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ABSTRACT The trend of decentralization of energy services has given rise to community energy systems.

These energy communities aim to maximize the self-consumption of local renewable energy generated and

stored in assets that are typically connected to low-voltage (LV) distribution networks. Energy community

schemes often involve jointly owned assets such as community-owned solar photo-voltaic panels (PVs), wind

turbines and/or shared battery storage. This raises the question of how these assets should be controlled

in real-time, and how the energy outputs from these jointly owned assets should be shared fairly among

heterogeneous community members. Crucially, such real-time control and fair sharing of energy must

also consider the technical constraints of the community, such as the local LV network characteristics,

voltage limits and power ratings of electric cables and transformers. In this paper, we design and analyze

a heuristic-based battery control algorithm that considers the influence of battery life degradation, and

the resultant increase in local renewable energy consumption within local operating constraints of the LV

network. We provide a model that first studies the techno-economic benefits of community-owned versus

individually-owned energy assets considering the network/grid constraints. Then, using the methodology

and principles from cooperative game theory, we propose a redistribution model for benefits in a community

based on the marginal contribution of each household. The results from our study demonstrate that the

redistribution mechanism is fairer and computationally tractable compared to the existing state-of-the-art

methods. Thus, our methodology is more scalable with respect to modeling the economic sharing of joint

assets in community energy systems.

INDEX TERMS Battery degradationmodel, coalitional game theory, community energy storage, community

vs. individual energy assets, energy community, energy sharing mechanism, low-voltage network, network

constraints, self-consumption.

NOMENCLATURE

SUBSCRIPTS AND SETS

i for agents (households)

C for community

The associate editor coordinating the review of this manuscript and

approving it for publication was Salvatore Favuzza .

N set of the number of agents (households)

T set of the number of time periods

PARAMETERS

ηc battery charging efficiency

ηd battery discharging efficiency

SoC initial initial battery SoC [%]
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SoCmax maximum battery SoC [%]

SoCmin minimum battery SoC [%]

DoD battery depth of discharge [%]

pbat,max maximum power that battery can

charge/discharge [kW]

V slack bus voltage of the slack/reference bus [V]

Pcurtailed curtailed power i.e curtailment of export

from renewable generator (solar PV/wind

turbine), or curtailment of export/import

from/to battery [kW]

τ s(t) selling price (export tariff) at t [pence/kWh]

τ b(t) buying price (import tariff) at t [pence/kWh]

cAi (T ) annualized cost of the asset for agent i,
where T = 1 year [£/kWh for battery, and

£/kW for solar PV/wind turbine]

cA
C
(T ) annualized cost of the asset for community

C, where T = 1 year [£/kWh for battery, and

£/kW for solar PV/wind turbine]

VARIABLES

t time period

1t duration of the time period t
SoC(t) battery state of charge at t [%]

DFregular depreciation factor due to regular cycle

DFirregular depreciation factor due to irregular cycle

V bus(t) bus voltage at t [V]
Pbus(t) bus power at t [kW]

gwind/solari (t) power from the renewable generator of agent

i at t [kW]

g
wind/solar(t)
C

power from the renewable generator of com-

munity C at t [kW]

p
grid
i (t) power from the utility grid of agent i at t

[kW]

p
grid
C

(t) power from the utility grid of community C

at t [kW]

pbati (t) power of the battery for agent i at t [kW],

charging(-ve) and discharging(+ve)

pbat
C
(t) power of the battery for community C at t

[kW], charging(−ve) and discharging(+ve)

di(t) power consumed by the agent i at t [kW]

dC(t) power consumed by the community C at t
[kW]

esi (t) energy exported by agent i at t [kWh]

es
C
(t) energy exported by community C at t [kWh]

ebi (t) energy imported by agent i at t [kWh]

eb
C
(t) energy imported by community C at t [kWh]

bi(T ) annual bill for agent i, where T = 1 year [£]

b0i (T ) baseline annual bill for agent i without any
assets, where T = 1 year [£]

b∗
i (T ) new annual bill for agent i after redistribu-

tion of savings, where T = 1 year [£]

b
∗(¬)
i (T ) new annual bill for agent i after redistribu-

tion of savings without network constraints,

where T = 1 year [£]

b
∗(NC)
i (T ) new annual bill for agent i after redistri-

bution of savings with network constraints,

where T = 1 year [£]

bC(T ) annual bill for community C, where T =

1 year [£]

bNC
C

(T ) annual bill for community C with network

constraints, where T = 1 year [£]

b¬
C
(T ) annual bill for community C without net-

work constraints, where T = 1 year [£]

5C(T ) saving of the community C after 1 year (T =

1 year) [£]

Θi(T ) marginal contribution of an agent i [£]
Γi(T ) benefits redistributed to agent i after period

T [£]

ABBREVIATIONS

ANM Active Network Management

BESS Battery Energy Storage System

CES Community Energy Storage

DERs Distributed Energy Resources

DF Depreciation Factor

DNOs Distribution Network Operators

DoD Depth of Discharge

DSM Demand Side Management

DSO Distribution System Operator

EoL End of Life

FITs Feed-in Tariffs

HES Household Energy Storage

LACE Levelized Avoided Cost of Electricity

LCOE Levelized Cost of Electricity

LV Low Voltage

MIDAS UKMetOffice IntegratedDataArchive Sys-

tem

P2P Peer-to-Peer

ReFLEX Responsive Flexibility

RES Renewable Energy Sources

SCR Self Consumption Rate

SoC State of Charge

SRR Self Sufficiency Rate

ToU Time of Use

I. INTRODUCTION

Access to affordable renewable energy resources (RES) rep-

resents a key element of an inclusive energy transition, rep-

resented as one of the core UN sustainable development

goals [1]. Enhancing the use of locally-generated renew-

able energy can reduce the energy system contribution to

climate change [2], achieve decarburizations [3], and speed

up the transition to a low carbon economy [4]. This has led

to an exponential growth in the deployment of RES. The

increasing number of distributed energy resources (DERs)

connected to LV distribution networks is shifting the develop-

ment of energy systems towards a more decentralized struc-

ture, enabling a significant shift in market power form large

producers to individual prosumers [5].
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However, the increase in penetration of distributed gen-

eration results in new challenges for the operation of dis-

tribution networks. A key challenge with RES generators is

that they are intermittent, small-sized and distributed across

the distribution network. They are gradually transforming

networks into active and two-way energy flow networks, cru-

cially challenging the way they are traditionally designed and

managed. For instance, power flows become reversed and the

distribution network is no longer a passive circuit supplying

loads but becomes an active system with power flows and

voltages determined by the local embedded generation output

as well as the loads [6]. Voltage out-of-bounds excursions

(i.e. temporary fluctuations of voltage outside safe accepted

limits, often determined by regulation) are an example of the

new challenges for the distribution system operators (DSOs)

face when managing the network in real-time.

In addition to the challenges faced by DSOs, the increasing

electricity retail prices and decreasing feed-in tariff rates

have reduced the incentives for household and business con-

sumers to invest in distributed renewable energy sources.

Still, the energy transition that has started in many countries

requires households to keep investing in renewable energy

generation. This has led to the emergence of local or com-

munity energy systems where household and business pro-

sumers aim to maximize behind-the-meter self-consumption

from local renewable generation to make DERs more prof-

itable [7]. An energy community is made up of a number

of individual prosumers connected to a low-voltage distribu-

tion network, usually behind the same primary sub-station.

Prosumer assets (i.e. renewable generation capacity and stor-

age) can be either distributed at individual households or

centrally installed and thus shared within the community.

Hence, this requires new control techniques for the optimiza-

tion of self-consumption in energy community microgrids

subjected to physical network and operational constraints [8].

Therefore, there is an increasing interest from academia and

industry in designing, analysing and assessing the community

energy schemes, against criteria such as scalability, efficiency

and resiliency.

Recently, several community energy projects have

emerged in the UK, the EU and worldwide. For instance,

In the UK, Community Energy Scotland (a key local orga-

nization supporting the development community energy

projects) lists more than 300 community energy projects

on their website [9]. Similar rising trends in smart energy

community initiatives can be seen across the United States

(such as the Brooklyn Microgrid project [10]), and across

Europe (refer [11] for an overview).

A crucial aspect of a community energy models and

projects is that they often involves sharing of some joint

resources and assets. One approach is to facilitate peer-

to-peer (P2P) trading in the case of individually-owned assets,

whereas another approach consists in creating a community

energy coalition in the case of community-owned assets,

where an aggregator or community energy operator dis-

tributes the benefits within the community. A successful

example of such a scheme is the ‘‘Ecovillage’’ of Findhorn

in Scotland, UK [12]. Despite the fact that number of energy

communities has witnessed a rapid increase, there is still

a considerable gap in both existing research and practice

regarding what are the optimal and fair methods to redis-

tribute the energy outputs (and hence financial benefits) from

the jointly community-owned assets to their members.

