
  
Abstract— For reliable and efficient network planning and 

operation, accurate estimation of Quality of Transmission (QoT) 

before establishing or reconfiguring the connection is necessary. 

In optical networks, a design margin is generally included in a QoT 

estimation tool (Qtool) to account for modeling and parameter 

inaccuracies, ensuring the acceptable performance. In this work, 

we use monitoring information from an operating network 

combined with supervised machine learning (ML) techniques to 

understand the network conditions. In particular, we model the 

penalties generated due to i.) Erbium Doped Fiber Amplifier 

(EDFA) gain ripple effect, and ii.) filter spectral shape 

uncertainties at Reconfigurable Optical Add and Drop 

Multiplexer (ROADM) nodes. Enhancing the Qtool with the 

proposed ML regression models yields estimates for new or 

reconfigured connections that account for these two effects, 

resulting in more accurate QoT estimation and a reduced design 

margin. We initially propose two supervised ML regression 

models, implemented with Support Vector Machine Regression 

(SVMR), to estimate the individual penalties of the two effects and 

then a combined model. On Deutsche Telekom (DT) network 

topology with 12 nodes and 40 bidirectional links, we achieve a 

design margin reduction of ~1dB for new connection requests. 

 
Index Terms— Erbium Doped Fiber Amplifier (EDFA), Filter 

cascading, Machine Learning, network margins, parameter 

uncertainties, Quality of Transmission (QoT) 

I. INTRODUCTION 

HE rapid development of emerging services and 
applications such as cloud computing, high-definition 

video streaming etc. along with the latest networking paradigms  
(e.g., Internet of Things) require higher capacity and QoT 
guaranteed end-to-end performance [1], [2]. Emerging Elastic 
Optical Networks (EONs) have introduced flexibility in the 
optical transport, supporting heterogeneous data rates, optical 
spectrum channels, modulation formats, etc. [3], [4]. This leads 
to higher spectral efficiency and capacity, while keeping the 
network costs as low as possible [1], [5]. For effective optical 
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network planning, it is necessary to estimate the QoT of the 
connections prior to their establishment. This requires accurate 
models or tools to estimate the QoT of new or reconfigured 
connections. However, although EONs provide vast 
optimization dimensions, optical networks are traditionally 
planned to be operated statically. In such static network 
operating mode, high margins are included in the planning 
phase to ensure acceptable QoT performance up to the end of 
life [6], [7]. Lowering the margins and increasing efficiency 
reduces the network cost, motivating various research 
directions. 
 Typically, QoT estimation is performed using an 
analytical Physical Layer Model (PLM) [8] which is included 
in the QoT estimation tool or Qtool. ML-based estimation 
techniques are gaining a lot of attention to improve Qtool 
accuracy [9]-[11]. The main sources of noise accounted in 
Qtools are the Amplified Spontaneous Emission (ASE) noise 
generated at both span and node amplifiers and the Non-Linear 
Interference (NLI) noise, which considers fiber non linearities, 
mostly self- and cross-channel interferences (i.e., SCI and 
XCI). A common practice is to add a design margin to the Qtool 
to account for the modelling simplification assumptions and 
other uncertainty parameters [6]. Removing such uncertainties 
would allow the increase of estimation accuracy and an 
equivalent reduction in the margins, leading to higher efficiency 
and/or lower cost during network planning and upgrading. 
 EDFAs [12] are key devices in wavelength division 
multiplexed (WDM) and EON transport networks that ensure 
the required connection QoT level at the receivers [13]. 
However, EDFAs are the dominant noise source (amplified 
spontaneous emission -ASE noise) in those networks [14]. 
Typically, span EDFAs are operated in Automatic Gain Control 
(AGC) mode with near to zero tilt (first order/ linear correction) 
to get a relatively flat gain in the C-band [15]. Although the gain 
tilt is maintained at zero there are still fluctuations/ripples 
within the gain bandwidth of EDFAs. These gain ripples may 
be due to: i) residual imperfections in the gain flattening filters; 
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and or ii) wavelength dependent absorption/ emission 

coefficients of Er3+ ions [16], [17]. Also, typically, PLMs / 
Qtools assume that the EDFAs have constant noise figure (NF) 
across all WDM channels. Although NF mainly depends on the 
population inversion of erbium ions and follows McCumber 
theory [18], small NF variations across transmission band are 
expected.  

