned 𝛽-values.

Figure 5 and Figure 6 provide some ideas of the
role that mobility and risk play in the dynamics
of Ebola in connected high/low-risk environments.
Figure 5 plots both the global and the per patch
final epidemic size as a function of mobility from
Patch 1 (high risk) to Patch 2, exclusively. We see,
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for example, that high single-direction mobility
leads to a smaller cumulative final epidemic size
in this case.

Of course, Figure 5 provides only part of the
story. In Figure 6 we plot global epidemic size as
a function of the level of risk in the low-risk patch
(𝛽2). We see from simulations that the quality of
services in Patch 2, as defined by 𝛽2, would lead
to a beneficial global result only if 𝛽2 ≤ 0.12. Also,
simulations suggest that the choice 𝛼 > 0 brings
the reproduction number ℛ0 below one much
faster for a wide range of residence times.
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