The physical network (the LV distribution grid) is an essen-

tial entity that allows the exchange of energy in the settings

of the energy communities. However, an important aspect

that has often been neglected in existing research on energy

community models is the relevance of the distribution grid’s

technical limits. Installation of renewable generator (solar

PV/wind turbine) or batteries in the grid changes power flows,

and might create congestions, voltage excursions, or line

over-heating. In such cases, the grid operator might con-

sider the need for an Active Network Management (ANM)

to remotely control the injection of distributed renewable

generator and storage assets. Therefore, due to this con-

gestion/voltage excursion, assets might be prevented from

exporting/consuming to/from the grid, reducing the benefits

from their owners. For instance, when the grid is constrained

with voltage excursions, then the exports form PV/wind tur-

bine and exports/imports from/to battery can be curtailed as

it is currently the case in Orkney Islands [13], UK. Therefore,

such curtailment events need to be accounted for in the energy

community setting by including power flow (physical net-

work/grid constraints) in the techno-economic analysis. For

example, in most of the prior literature, the studied models of

energy communities do not consider the impact of physical

network constraints in the assessment of the techno-economic

benefits of community-owned energy assets compared to

individually-owned energy assets.

Furthermore, although most prior literature sources show

that community-owned battery storage system offers higher

benefits as compared to individually-owned distributed bat-

teries [7], [14]–[17], these studies often do not consider

battery degradation cost. Also, although higher benefits can

be achieved by investing in community assets, how to redis-

tribute these benefits among the individual households in the

community still remains a key open question, of both research

and practical interest. Current energy communities usually

employ algorithms based on proportionality of consumption

to redistribute the benefits from the community-owned gen-

erator assets. However, such methods are not fair, and not

applicable in the case of energy storage assets, where the

proportionality of the asset usage does not apply. Hence,

there is a need to design an efficient and fair redistribution

mechanisms that applies to both community-owned renew-

able generator and storage assets, while incorporating the

asset’s degradation, and the physical network and operational

constraints.

In this paper, to address the above challenges, we propose

a model that first studies the techno-economic benefits of

community-owned assets versus individually-owned energy

assets considering the network/grid constraints. In order to
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assess the benefits from installing various assets including

a comprehensive model of battery degradation, we propose

an approach based on real time-series data of a community,

and compare the benefits provided by community-owned

assets with the benefits expected from individually-owned

assets, considering operational network constraints. Then,

using the methodology and principles from cooperative game

theory [18], we propose a redistribution model for benefits

in a community based on marginal value, a key concept in

cooperative ( or coalitional) game theory.

In the context of decentralized energy systems, coalitional

game theory has been identified as a promising solution

for designing incentive mechanisms for community energy

trading and sharing. In a cooperative game, players form

coalitions to maximise a common objective for mutual ben-

efit. Then, the benefit is distributed equally or fairly among

themselves using incentive-based solution concepts, such as

the Shapley value. Existing coalitional game theory redis-

tribution mechanism based on concepts like the Shapley

value use marginal contributions at their core, but present

issues of scalability as the number of agents in a coalition

increases [19], [20]. Moreover, most of existing redistribu-

tion frameworks are developed without considering network

constraints, in which case the computation cost becomes even

more challenging. To address this computational challenge,

we propose in this paper a more computationally tractable

(and hence more practically applicable) redistribution mech-

anism based on the marginal contribution of each agent (in

our case household) of the community. In detail, the main

contribution of the paper can be summarized as follows:

• Weprovide a techno-economic comparison between two

configurations of energy communities connected to a

low-voltage distribution network. First, a configuration

with individually-owned distributed energy assets, such

as solar PV and residential batteries. Then, a second

configuration in which distributed energy assets are

jointly owned by the community, and installed in a single

location. The proposed two configurations of energy

communities are compared by studying the economic

impacts of installing various energy assets on the grid

for both fixed and dynamic time of use (ToU) tariffs.

• We incorporate power flow (physical network/grid con-

straints), and physical battery degradation into com-

munity energy optimization models, including the

effect of network constraints on redistribution schemes.

To achieve this, we employ a battery state of health

degradation model based on the battery depth of dis-

charge in each control cycle, while maintaining the bus

voltages within the permissible limits. This represents

a considerable extension of prior work of control and

sharing of assets in energy communities, which do not –

or very rarely consider physical LV network constraints

in their modeling (including the model in the authors’

own prior work [21])

• We investigate and propose a fair and computationally

tractable redistribution scheme for sharing the benefits

obtained from community-owned energy assets sub-

jected to physical network constraints, based on prin-

ciples from cooperative game [18], [19], and test its

advantageous by comparing with the state-of-the-art

redistribution mechanism.

• The proposed energy community model is validated

using a real case study from the ReFLEX (Responsive

Flexibility) project that aims to develop a large-scale

demonstrator for community energy integration in

Orkney, Scotland, UK [22].
The remainder of the paper is structured as follows:

Section II discusses relevant literature on state-of-the-art

research that models energy communities and sate-of-

the-art approaches for redistribution benefits from commu-

nity owned assets. Energy community network modeling

along with battery and voltage control mechanism, assess-

ment of energy community efficiency, and mechanism for

fair redistribution of benefits from community-owned assets

to individual households methodologies are presented in

Section III. Results of the techno-economic analysis of

community-owned assets versus individually-owned assets,

and the various redistribution schemes of benefits achieved

from community assets are presented in Section IV. Finally,

Section V concludes and elaborates on future work.

II. RELATED WORK

A. STATE OF ART IN ENERGY COMMUNITY MODELING

Energy community schemes are a fast-growing area of

research that have gained increased attention in the litera-

ture. For instance, the relevant literature identified using the

Scopus search engine shows that the number of scientific

publications on the subject has seen an increasing order

of magnitude (around 10 times), between 2011 and 2020,

as shown in Fig. 1. The Scopus search engine is the largest

abstract and citation database of peer-reviewed literature.

The queries used in the search engine are: ‘‘Energy AND

Communities’’, ‘‘Local ANDEnergy System’’, ‘‘Community

AND Energy System’’. All the results obtained from Scopus’

queries have been carefully reviewed and filtered to include

the papers related to energy communities only, not just part

of the wider energy domain.

An energy community is made up of a number of pro-

sumers, who are defined to be consumers but also pro-

ducers [5]. Recently, Gjorgievski et al. [23] have reviewed

the state-of-art literature on social arrangements, techni-

cal designs and the impact of energy communities. They

have identified various gaps in the literature, and one of

the highlights closely related to our work is the need to

design a more realistic pay-off distribution among the com-

munity members for stable coalition of the energy com-

munity. Similarly, Seyfang et al. [24] have conducted a

detailed UK-wide survey on energy community projects, and

concluded that energy communities are diverse and rapidly

growing. Recently, the modeling of energy community has

gained increased attention from a social perspective focused

on niche areas of: socio-technical energy system [25], social
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FIGURE 1. Evolution of scientific publications related to energy
community.

innovations and dynamics [26], socio-technical energy tran-

sitions [27], social entrepreneurship [28], grassroots innova-

tion [29], multi-sectoral approaches [30], social acceptance

and participation [31], social investments [32] and social

factors in AI research [33]. Huang et al. [34] have reviewed
various simulation tools and models available for commu-

nity energy system planning, design and optimization. Sim-

ilarly, Mendes et al. [35] have surveyed numerous energy

optimization and simulation tools for integrated community

energy systems planning and analysis. Using a smart energy

and AI perspective, other works have modeled a number of

related concepts, such as Virtual Power Plant (VPP) optimisa-

tion [36]–[38], demand-side response aggregation [39]–[45],

renewable energy curtailment in remote communities [46],

[47], battery storage monitoring and optimisation [48]–[51],

and P2P energy trading and blockchains [52]–[55].

Battery energy storage systems, along with renewable

generators (solar PV, wind turbine) are the most com-

mon assets considered in the existing energy commu-

nity models. In energy communities, individual households

can invest in their own energy assets (renewable gener-

ation capacity and storage), or can jointly invest in the

big community-owned energy assets and can then share

energy and associated financial benefits within the commu-

nity. Hence, techno-economic assessment between energy

communities with individually-owned prosumer assets and

models with community-owned assets have recently gained

increased attention in the literature [7], [14]–[17]. Most of

the studies focus on comparing the battery storage adoption

at the individual household scale with storage adoption at the

community scale. For instance, Dong et al. [14] have com-

pared community energy storage (CES) to household energy

storage (HES). Their results indicate that both HES and CES

can improve the community self-consumption rate (SCR)

and self-sufficiency rate (SRR). HES is found more suitable

for households with lower demand profiles, while house-

holds with higher demand profiles benefit more from CES.

The same authors’ extended their study by comparing the

performance of HES and CES with demand side manage-

ment (DSM) under ToU pricing scheme [7]. CES is found

to be more effective at improving self-consumption for con-

sumers and shaving peak demand for network operators. Sim-

ilarly, Stelt et al. [15] have evaluated the techno-economic

analysis of HES and CES for residential prosumers. The

economic value of both HES and CES was assessed by

considering the cost of energy imported from the grid. The

results showed that both HES and CES can reduce the annual

energy costs by 22 to 30%, and improve the use of on site

PV generation by 23 to 29% compared to a baseline house-

holds without storage system. The economic feasibility of

both HES and CES is found to be largely determined by

the investment cost of the storage capacity per kWh. Similar

comparison of storage adoption at the individual household

level to storage adoption at the community level is studied by

Barbour et al. [16]. Their results show that the community

battery is better in terms of economic revenues compared

to individual household batteries, as it requires less stor-

age capacity overall and increases the self-consumption rate.