 

 
Fig. 1. An example of EON indicating OPMs installed at each node and location 
of the proposed ML assisted Qtool 

ROADMs based on wavelength selective switches (WSSs) is 
another key element in WDM or EONs. ROADMs support the 
colorless and/or directionless and/or contention less (CDC) 
multiplexing and demultiplexing at the network nodes [19]-
[21]. However, the WSS of the ROADMs are essentially strong 
filters. They narrow the signal bandwidth (BW), a problem 
which becomes severer as the number of WSSs/ROADMs are 
cascaded over long paths [22], [23]. Consequently, this causes 
optical filtering penalty that needs also to be modeled precisely 
and/or covered in the pre-allocated margins. Authors in [23] 
investigated the ROADM node penalty. Their studies found that 
filtering penalty increases exponentially as the number of 
traversed nodes increases, as well as that the penalty varies with 
respect to the modulation format and frequency grid spacing. In 
a deployed network, there are uncertainties in such penalties; 
slight variations in filters spectral responses are typical even for 
identical filters, while the transmitter laser and the filter central 
wavelengths could be misaligned. These uncertainties grow 
even higher for heterogeneous nodes with different types of 
filters (e.g., in multi-vendor scenarios [24]-[26]). In light of the 
above, it is quite challenging to estimate the corresponding 
accumulated penalties. 

Several recent studies and also optical equipment vendors are 
considering the installation of optical performance monitors 
(OPMs) at nodes to support enhanced network operations [27]. 
Using OPMs we can extract information and train ML 
(supervised) models for better understanding of the actual 
physical condition. In our previous work [28], with the help of 
electrical SNR monitors at each node, we accurately estimated 
the gain ripple penalties for new connections requests. 
Extending our previous work, in this paper, we only use optical 
data (OPMs) at intermediate nodes and electrical SNR 
monitoring at the coherent receivers. To be more specific, we 
propose a Qtool that uses optical monitored information of 

established connections to train supervised ML regression 
models, implemented using SVMR, for better prediction of 
QoT for the new connection requests. The proposed ML 
assisted Qtool provides the performance prediction module at 
the network controller and is trained by using OPMs and 
receivers information (Fig. 1) [29].  When the network is 
upgraded (e.g., by adding one or a batch of new connections) or 
when new connections are dynamically established or 
reconfigured, the use of the trained ML Qtool allows for lower 
margins.  

The reminder of this paper is organized as follows. In 
Sections II we overview the related work. Then in Section III 
we report on baseline experiments and simulations that expose 
the effects of gain ripple and filtering uncertainties. In Section 
IV, we present the mathematical modelling for the two effects, 
independently and then jointly. Next, in Section V, we detail 
the proposed ML based Qtool, highlighting the modelling and 
feature extraction steps. Then in Section VI, we show the 
performance evaluation of the proposed solutions, followed by 
related discussions. Finally, Section VII concludes the paper.  

II. RELATED WORK  

There are several factors which impact the accuracy of the 
Qtools and cause estimation uncertainty. To embrace such 
uncertainty in the Qtool estimation, design margins are used. 
Qtools range from analytical models to more advanced ML-
estimation techniques that make use of monitored information. 
All the approaches presented in [8]-[10] assume a flat EDFA 
gain. This requires high design margins to address the QoT 
estimation inaccuracy (e.g., 2-3dB in SNR [6], [7]). In addition 
to this, Qtools assume either constant or more realistic 
exponential OSNR penalty as the number of cascaded ROADM 
nodes grows [22]. Indeed, works in [22], [23] verified that this 
exponential function depends upon both the modulation format 
and the frequency grid spacing. All these prior works did not 
consider the uncertainty due to small fluctuations in filter’s 
spectral response/shape and its effect on the accuracy of the 
Qtool. This problem can exacerbate if we follow the latest trend 
of disaggregated optical architectures, where ROADM nodes or 
even WSS components come from different vendors. Indeed, 
the cascading effects of such multi-vendor ROADMs would be 
more severe when compared to traditional aggregated optical 
network scenarios.  