Likewise, Walker & Kwon [17] have compared the economic

and operational performance of individual and community

shared storage. Their results also showed that the shared

CES can achieve the maximum cost savings and significantly

improve the utilization of energy storage.

Recently, Koirala et al. [56] have provided an overview of

the state of the art in CES. Similarly, an overview of the eco-

nomic potential and current research on CES was outlined by

Sardi & Mithulananthan [57] and Strickland et al. [58]. The
review states that CES have a huge potential to reduce import

from the utility grid and thus maximize the self-consumption

of the community. Hence, the advantages of CES over HES

is well identified in the literature [7], [14]–[17], [59]–[64].

However, to our knowledge, most of the existing studies

on comparison of individually-owned assets versus centrally

located community-owned assets, while considering both

the renewable generation and battery, have not included the

battery degradation cost in their techno-economic analysis.

Furthermore, although community assets are found to provide

more benefits compared to individually-owned assets, still,

the question of how to allocate financial gains from shared

community-owned assets to the members of the community

is not addressed in most of the existing frameworks.

Finally, several approaches have been proposed recently to

integrate the network constraints such as electric cables ther-

mal limits and voltage excursions in the market structures and

trading strategies of the energy communities [6], [65]–[71].

However, most of the existing studies on the techno-economic

analysis of individually-owned versus community-owned

assets (including the authors’ own prior work [21]) have

not considered the network constraints. The assets might be

prevented from exporting/consuming to/from the grid due to

network constraints, thereby reducing the associated benefits.

To our knowledge, the model in this paper is the first that

considers such curtailment events in the energy community

setting by including the power flow (grid constraints) in
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the techno-economic analysis of individually-owned assets

versus community-owned assets.

B. SHARING OF ENERGY, COST, AND FINANCIAL GAIN IN

ENERGY COMMUNITIES

In the context of energy communities characterized with

renewable energy systems, coalitional game theory has

been identified as a promising solution for energy shar-

ing schemes [72], cost allocation [73], and benefit redistri-

bution [21] schemes among the community members. For

instance, Alam et al. [19] proposed an energy exchange

mechanism in rural communities that aimed to reduce battery

usage and where approximated Shapley value was used for

the distribution of benefits among the households. Although,

they have proposed that the approximated Shapley value

improves the computational time as compared to original

Shapley value, but it still possess a significant computational

challenge with the increase in the number of agents in the

coalition. Recently, Moncecchi et al. [74] have proposed a

two-level benefit distribution scheme based on coalitional

game theory. At the first level, the benefit is distributed to

a group of community members. Then, at the second level,

the benefit is distributed proportionally to individual mem-

bers. While various operational scenarios were studied, only

few players (nine community groups only) were considered

in the coalition formation. Similarly, Li [75] have proposed

a cost-sharing scheme developed according to the Shapley

value method. However, only four players are considered,

thereby raising the issue of computational tractability and

hence the practical application of the proposed redistribu-

tion mechanism is limited. Likewise, Chakraborty et al. [76]
investigated the sharing of storage systems among consumers

in a ToU pricing scheme using cooperative game theory.

Sharing mechanism is illustrated using only five households

which raises the issue of scalability and practicality as the

household number increases in the coalition. Moreover, stor-

age is considered ideal thereby neglecting the degradation

aspect of the battery. In the work of Marzband et al. [77],
cooperation among energy communities was studied in order

to reduce the annual electricity cost, and profit redistribu-

tion mechanisms based on various solution concepts from

cooperative game theory such as, Shapley, Nucleolus, and

Merge and Split are proposed. Various energy, cost, and

profit redistribution schemes based on coalitional game the-

ory can also be found in [78]–[82]. However, one of the

major challenges in redistribution schemes based on coali-

tion game theory is the issue of scalability. Specifically,

when determining the solution concepts such as Shapley

values in a coalition, the computation becomes highly com-

plex and time-consuming as the number of players increases

in the coalition. Moreover, most of the existing redistribu-

tion frameworks are developed without considering network

constraints, in which case the computation becomes more

challenging. Thus, there is still a need to develop a redistri-

bution mechanism that is fair, but also provide tractable com-

putational performance that scales well with the increasing

number of members in the energy community coalition, while

considering operational network constraints.

To address these limitations, we propose a study that first

confirms the techno-economic benefits of community-owned

assets versus individually-owned energy assets considering

the network/grid constraints. Then, the novel fair redistri-

bution mechanism introduced in our earlier work [21] is

extended to include network operational constraints while

being computationally tractable, and hence more practically

applicable. In order to assess the benefits from installing

various assets while including a comprehensive model of

battery degradation, we propose an approach based on real

time-series data of a community, and compare the bene-

fits provided by community-owned assets with the benefits

expected from individual assets, considering operational net-

work constraints. In the next section, we present the energy

community modeling approach.

III. METHODS

A. ENERGY COMMUNITY MODEL

In this work, we first aim to compare two configurations

of energy communities. One configuration will consider the

community as 200 individual agents, each one of them with

his own consumption and local production, but without finan-

cial nor energy interaction between them. In such config-

uration, agents import electricity from the grid when their

assets cannot cover their own consumption, whereas they

can export electricity to the grid when they have production

surplus. The second configuration corresponds to the case

of an energy community in which agents invest together in

community-owned assets, such as wind or solar production,

and community batteries. The demand of agents is considered

inflexible. A renewable generator (either wind turbine or a

solar PV installation), a battery energy storage system and

the utility grid are the three power sources considered for

satisfying the inflexible demand at all times. A power flow

diagram of an agent or of the energy community considered

as a whole is shown in Fig. 2.

FIGURE 2. Power flow diagram of the energy community model.
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FIGURE 3. Overview of the energy community modeling approach.

We consider an energy community, composed of a group

of individual prosumers (agents) connected to a low-voltage

distribution network. To model a group of 200 individual

prosumers, we consider that each individual has a consump-

tion and a production from solar PV rooftop panel. Con-

sumption data are half hourly demand profiles extracted from

the dataset provided by the Thames Valley Vision End Point

Monitor [83] project. We define, the community C as the set

of all agents i, and is defined as C = {Ai | i ∈ [1,N ]} where

N = 200 agents in our case.

The overall power balance at any given time t of an agent

i or of the energy community C is given by:

p
grid
i/C (t) = di/C(t) − pbati/C(t) − gwind/solari/C (t) (1)

where gwind/solari/C (t) is the power generated by the renewable

generator, that can be individually owned, or owned by the

community. p
grid
i/C (t) represents the power that an agent or

that the community can buy/sell from/to the grid. pbati/C(t)
represents the power of the storage system (individually-

owned, or centrally located and owned by the community),

which is considered negative when the battery is charging

(battery considered as a load), and positive when the battery

is discharging (battery considered as a generator). di/C(t)
is the power consumed by an agent or by the community

considered as a whole, i.e the aggregated demand power

of 200 agents.

However, the power flow diagram proposed in Fig. 2

does not include physical constraints such as electric cables

thermal limits and voltage excursions. Therefore, in energy

communities with important renewable production, such as

the Orkney Islands considered in the ReFLEX project [22],

agents may be prohibited from exporting power at particu-

lar times, due to electric cables overheat. As a result, grid

constraints must also be added to the model described above.

This proposed energy community modeling approach is sum-

marized in Fig. 3. We start first by modeling the power flows

in an LV network describing the energy community in the

following section.

B. LV NETWORK MODEL

To include physical constraints such as network constraints,

we have considered a 13-bus radial distribution system to

connect all agents of the community. This network model

is adapted from the IEEE 13-bus network [84]. We first

aim to compare two configurations of energy communities.

First, a configuration with individually-owned distributed

generation assets, such as solar PV and residential batteries.

Households are randomly aggregated among the 13-buses,

as presented in Fig. 4. Then, a second configuration in which

distributed generation assets are owned by the community,

and installed in a single location. Fig. 5 shows the location

of assets and households in the configuration of centrally

located, community-owned generation and storage assets.

Community-owned assets are connected to a unique bus

without load, that was chosen to be in a central location of

the grid, in order to reduce the risk of constraining the grid.

Bus 1 represents themain connection to the transmission grid,

and its voltage is set to reference voltage of 1 p.u with the base

voltage of 236 V.

Power flow in this 13 bus grid model is computed for

every time interval considered in our simulations in order

to determine the voltages and power (active and reactive)

flowing at every bus. The power flow computation follows

a power approach in which the apparent power balance is

stated for every bus of the grid. We define, Sn = Pn + jQn
the apparent power that is consumed or produced at bus n.
Znk = Rnk + jXnk is the impedance of the line between bus n
and bus k and Snk = Pnk +Qnk is the apparent power flowing
between bus n and bus k . The power balance equations are

VOLUME 9, 2021 112025



S. Norbu et al.: Modeling Economic Sharing of Joint Assets in Community Energy Projects

FIGURE 4. Electric network used in simulations with grid constraints for individually-owned
assets.

FIGURE 5. Electric network used in simulations with grid constraints for centrally located
community-owned assets.

summarized in Eq. 2.

Pn = |Vn|
∑

k

|Vk | |Ynk | cos(δk − δn + γnk )

Qn = |Vn|
∑

k

|Vk | |Ynk | sin(δk − δn + γnk ) (2)

where Ynk = Ynke
jγnk is the admittance of the line connection

between bus n and bus k . Pn is the total active power pro-

duced and consumed at bus n, which is considered positive if
produced and negative if the power is consumed. Similarly,

Qn is the total reactive power produced (positive) and con-

sumed (negative) at bus n. The voltage at bus n is defined

by Vn = Vne
jδn , with δn the voltage angle. The power balance

expressed in Eq. (2) is solved using the Newton-Raphson

method, and gives the following two fundamental outputs:

i The voltage at each bus, in amplitude and phase.

ii The power (active and reactive) flowing through each

bus.

Furthermore, in order to provide a techno-economic study

that enables the comparison between the two configura-

tions proposed (individually-owned and community-owned

assets), we considered one year of data for load consump-

tion [83] and solar PV production [85] with half-hourly time

intervals, using Thames Valley Vision data. Power flows were
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computed for thewhole year. Also, we have linearly increased

the power consumption of each household in order to consider

an energy community in which voltage profiles are already

close but still within the UK’s upper and lower admissible

voltage limits of 1.1 per unit (p.u) and 0.94 p.u. respectively

for the whole year. Therefore, this setting consists in a case

of normal operation with acceptable voltage and congestion

profiles, while allowing us to study the potential impacts of

installing various assets on the grid.

Indeed, the addition of solar PV or batteries in the LV

grid changes power flows, and might create congestions or

voltage excursions (i.e temporary fluctuations of voltage out-

side safe accepted limits). In such cases, the grid operator

might consider the need for an ANM, that allows him to

remotely control the injection of distributed generation assets.

Therefore, due to this congestion/voltage excursion, assets

might be prevented from exporting/consuming to/from the

grid, reducing the benefits from their owners. For instance,

when the grid is constrained with voltage excursions, then

the exports form PV and exports/imports from/to battery are

curtailed. This is why such curtailment events need to be

accounted for in the energy community setting by including

power flow (grid constraints) in the techno-economic anal-

ysis of individually-owned assets versus community-owned

assets. The control algorithm of distributed generation assets,

including the remote control from the Distribution System

Operator (DSO) to prevent voltage out-of-bounds excursions,

is defined in the following section.

C. BATTERY CONTROL ALGORITHM WITH VOLTAGE

CONTROL MECHANISM

A battery control scheme consists of operational real-time

decisions to charge or discharge the battery, based on the

difference between the agent/community power consumption

and its PV production. When the PV production exceeds the

power consumed, the control scheme charges the battery if the

bus voltage (V bus) is within the permissible limits (0.94 p.u ≤

V bus ≤ 1.1 p.u), until it reaches the full capacity. Any excess
is exported and sold to the main grid, provided the V bus is

within the permissible limits. Whenever, the demand exceeds

the PV production, the battery is discharged until it reaches its

maximum allowable depth of discharge (DoD), provided the

V bus is within the permissible limits. Any remaining deficit

is purchased and imported from the grid. The bus voltage is

regulated within the safe permissible limits by controlling the

export from the PV generator, and export/import from/to the

battery assets.

The operation of the battery is constrained by the state of

charge (SoC) levels, and a maximum power (pbat,max) that the

battery can be charged or discharged at, which corresponds

to its maximum C-rating. In this work, Coulomb-counting

method is used to estimate the SoC of the battery. The accu-

racy of this method depends mainly on how the current drawn

from or to the battery is measured and on the nominal battery

capacity [86]. In our study, the nominal battery capacity is

updated at regular intervals of the simulation. This approach

is similar to the solutions implemented in commercial

batteries.1

At any given time t of a charging phase, the battery is

charged with an efficiency (ηc) until it reaches the max-

imum battery capacity (SoCmax). Charging constraints are

defined as:

SoC(t) ≤ SoCmax (3)

pbat(t) ≤ pbat,max (4)

Similarly, the battery can be discharged with an efficiency

(ηd ) until it reaches its minimum battery capacity (SoCmin).

Discharging constraints are defined as:

SoC(t) ≥ SoCmin (5)

pbat(t) ≤ pbat,max (6)

The minimum battery capacity corresponds to the maxi-

mum allowable DoD.

In this section, we propose a heuristic-based battery con-
trol algorithm that aims to charge the battery when there is

excess of power, and discharge the battery when there is a

deficit of power, while maintaining the bus voltage (V bus)

within the permissible limits. The algorithm can be described

as follows:

If gPV(t) > d(t), there is excess of power generated from

the PV generator. The control strategy of the battery dictates

the following:

I Excess power is stored in the battery (charging oper-

ation), provided the V bus(t) due to bus power Pbus(t)
is within the permissible limits. Pbus(t) is the total net
active and reactive power of the bus at time t given by

Eq. (2).

II If the battery is full or if available power is

greater than the maximum acceptable charging power,

the agent/community sells the excess power to the util-

ity grid at a selling price equal to τ s(t), provided the

V bus(t) due to bus power Pbus(t) is within the permis-

sible limits.

The resulting SoC profile, power at bus Pbus(t), and the
energy exported es(t) to the grid during the identified

duration of excess generation are determined as:

pbat(t) = min(min([gPV(t) − d(t)], pbat,max),

[SoCmax − SoC(t − 1)]

ηc1t
)

⇐H 0.94p.u ≤ V bus(t) ≤ 1.1p.u (7)

SoC(t) = SoC(t − 1) + ηcpbat(t)1t (8)

Pbus(t) = gPV(t) − pbat(t) (9)

es(t) =
[

Pbus(t) − d(t)
]

1t

⇐H 0.94p.u ≤ V bus(t) ≤ 1.1p.u (10)

where1t corresponds to the duration of the considered
time step.

1 A number of commercial battery manufacturers such as ABB [87]
propose an updated Coulomb-counting method for SoC estimation.
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III If the excess PV power available for charging the bat-

tery or for export to grid violates the safe voltage limit,

then the power export from the PV, and power import

to battery are curtailed (Pcurtailed) until the voltage is

within the permissible limits, accordingly the Pbus(t)
is updated. When the generation from the PV is cur-

tailed due to voltage violations, the demand is satisfied

by importing energy (eb(t)) from the utility grid at a

buying price equal to τ b(t).
Whenever the V bus(t) > 1.1 p.u, the voltage is con-

trolled as follows.

i If the battery is fully charged, then the export from

PV is curtailed and the bus power is updated as:

Pbus(t) = Pbus(t) − Pcurtailed (11)

If the updated Pbus(t) > 0, then the excess energy

is exported to the utility grid:

es(t) =
[

Pbus(t) − d(t)
]

1t (12)

If the updated Pbus(t) < 0, then the deficit energy

is imported from the utility grid:

eb(t) =
[

d(t) − Pbus(t)
]

1t (13)

ii If the battery is in the process of charging, then

the power export from PV and power import

to battery are curtailed, and the bus power is

updated as:

pbat(t) = min(min([pbat(t)+Pcurtailed], pbat,max),

[SoCmax − SoC(t − 1)]

ηc1t
) (14)

Pbus(t) = gPV(t) − pbat(t) (15)

If the updated Pbus(t) > 0, then the excess energy

is exported to the utility grid:

es(t) =
[

Pbus(t) − d(t)
]

1t (16)

If the updated Pbus(t) < 0, then the deficit energy

is imported from the utility grid:

eb(t) =
[

d(t) − Pbus(t)
]

1t (17)

Similarly, if gPV(t) < d(t), then there is a deficit in power
supplied by the PV generator. During this time, the demand

is satisfied by discharging the battery, provided the battery

capacity is above the minimum SoC and the bus voltage

(V bus) is within the permissible limits. Otherwise, the deficit

power is imported from the utility grid. A flowchart of the

proposed control strategy is shown in Fig. 6. Algorithm 1

outlines this heuristic if-then rule based control strategy.

Most of the time the voltage excursion is characterized

predominantly by over-voltage phenomenon (i.e high voltage

violations V bus(t) > 1.1 p.u). Hence, the voltage control

mechanism for the case with V bus(t) > 1.1 p.u is only

included in the control scheme. However, if the bus voltage

violates the lower permissible limit (V bus(t) < 0.94 p.u) and
gPV(t) > d(t), then the bus voltage can be controlled by

limiting the battery charging until it is within the permissible

limit. If gPV(t) < d(t), then the bus voltage can be con-

trolled by increasing the reactive power production from the

battery.

Whenever the bus voltage (V bus) violates the permissible

limits, then the gird is constrained, hence the exports from

PV and exports/imports from/to battery are curtailed. This

reduces the financial benefits offered by the assets. The

economic parameters to assess and compare the benefits of

community-owned assets with individually-owned assets is

presented in the next section.