A.  Related Work: EDFA Gain Ripple 

The OSNR is a function of the traversed spans and 
particularly depends upon the gain ripple profile of each span 
EDFA [17]. The authors in [14], [26] presented the effects of 
gain ripples on span EDFAs, leading to uncertain OSNR 
estimation. They also explored the effects of variation in the 
operating conditions of span EDFAs (monitored by tapping the 
signal at each span EDFA) to minimize the OSNR penalty due 
to gain ripple. The authors in [30], [31] proposed a pre-
emphasis launch power technique to reduce the EDFA gain 
ripple effects. This technique is well suited for fully loaded 
links and requires precise control at the transmitter. The work 
in [31] use approximate analytical models to calculate noise at 
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full channel loading conditions. However [31] verified once 
more that EDFA gain ripple affects the quality of signal, hence 
SNR. A gradient descent-based launch power optimization 
strategy was used to improved SNR in this work. However, all 
the span EDFAs gain ripple profiles were assumed to be 
identical, which, in general, is not realistic in deployed 
networks. Apart from these attempts, several analytical models 
were also proposed to estimate EDFA wavelength dependent 
gain and channel output power, under different channel loading 
conditions. In general, all these models range from limited 
accuracy and simple characterization to very detailed 
estimations, trading-off processing time for accuracy. In [32] 
authors proposed an accurate ML model with cascaded EDFAs 
as a first step toward channel assignment/ resource allocation. 
However, the benefits in terms of accuracy improvement or 
margin reduction for QoT estimation were not presented. A 
most recent extension of EDFA gain spectrum modelling ( in 
[33] ) based on a hybrid (analytical and experimental dataset 
based neural network ML model) approach was presented in 
[34]. Some other recent ML-based works addressed the 
wavelength dependent gain spectra estimation [31], [35]. In 
[36], [37] neural network models were also proposed to 
recommend wavelength assignment with 99% of precision 
value that considers EDFA gain ripple effects. In [35] a single 
EDFA modelling required 18000 channel loading conditions. 
The cascade of EDFAs and its effect on gain ripples were also 
not considered. The dataset used for training those models were 
either i) analytical without considering fiber effects/NLI noise 
contribution, or ii) experimental which needs the data collection 
of each individual span EDFA. These requirements practically 
constrain the usability of those approaches. In [14], the gain 
uncertainties of EDFA working in AGC mode was 
experimentally investigated. A method was derived aiming at 
reducing these gain uncertainties up to 0.5 to 0.7dB when 
encompassing up to five cascaded EDFA spans. The targeted 
scenario in [14] was dynamic with the add/drop of new/existing 
connections. However, for fixed load EDFAs, with static 
network conditions, the gain ripples effect was not explored. 
Moreover, optical attenuators were used to replace fibers in the 
conducted experiments. Hence the effects of NLI noise 
contribution was not considered at all.  

B. Related Work: ROADM uncertainties 

ROADMs consist of WSS filters and amplifiers to route and 
boost the signal towards the destination node. Generally, a 
signal that traverses a ROADM suffers from filtering penalty 
and QoT degradation, as discussed in Section I. Research works 
in [22], [23] confirmed that ROADM node penalty (in OSNR) 
increases exponentially with the number of nodes. [38] 
presented an analytical model based on a higher order SNR-
OSNR relation to capture cascaded filtering effects . All these 
works focused on characterization of the cascade (either by 
looping single filter, or by replacing cascaded filters with a 
tunable BW filter) and not on the identification of the quality of 
the individual filters. [39] proposed an approach for real time 
cascaded filtering penalty assessment (for different order 
gaussian filters) and verified it for a commercial 200G 16-

quadrature amplitude modulation (16-QAM) transponder and 
WSS modules. [39] showed the effect of spectral shape 
variation in a cascade of filters which resulted in uncertain (as 
outliers in Fig. 4) OSNR penalty estimation. However, in that 
work also, the spectral shape variations and corresponding 
uncertain OSNR penalty estimation were not accounted for. As 
already discussed, this non-linear penalty is expected to 
exacerbate in disaggregated optical networks where 
ROADM/filters and Tx. lasers could come from multiple 
vendors with diverse characteristics. A recent study on 
disaggregation at node level indicated 3.5-5dB (core) and 3-
3.5dB (metro) required margins [40], mainly due to 
uncertainties/variability of the multi-vendor components; the 
filtering penalty of ROADM nodes play a significant part in 
those increased margins.  

In brief, to the best of our knowledge, the effects of EDFA 
gain ripple and of ROADM filter spectral uncertainty on QoT 
estimation needs further exploration. The understanding of 
these two effects could improve QoT estimation accuracy and 
reduce margin for reconfigured or future connection 
establishments. Therefore, we devise estimation tools that can 
predict the independent or combined penalties of the 
aforementioned effects based on training from monitored data 
of established connections and achieve a considerable reduction 
in the required margins.  

III. PRELIMINARY STUDIES AND MOTIVATION 

The gain profile of the EDFA is not complete flat and suffers 
from the gain tilt and the gain ripple problems. The former is 
easily equalized with a first order/linear correction. Hence, we 
will discuss the compensation of the gain tilt in this paragraph, 
so as to avoid confusion with the gain ripple in the rest of the 
paper. In general, an EDFA amplifier card has a flat linear 
approximated output (gain ripples exist but are higher order 
terms), i.e. zero gain tilt, only for a specific gain value gdes., as 
shown in Fig. 2(a). This value is based on the internal design 
and is specified by the amplifier manufacturer. If the amplifier 
operating gain point go is not equal to gdes, then the output 
suffers from a gain tilt as shown in Fig. 2(b). This tilt can be 
compensated at the amplifier card level with well-known 
methods [15]. A variable optical attenuator (VOA) inside the 
amplifier is automatically adjusted to obtain the zero-tilt profile  
(but with gain ripples) at the output (Fig. 2(c)). From now 
onwards, whenever we will consider the gain ripple of an 
EDFA, we will assume that the gain tilt is compensated to zero 
by internally readjusting its operating point to go = gdes. 