D. ASSESSMENT OF ENERGY COMMUNITY EFFICIENCY

Themain aim of the economic study of the energy community

is to determine the benefits provided by assets (renewable

generation capacity and storage) to prosumers, subjected to

network and operational constraints. To achieve this, the pre-

sented algorithm 1 is implemented by considering the differ-

ent pricing schemes. A yearly energy bill savings, which is

a fairly intuitive indicator, is used to compare the economic

performance of investments in individually-owned assets and

community-owned assets. In this section, we provide the

key economic performance indicator adopted in the proposed

comparative study.

1) PRICING SCHEMES OF THE COMMUNITY

In this study, we did not consider the feed in tariff, and con-

sidered two types of pricing schemes for energy imports from

the main utility grid. Export tariff to the grid was not included

as many developed countries worldwide (such as the UK

or the EU), guaranteed feed-in-tariffs (FITs) for renewable

electricity generated by small DERs are being phased out as

a support mechanism, i.e. they are gradually reduced or are

well below retail tariffs available from large operators [15].

For instance, in the UK, FITs are no longer available to

producers of any size since 31st March 2019 [88]. A fixed and

a dynamic ToU import tariffs were considered as described

below:

• Fixed tariff: a fixed tariff of 16 pence/kWhwas adopted

after comparing the fixed electricity prices offered by

various UK-based electricity suppliers using web-tools

in price comparison site Money Supermarket [89]. This

website is one of the several price comparison sites

approved and accredited by the Office of Gas and Elec-

tricity Markets (Ofgem) [90], the government regulator

for the electricity and downstream natural gas markets

in UK.

• Dynamic tariff (ToU): the dynamic ToU tariff was

based on Agile Octopus [91] offered by Octopus Energy,

a UK-based electricity supplier. Agile Octopus tar-

iff consist of a maximum price of 35 pence/kWh,

an average price of 15.9 pence/kWh, and a minimum

of 2.8 pence/kWh. Both the fixed and dynamic ToU
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FIGURE 6. Flowchart of battery and voltage control scheme.

pricing schemes corresponds to real tariffs applied

in 2020.

2) TECHNO-ECONOMIC INDICATORS

The economic value of both community-owned assets and

individually-owned assets can be assessed and compared by

considering the reduction of the sum of the annual elec-

tricity bill of all the households from the energy commu-

nity. The yearly bill b(T ) of an agent/community can be

expressed as the sum of the cost of the annual energy con-

sumption and the depreciation cost of the assets cA, minus

the sum of revenues earned by exports to the grid, as shown

below:

b(T ) =

T
∑

1

eb(t)τ b(t) −

T
∑

1

es(t)τ s(t) + cA(T ) (18)

where the energy import eb(t) at time step t is given by

Eq. (19), with Phouse the power imported (if positive) or

exported (if negative) by the considered household.

eb(t) =
[

d(t) − Phouse(t)
]

1t (19)
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Algorithm 1: Battery and Voltage Control Algorithm

1 Input: gPV(t), d(t), τ b(t),τ s(t),ηc, ηd , SoC initial, SoCmax, SoCmin, pbat,max

2 Set: V slack bus =1 p.u
3 for t = 1 : T do

4 ∀t ∈ [0,T ], excess of energy or deficit in energy is determined

5 if gPV(t) ≥ d(t) then

6 pbat(t) = min

(

min
([

gPV(t) − d(t)
]

, pbat,max
)

,
[SoCmax − SoC(t − 1)]

ηc1t

)

⇐H 0.94 p.u ≤ V bus(t) ≤ 1.1 p.u

7 SoC(t) = SoC(t − 1) + ηcpbat(t)1t
8 Pbus(t) = gPV(t) − pbat(t)
9 es(t) =

[

Pbus(t) − d(t)
]

1t ⇐H 0.94 p.u ≤ V bus(t) ≤ 1.1 p.u
10 while V bus(t) > 1.1 p.u do
11 if pbat(t) ≥ pbat,max || SoC(t) ≥ SoCmax then

12 Pbus(t) = Pbus(t) − Pcurtailed

13 if Pbus(t) > 0 then

14 es(t) =
[

Pbus(t) − d(t)
]

1t
15 else

16 eb(t) =
[

d(t) − Pbus(t)
]

1t
17 end

18 else

19 pbat(t) = min

(

min
([

pbat(t) + Pcurtailed
]

, pbat,max
)

,
[SoCmax − SoC(t − 1)]

ηc1t

)

20 Pbus(t) = gPV(t) − pbat(t)
21 if Pbus(t) > 0 then

22 es(t) =
[

Pbus(t) − d(t)
]

1t
23 else

24 eb(t) =
[

d(t) − Pbus(t)
]

1t
25 end

26 end

27 end

28 else

29 pbat(t) = min
(

min
([

d(t) − gPV(t)
]

, pbat,max
)

, ηd
[

SoC(t − 1) − SoCmin
])

⇐H 0.94 p.u ≤ V bus(t) ≤ 1.1 p.u

30 SoC(t) = SoC(t − 1) −
pbat(t)

ηd
· 1t

31 Pbus(t) = gPV(t) + pbat(t)
32 eb(t) =

[

d(t) − Pbus(t)
]

1t
33 while V bus(t) > 1.1 p.u do
34 if pbat(t) ≤ 0 || SoC(t) ≤ SoCmin then

35 Pbus(t) = max
(

0,Pbus(t) − Pcurtailed
)

36 eb(t) =
[

d(t) − Pbus(t)
]

1t
37 else

38 pbat(t) = min
(

max
(

0,
[

pbat(t) − Pcurtailed
])

, ηd
[

SoC(t − 1) − SoCmin
])

39 Pbus(t) = gPV(t) + pbat(t)
40 eb(t) =

[

d(t) − Pbus(t)
]

1t
41 end

42 end

43 end

44 end

45 Output: ∀t ∈ [0,T ], SoC(t), input to rainflow cycle counting algorithm used to calculate the battery depreciation

factor, es(t) energy exported to utility grid, eb(t) energy imported from grid, Pbus(t) bus power, and V bus(t) bus voltage
profile.

Similarly, the energy export es(t) at time step t is given by
Eq. (20).

es(t) =
[

Pbus(t) − d(t)
]

1t (20)

However, as many countries have reduced or removed

export prices under the form of feed-in tariffs, our

analysis will not include revenues from energy export.

Thus, the yearly bill without feed-in tariff is determined
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as:

b(T ) =

T
∑

1

eb(t)τ b(t) + cA(T ) (21)

cA represents the depreciation cost which is due to the usage

of the asset within the considered period. For example, for a

considered period T equal to one year in which the asset is

used following the manufacturer’s recommendations, cA(T )
corresponds to the annualized cost of the asset, given as

follows:

cA(T ) =
Asset cost

Life time (in years)
(22)

In the techno-economic analysis, the battery depreciation

cost can be greater or equal to the depreciation cost men-

tioned in batteries manufacturer specifications, the depreci-

ation can be greater if the useful lifetime is small. A bat-

tery useful lifetime depends on the frequency and depth

of charge/discharge cycles during the battery’s operation.

Frequent charging and discharging operations lead to cyclic

ageing and incurs an extra cost as it accelerates the depre-

ciation of the battery and reduces its useful lifetime. This

translates into an impact on the total cost of operation and

maintenance of the battery, especially as energy storage is one

of the most expensive component of hybrid energy systems

composed of renewable generation and storage assets. In the

cyclic operation of the battery, a cycle is defined to have been

completed when the battery depth of discharge (DoD) has

returned to the starting point of the cycle. Furthermore, regu-
lar and irregular cycles can also be distinguished depending

on the starting and ending SoC of the cycle, as defined

below:

• Regular cycles: in this cycling process the starting SoC

is 100%, then it is discharged to a certain SoC cor-

responding to a specific DoD and recharged back to

100% SoC. For example, 100% SoC-to-60% SoC-back

to 100% SoC corresponds to 40% DoD cycle.

• Irregular cycles: in this case, the starting SoC is other

than 100% SoC, i.e. cycles start at any arbitrary SoC

value. For example, 70% SoC-to-30% SoC-back to 70%

SoC, which also corresponds to a 40% DoD discharge

cycle, relative to the starting SoC.

In both cases, the DoD may be same, but the battery degrada-

tion is sensitive to the starting SoC. An important aspect to be

noted here is that the number of cycles versus DoD specified

in manufacturer data-sheets are based on regular cycles only.

But, in real-life applications, the battery can hardly run on

regular cycles from 100% SoC to a specific DoD. Hence,

an important characteristics when integrating battery storage

degradation in the economic analysis, is to assess the impacts

of irregular cycles.

In this paper, a detailed Lithium-ion battery degradation
model developed in our previous work [21] is used to deter-

mine the battery depreciation factor (DF) to estimate the

battery useful lifetime. In the model, the useful life of the

battery is estimated by considering the cyclic degradation

due to both regular and irregular cycles. The rainflow cycle

counting algorithm is used to count regular and irregular

cycles by considering the SoC profile generated from the

battery control algorithm 1. The depreciation factor (DF) is

expressed as follows:

DF = DFregular + DFirregular (23)

where DFregular and DFirregular correspond to the depreciation

factor for regular and irregular cycles respectively. When the

DF value is equal to 1, this means the battery has reached

its end of life (EoL), hence the battery needs to be replaced.

EoL is normally defined as a state of the battery when the

maximum capacity of the battery reduces to 80% of its rated

initial capacity.

Taking into consideration the depreciation resulting from

the battery operation, the computation of the depreciation cost

cA in Eq. (18), & (21) is updated as follows:

cA(T ) = max

(

1

DF
,

Asset cost

Life time (in years)

)

(24)

Finally, as outlined by Eq. (21), the annual bill for agent i
and the community C are defined as:

bi(T ) =

T
∑

1

ebi (t)τ
b(t) + cAi (T ) (25)

bC(T ) =

T
∑

1

eb
C
(t)τ b(t) + cA

C
(T ) (26)

where, ebi (t)τ
b(t) is the cost of energy imports from the utility

grid by agent i at time t and cAi (T ) is the depreciation cost

of the battery owned by agent i in the considered period T .
Similarly, eb

C
(t)τ b(t) is the cost of energy imported from the

utility grid by the community as a whole at time t and cA
C
(T )

is the depreciation cost of community-owned battery for the

considered period T .

E. MECHANISM DESIGN FOR FAIR REDISTRIBUTION OF

BENEFITS FROM COMMUNITY-OWNED ASSETS TO

INDIVIDUAL HOUSEHOLDS

In the case of community owned assets, the revenues gener-

ated by the community-owned distributed generation system

(PV and battery) can be distributed to the members of the

community. However, this raises the key research question

of how to fairly redistribute the energy outputs (and hence

the financial benefits) from the community-owned assets to

the individual members of the community. In this section,

we present the fair redistribution scheme to fairly redistribute

the benefits from the community-owned assets. Also, in order

to test the advantages of the proposed redistribution mecha-

nism, we present in this section state-of-the-art redistribution

method, used in current practice in such projects, that will be

used for comparison.
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1) MARGINAL COST REDISTRIBUTION METHOD

In this section, we present a redistribution method based on

the marginal contribution of each agent, a key concept in

cooperative game theory. The marginal contribution Θi(T ) of
an agent i for the period T represents the difference that an

agent makes to the value of a given coalition in the commu-

nity. Specifically, the marginal contribution Θi(T ) is a metric

that assess howmuch each agent i contributes to the reduction
of the energy bill of the community as a whole.

Savings of the community after one year (T = 1 year),

noted as 5C(T ), are defined by the difference between the

sum of all agents annual bills before the community assets

were installed (which corresponds to the baseline scenario

without assets), and bC(T ) i.e. the energy bill for the whole

community after one year with community-owned assets.

Hence, the community savings over time period T correspond

to the bill reduction for the whole community over that

period, as shown below:

5C(T ) =

N
∑

i=1

b0i (T ) − bC(T ) (27)

where b0i (T ) is the baseline bill (bill without assets) for

prosumer i before any asset was installed. In order to com-

pute a fair redistribution of the community savings among

the individual agents, the contribution Θi(T ) of each agent

to these community savings is computed. To compute the

marginal contribution of an agent i, we remove agent i from
the community of 200 agents (total community), and recom-

pute the community savings of this virtual community of

199 agents (reduced community). The marginal contribution
Θi(T ) of agent i is defined as the difference between the total
community savings 5C(T ) and the savings of the reduced

community 5C\{i}(T ), as shown below:

Θi(T ) = 5C(T ) − 5C\{i}(T ) ∀i ∈ C (28)

where C is the community of 200 households. Once the

marginal contribution Θi(T ) is computed for all the agents,

we distribute community savings 5C(T ) among the individ-

ual agents based on the following equation:

Γi(T ) = 5C(T )
Θi(T )

∑

i∈C Θi(T )
∀i ∈ C (29)

where Γi(T ) is the amount of money redistributed to agent i
after period T .

Hence, the new bill of agent i for the time period T , noted
b∗
i (T ) can be computed as follows:

b∗
i (T ) = b0i (T ) − Γi(T ) ∀i ∈ C (30)

2) MARGINAL COST REDISTRIBUTION METHOD WITH

NETWORK CONSTRAINTS

The computation of the marginal cost redistribution method

in a setup that considers network constraints is computa-

tionally expensive as it requires to recompute the marginal

contribution of every agent, which requires power-flow

computation for every time step of the considered period

(e.g. one year). Hence, for larger network, the redistribution

mechanism by marginal cost redistribution method may not

be computationally tractable.

To address this computational challenge while consider-

ing the network constraints, we propose an approximation

method. First, we compute the agents i new bill b
∗(¬)
i (T ) for

the case without network constraints using the Eq. (30) as

expressed in Eq. (31):

b
∗(¬)
i (T ) = b0i (T ) − Γi(T ) ∀i ∈ C (31)

Then, we compute the difference between community

yearly bill with network constraints (bNC
C

(T )) and commu-

nity yearly bill without network constraint (b¬
C
(T )). Finally,

the equal part of the computed difference in the bill is dis-

tributed equally among the agents by adding to the new bill

b
∗(¬)
i (T ) obtained using Eq. (31). Finally, the new bill of

agent i with network constraints (b
∗(NC)
i (T )) is determined as

expressed in Eq. (32).

b
∗(NC)
i (T ) = b

∗(¬)
i (T ) +

bdiff
C

N
(32)

where N = 200 agents (households) in our case. bdiff
C

is the

difference between community yearly bill considering net-

work constraints and community yearly bill without network

constraints as expressed in Eq. (33).

bdiff
C

= bNC
C

(T ) − b¬
C
(T ) (33)

3) INSTANTANEOUS POWER REDISTRIBUTION METHOD

WITH NETWORK CONSTRAINTS

To test the advantages of the proposed marginal cost redis-

tribution method with network constraints, we compare its

benefits with the state-of-the-art instantaneous power redis-

tribution method [92]. In this method, an instantaneous PV

power gPV
C

(t) produced by community-owned PV generator

is distributed among individual agents based on their instan-

taneous demand di(t). In other words, the PV power allocated

to agent i at each time step is determined as:

gPVi (t) = gPV
C

(t) ×
di(t)

∑

i∈C di(t)
(34)

Then, the new bill of each agent i is computed using

Eq. (25).

IV. EXPERIMENTAL RESULTS

In this section, we present the results in two parts:

first, we discuss the financial benefits obtained from

community-owned assets and individually-owned assets con-

sidering the network constraints, and compare it with the case

without network constraints. Then, we propose a compar-

ison of various benefit redistribution schemes described in

Section III-E.
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TABLE 1. Sum of individual agents optimal solar PV capacities, and community optimal solar PV capacity for both the fixed tariff of 16 pence/kWh and
dynamic Agile Octopus ToU tariff.

TABLE 2. Sum of individual agents optimal battery capacities and community optimal battery capacity for both the fixed tariff of 16 pence/kWh and
dynamic Agile Octopus ToU tariff.

A. MODEL INPUT DATA

1) RENEWABLE GENERATION DATA

For the analysis we have used a real solar radiation data

from the UK Met Office Integrated Data Archive System

(MIDAS) [85] provided by British Atmospheric Data Cen-

tre (BADC). The MIDAS dataset consists of meteorological

observations from weather stations located at various parts of

the UK. The hourly solar radiation data obtained in kJ/m2

was converted to W/m2, then it was normalized to generate

solar PV power in Watts (W). Finally, one hour resolution

data was converted to half hourly data using double spline

interpolation function, to make it compatible with the resolu-

tion of the demand data.

2) UNITARY COST OF ASSETS

A battery cost of 150 £/kWh was assumed in this

work based on 2020 Lithium-ion battery forecasts esti-

mated by BloombergNEF [93], [94]. According to

BloombergNEF [94] and PV Europe-Energy Storage [95],

battery costs are expected to drop even further in the fol-

lowing years with an estimated cost of less than $100/kWh

expected in 2023. The chosen battery cost of 150 £/kWh

for the year 2020 is consistent with the Lithium-ion battery

cost forecasts for 2021 and 2025 published in the McKinsey

quarterly report [96]. A cost of 1100 £/kW for solar PV

generation capacity was assumed based on the production

and installation cost of solar PV according to EIA, Annual

Energy Outlook 2021 [97]. This cost reflects the average

values of levelized cost of electricity (LCOE) and levelized

avoided cost of electricity (LACE) for solar PV generating

technologies entering service in 2025.

B. OPTIMAL SIZING OF ASSETS

First, it is necessary to determine the capacity of assets

installed. In this study, we chose to use an optimal size for

both individual assets and community assets. An optimal size

of PV or battery corresponds to the size that provides the

minimal simple payback period. First, we have considered

solar PV assets sizing without any storage. Then, we deter-

mined the optimal battery size for each agent and for the com-

munity. Therefore, for both assets types (PV and batteries),

we considered investment cost and degradation due to their

operation. Results of the optimal assets sizing are shown in

Table 1 for PV, and Table 2 for battery. The computation of the

simple payback period for each asset is based on simulations

using the battery control algorithm 1 for one year.

The potential impacts of installing these various assets

(with optimal capacities ) on the grid, and the corresponding

economic analysis is presented in the following section.

C. ECONOMIC COMPARISON OF INDIVIDUAL VERSUS

COMMUNITY ASSETS

As a reminder, the 13-bus grid model for the 200 households

community with optimal capacity assets (as shown in Table 1

& 2 ) is shown in Fig. 4 & 5 as described in Section III-B.

Yearly bus voltages are computed every half-hour of the year

by running power flow simulation over the network, with

the given consumption and production profiles. Based on

these voltage profiles, the impact of considering the grid on

the profitability of DERs and battery energy storage sys-

tem (BESS) is studied under various scenarios. The scenarios

correspond to different assets installation schemes in the net-

work. The yearly bills are computed under the various scenar-

ios considering the network constraints, and then compared

with the yearly bills computed without network constraints

in order to assess how grid constraints can impact the deploy-

ment of individual and community owned assets. Yearly bills

are computed for both the fixed tariff of 16 pence/kWh

using [89] and dynamic ToUAgile Octopus [91] tariff pricing

schemes under various scenarios as presented below:

1) SCENARIO 1: WITHOUT ANY LOCAL RENEWABLE

GENERATION OR BATTERY ASSETS

In this scenario, we only consider the demand of house-

holds, without any assets. This setting defines a baseline
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TABLE 3. Economic comparison of individually-owned and community-owned assets under baseline scenario 1 (without assets) for both the fixed tariff
of 16 pence/kWh and dynamic Agile Octopus ToU tariff.

scenario, against which the other scenarios can be com-

pared. The yearly bills with network constraints under this

baseline scenario are computed for both the fixed and ToU

tariffs, and compared with the yearly bills computed without

network constraints. Table 3 shows the sum of individual

agents annual bills and the community annual bill determined

without any assets.

As described in Section III-B, in the baseline scenariowith-

out any assets, the grid is not constrained as there is no voltage

excursion nor cable overloading. Hence, the sum of individual

annual bills and community annual bill are equal for both

cases with and without network constraints. Furthermore,

it can be observed that without assets, the community annual

bill is equal to the sum of individual annual bills, which is

expected as the community represents the aggregated demand

profiles of the individual households, and there are no local

renewable generation or battery storage assets.

2) SCENARIO 2: WITH SOLAR PV RENEWABLE GENERATOR

ASSET ONLY WITHOUT BATTERY

In this scenario, we consider the demand of households, with

renewable generator asset only, without battery storage (in

the experiments in this paper, the renewable generation is

shared solar, but the model is general, hence this could also

be a shared community wind turbine). The yearly bills with

network constraints under this scenario are computed for both

the fixed and ToU tariffs, and compared with the yearly bills

computed without network constraints. Table 4 shows the

sum of individual agents annual bills and community annual

bill obtained under this scenario.

Fig. 7 shows the yearly voltage profiles of the buses

obtained for the networkwith individually distributed optimal

solar PV’s. We can see that there is a rise in voltage during

the summer months due to high power production from solar

PV,whereas voltages reduces during thewintermonths. How-

ever, the rise in the voltage is within the permissible limits.

Hence, the exports from individual PV’s are not curtailed.

Thus, the sum of individual yearly bills computed with net-

work constraints and without network constraints are equal

(as shown in Table 4 ).

Unlike the case of individual assets, Fig. 8 shows the yearly

voltage profiles of the buses obtained for the network with

centrally located community-owned, optimally-sized solar

PV, if the grid was not curtailing any asset. We can see that

if there is no control from the grid operator, the bus voltages

FIGURE 7. Yearly buses voltage profiles of the network with
individually-owned optimal PV’s without battery.

FIGURE 8. Yearly buses voltage profiles of the network with
community-owned optimal PV only without voltage control mechanism.

rise above 1.1 p.u the highest permissible limit (0.94 p.u ≤

V bus ≤ 1.1 p.u). In practice, the grid operator would not

allow such voltage excursions, and may curtail assets export-

ing too much power. In this case, the grid will curtail the

community-owned asset every-time the voltage rise above

1.1 p.u. Fig. 9 shows the voltage profile of the buses after

implementing the voltage controlmechanism by grid operator

as described in Section III-C.

This curtailment reduces the financial benefits offered by

the community-owned solar PV. It can be observed in Table 4
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TABLE 4. Economic comparison of individually-owned and community-owned assets under scenario 2 (PV only without battery) for both the fixed tariff
of 16 pence/kWh and dynamic Agile Octopus ToU tariff.

FIGURE 9. Yearly buses voltage profiles of the network with
community-owned optimal PV only after implementing the voltage
control mechanism.

that when the network constraints is considered the com-

munity annual bill increases by £2223 for flat tariff and by

£3217 for ToU tariff compare to the case without network

constraints. Thus, the overall saving of the energy community

is reduced when grid operations are considered.

3) SCENARIO 3: WITH BOTH SOLAR PV RENEWABLE

GENERATOR AND BATTERY STORAGE ASSETS

In this scenario, we consider the demand of households,

with both renewable generator and the battery storage assets.

The yearly bills with network constraints under this sce-

nario are computed for both the fixed and ToU tariffs, and

compared with the yearly bills computed without network

constraints. Table 5 shows the sum of individual agents

annual bills and community annual bill obtained under this

scenario.

Fig. 10 shows the yearly voltage profiles of the buses

obtained for the network with individually distributed opti-

mal solar PV’s and optimal batteries. Similar to scenario 2,

we can observe the rise in the bus voltages, and the seasonal

effects in the voltage profiles. In this scenario also, the rise

in the voltages are within the permissible limits. As the

voltages are within the thresholds, the grid is not constrained,

hence the exports from the individual PV’s and export/import

from/to individual batteries are not curtailed. Thus, the sum

of individual yearly bills computed with network constraints

and without network constraints are equal as the grid is not

FIGURE 10. Yearly buses voltage profiles for the scenario with
individually-owned optimal PV’s and optimal batteries.

FIGURE 11. Yearly buses voltage profiles of the network with
community-owned optimal PV and optimal battery assets without voltage
control mechanism.

constrained when both the individual PV’s and batteries are

installed (as shown in Table 5 ).

In the case with community-owned optimal PV and opti-

mal battery, Fig. 11 shows the yearly voltage profiles of

the buses obtained for the network without implement-

ing the voltage control mechanism. Similar to the Sce-

nario 2 with community PV only, the bus voltages rise

above the 1.1 p.u the highest permissible limit. In such case,
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TABLE 5. Economic comparison of individually-owned and community-owned assets under scenario 3 (both PV and battery) for both the fixed tariff
of 16 pence/kWh and dynamic Agile Octopus ToU tariff.

FIGURE 12. Yearly buses voltage profiles of the network with
community-owned optimal PV and optimal battery after implementing
the voltage control mechanism.

the grid operator will control the voltage by curtailing the

export/import from/to community-owned assets as described

in Section III-C. Fig. 12 shows the voltage profile of the buses

after implementing the voltage control mechanism.

This curtailment reduces the overall saving of the commu-

nity. This effect can be observed in Table 5, where the annual

bill with network constraints is increased by £1874 for flat

tariff and £4019 for ToU tariff as compared to yearly bill

computed without network constraints.

Overall, for the community with individually-owned

assets, the bus voltages remains within permissible limits.

As the voltages are within the thresholds, export/import

from/to the assets are not curtailed, and the bills in the sce-

narios with and without network constraints are identical.

Fig. 8 and 11 show that there are voltage excursions in the

grid when the community-owned assets are installed. In such

case, the grid operator may curtail assets exporting/importing

too much power. Hence, the community-owned assets gets

curtailed every-time the voltage rise above 1.1 p.u. It is

important to note that the voltage at bus 2 the location

of community-owned PV and battery is not controlled.

As shown in the Fig. 5, the community-owned PV and

battery are connected to bus 2 which makes the power

export being concentrated at one location, thus with the

community-owned assets the voltage rises more than in the

scenario with individually-owned assets. Whenever the volt-

age rises above the permissible limit then the exports from

FIGURE 13. Yearly generation from community-owned solar PV with and
without voltage control mechanism.

PV and exports/imports from/to battery are curtailed until the

voltage is within the threshold. In order to illustrate this cur-

tailment effect, the yearly generation from community-owned

solar PV with and without voltage control mechanism is

shown in Fig. 13.

Overall, we observe that, there is significant reduction in

the production from community-owned PV because of cur-

tailment due to voltage constraints. This reduces the financial

benefits offered by the community-owned assets and limits

the assets that can be further included in the network. Hence,

the study shows that when the network (grid) constraints are

incorporated then the benefits from the community assets are

reduced. Therefore, when considering community assets, one

should pay attention to the location of the assets and nature of

the distribution grid considered. If the community assets are

placed in a location where there is no grid issue, then there is

a higher benefit.

While considering the network constraints, even though

the benefits from the community-owned assets are reduced

due to curtailment, still community-owned assets provide a

substantially lower annual bill for both the fixed tariff and

ToU tariff pricing schemes ( as shown in Table 4 & 5).

Furthermore, these economic results were obtained with the

same unitary cost of the assets for the community-owned

as for individually-owned, which might not be the case in

real-world scenario, whereas in practice, the unitary cost of
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the community-owned asset might be lower due to economies

of the scale effect. Thus, more savings can be obtained from

community-owned assets by considering the economies of

scale in the unitary cost of the assets. Therefore, community

assets generate benefits to the community. A key research

question that still remains is how to redistribute fairly these

benefits to the community members. This will be addressed

next, in Section IV-D.

D. FAIR REDISTRIBUTION OF BENEFITS ACHIEVED FROM

COMMUNITY-OWNED ASSETS

For both the cases with and without network con-

straints, results from the economic analysis described in

Section IV-C show that community-owned assets lead

to reduction in the annual electricity bill compared to

individually-owned assets. Hence, individual agents can

achieve more savings (higher benefits) by forming the com-

munity coalition and by investing in jointly-owned assets.

In this section, in order to fairly redistribute the bene-

fits obtained from community-owned assets to individual

agents, we implement the redistribution scheme introduced in

Section III-E that utilizes the marginal contribution principle

(a key concept from coalitional game theory). First, we imple-

ment for the case with community-owned generator only,

without storage asset. Then, redistribution of cost savings

from both the community-owned generator and storage is

implemented.

1) REDISTRIBUTION OF BENEFITS FROM COMMUNITY

RENEWABLE GENERATOR ASSET ONLY WITHOUT BATTERY

The investment cost of community PV was assumed to be

shared equally among the agents, but the revenues are not

equally distributed. As described in Section III-E2, using

Eq. (32) the new yearly energy bills (b
∗(NC)
i (T )) of individ-

ual agents after redistribution of community savings from

a community-owned solar PV is computed by marginal

cost redistribution method with network constraints. This

method is the approximated version that is computationally

tractable. The new yearly bills obtained using approximated

marginal cost redistribution method are compared with the

new yearly bills obtained using marginal cost redistribution

method without approximation. The comparison between the

redistribution mechanism with approximation and without
approximation is shown in Fig. 14 for the fixed tariff and

Fig. 15 for the dynamic ToU Tariff.

For fixed tariff, the individual agents yearly bills obtained

after redistribution by approximated marginal cost redistri-

bution method is similar to results obtained by redistribu-

tion mechanism without approximation, with the correlation

coefficient of 99.99% (as shown by Fig. 14). Similarly, for

dynamic ToU tariff the results are similar with the correlation

coefficient of 99.98% (as shown by Fig. 15). Hence, while

considering the network constraints, approximated marginal

cost redistribution method can be used to redistribute the

benefits from community owned assets, as it is much more

FIGURE 14. Comparison between the individual agents yearly bills
obtained after redistribution by approximated marginal cost
redistribution method with redistribution mechanism without
approximation for a fixed tariff of 16 pence/kWh.

FIGURE 15. Comparison between the individual agents yearly bills
obtained after redistribution by approximated marginal cost
redistribution method with redistribution mechanism without
approximation for the dynamic ToU Agile Octopus tariff.

computationally tractable. In Fig. 14 & 15, on the X-axis

we order the 200 agents (households) of the considered

community in increasing order by their total annual energy

consumption. The Y-axis gives the annual energy bill of each

agent. This representation is useful to evaluate the economic

fairness in the redistribution scheme among the small and

larger consumers.

In order to test the advantages of the proposed redistri-

bution mechanism the marginal cost redistribution method

with network constraints, we compare its benefits with the

instantaneous power redistributionmethod that was described

in Section III-E3 which corresponds to the state-of-the-art

redistribution mechanism (based on current practice).

Fig. 16 shows the individual agents annual bills after redis-

tribution by marginal cost redistribution method and instanta-

neous power redistribution method in the case of the dynamic

ToU Agile Octopus [91] tariff pricing scheme. The crossover

point between the redistributed bill curves in Fig. 16 clearly

shows that, with marginal cost redistribution method 67% of
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FIGURE 16. Individual agents yearly bills after redistribution by marginal
cost redistribution method and instantaneous power redistribution
method, with network constraints for the dynamic ToU Agile Octopus
tariff.

the agents can achieve lower annual bill than instantaneous

power redistribution method (these are the lower total annual

bill, hence smaller consumers), while with state-of-the-art

method only 33% of the agents obtain lower annual bills

(hence this scheme benefits mainly larger consumers, with

larger annual demand). Hence, under the proposed marginal

cost redistribution method with network constraints, more

agents are able to decrease their annual bill than the instanta-

neous power redistribution method with network constraints.

While it is true that large consumers benefit slightly less

under our scheme (because, of course, the total community

bill is equal in both cases), these agents with higher demand

profiles are the agents who already obtain the highest bill

reduction as compared to agents with lower demand pro-

files as illustrated in the Fig. 17. Therefore, the proposed

redistribution mechanism achieves a fairer redistribution as

compared to currently practised redistribution scheme. Prac-

tically, having the 67% of agents in the community (including

many smaller consumers) also benefiting from the proposed

redistribution mechanism would lead to greater social accep-

tance, and hence more likely to join the coalition to invest in

the jointly-owned community assets.

2) REDISTRIBUTION OF BENEFITS FROM BOTH THE

COMMUNITY RENEWABLE GENERATOR AND BATTERY

STORAGE ASSETS

In this scenario, the savings (benefits) achieved from both the

community-owned solar PV and community-owned battery

are redistributed by marginal cost redistribution method with

network constraints only. Investment costs for the community

energy assets were shared equally among the agents. Fig. 18

shows the individual agents annual bills after redistribution in

the case of the dynamic ToUAgile Octopus [91] tariff pricing

scheme.

In the literature, the instantaneous power redistribution

method is only used for solar power or wind, but it cannot

be used for communities with batteries, as it is not easy

to determine who used more the battery assets than others.

FIGURE 17. Individual agents yearly bills without assets (baseline), and
yearly bills after redistribution by marginal cost redistribution method
and instantaneous power redistribution method, with network
constraints for the dynamic ToU Agile Octopus tariff.

FIGURE 18. Individual agents yearly bills without assets (baseline) and
yearly bills after redistribution by marginal cost redistribution method
with network constraints for the dynamic ToU Agile Octopus tariff.

This is another key point that demonstrates the advan-

tages of the proposed redistribution mechanism based on

marginal contribution. Yet, there is still a need to redistribute

fairly the benefits obtained from jointly-owned community

renewable generator and storage assets. Hence, the pro-

posed marginal cost redistribution method based on indi-

vidual agents marginal contribution provides the equal and

fair mechanism to redistribute the energy outputs (and hence

financial benefits) from both the jointly-owned community

solar PV and battery assets.

V. CONCLUSION

In this paper, we have proposed a techno-economic mod-

eling methodology that couple’s battery control, battery

degradation, community energy from RES with LV net-

work operating constraints, with a fair redistribution opti-

misation of benefits to jointly owned assets. The control

mechanism was implemented for both fixed electricity tariffs
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and dynamic ToU tariffs to compare the benefits obtained

when an individual household invest in their own energy

assets versus investing jointly in a community-owned energy

assets. To compare the economic performance of investments

in community-owned assets and individually-owned assets,

we considered an energy community of two hundred pro-

sumers, that were all modelled by real time-series data of gen-

eration and consumption profiles from a community in UK

for a full year. We computed yearly bills resulting from the

proposed battery control algorithm and compared the yearly

bills computed with andwithout network constraints to assess

how network/grid constraints can impact the deployment of

individual and community-owned assets.

Experimental results from our study (based on real input

data from the UK) show that, overall, the operation of

individually-owned distributed assets are less impacted by

grid constraints than the operation of community-owned

assets. Indeed, when generation is not located close enough

to consumption, it might lead to local over-voltage that

could result in curtailment by the distribution system operator

of export from community-owned assets. This curtailment

reduces the overall saving of the community, which illustrates

the importance of considering the physical grid constraints

in the energy community schemes. However, even with cur-

tailment due to grid constraints, the economic comparison

between community-owned assets and individually-owned

assets still shows that community-owned assets provides bet-

ter benefits to energy communities for both tariffs schemes

studied.

Next, for energy communities with community-owned

assets, we developed a practically applicable and com-

putationally efficient redistribution mechanism to fairly

share the energy and associated financial benefits from

community-owned assets between the community members.

This redistribution mechanism is based on the marginal con-

tribution of each member, which is a key concept from coali-

tional game theory that looks at rewarding members based

on the value they provide to the community. We showed

that the proposed redistribution mechanism is applicable to

any type of community-owned assets, even storage assets;

despite the apparent difficulty to assess how each member

takes advantage of assets.

Future work will focus on extending the model to consider

new revenue flows for an energy community through partic-

ipation in the energy and ancillary services markets, such as

providing demand-side flexibility services to the distribution

system operator. Another extension is to assess how peer-

to-peer market mechanisms with individually owned assets

can increase the benefits of such community energy scheme,

and how such a setting compares to community-owned assets.

We will also consider extensions of our model that take into

account other energy vectors and assets - such as transport

and community-shared hydrogen fuel cells. In this context,

green hydrogen is increasingly being explored as a promis-

ing energy storage solution, for renewable communities with

excess renewable generation, such as those on the Orkney

Islands [98], [99].

Finally, on the more theoretical side, development of other

redistribution schemes that closely resemble or approximate

the Shapley value solution concept, but are computation-

ally tractable to compute, forms another exciting area of

research.
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