A.  Motivation: EDFA Gain Ripple 

As discussed above, typically all span EDFAs are operated 
in AGC mode with near to zero gain tilt, that is flat first order 
approximated gain in the C-band, as presented in Fig 2(c) and 
also in Fig. 1 of [14]. To motivate our work and understand the 
trends of EDFA gain ripple profiles, we performed lab 
experiments. We used 4 different EDFAs in the optical 
spectrum band of ~1530 – 1563nm with 40 WDM channels at 
100GHz spacing with central frequencies adjusted according to 
ITU standards as shown in Fig. 3(a). We operated all EDFAs in 



AGC mode and zero tilt by pre-adjusting their operating points. 
The experimental setup used is shown in Fig. 3(a). Based on 
collected experimental data, we created realistic span EDFA 
gain profiles denoted by 𝑔 𝑟(λ), with maximum peak-to-peak 
value of ±0.5dB (λ denotes the wavelength in C-band, r denotes 
the 4 characterized EDFAs). We then simulated in VPI 
Transmission Maker a link with increasing number of spans, 
each of 80 km and chose one of the experimentally collected 𝑔 𝑟(λ) profile per simulation. On this link we simulated the 
transmission of 100GHz spaced 40 Dual Polarization- 
Quadrature Phase Shift Keying (DP-QPSK) WDM channels as 
shown in Fig. 3(b). We found ~1dB of fluctuation for the 
channels after 5 spans (maximum EDFA peak-to-peak ripple of 
±0.5dB in all spans) as shown in Fig. 3(c). In general, the shape 
of the ripple can vary over longer time (aging), but this is a slow 
process. So, in short and medium term the ripple function has a 
clear trend which makes its modelling possible. The observed 
SNR variation upto 1dB due to the gain ripple for only five 
cascaded spans (Fig. 3(b)) - similar findings are reported in 
Fig. 7 of [26]- indicate that if the gain ripple is not modelled in 
the QoT estimator, an equivalent margin (1dB) should be used 
to cover it.  

B.  Motivation: Filter Spectral Uncertainties inside ROADM 

In current optical networks, connections are generally filtered 
and routed through multiple ROADM nodes before finally 
detected at their receivers. We denote a connection c with 
central wavelength, 𝜆𝑐   and traversed path 𝑝𝑐. We also denote 
by 𝐹𝑚(𝑝𝑐 , 𝜆𝑐) the spectral response of the filter located at the 
end of mth link along 𝑝𝑐 (ROADM nodes might implement more 
than one filter but we now focus on just one per link). In 

general, 𝐹𝑚(𝑝𝑐 , 𝜆𝑐) is characterized by its central frequency, 
pass-band bandwidth (BW), shape (gaussian, trapezoidal etc.) 
and order. The central frequency of the filter is defined 
according to the connection’s central wavelength 𝜆𝑐 and its BW 
is always higher than the connection’s BW and according to 
ITU grid. The filter shape and order depend on the filter type 
and current generation ROADMs use 2nd order Gaussian shaped 
filters. Fig. 4(b) shows the spectral shape of the transmitted  
signal modulated at 32Gbaud and 0.1 roll off factor with DP-
QPSK modulation format (blue line) obtained with simulations 
in VPI Transmission Maker (Fig. 4(a)). As the transmitted 
signal traverses the nodes/filters, its signal quality is degraded, 
according to the cascade of the filters’ spectral responses, what 
is known as the filter cascading effect. Fig. 4(b) also shows the 
spectral shape of the received signal after one, three and five 
identical cascaded filters (the spectral response 𝐹𝑚 was the 
identical for all m =1…,5). Fig. 4(b) clearly shows that the 
signal quality degrades as the cascade increases, even for 
identical filters. In Fig. 4(b), we observed a 3dB BW 
degradation of ~6.02GHz after 5 identical filters (solid green 
line). However, as already discussed, in real networks slight 
variations in filters spectral responses are typical even for 
identical filters, while the transmitter laser and the filter central 
wavelengths could be misaligned. Such issues result in 
inaccurate filtering penalty estimation. We simulated an 
uncertainty of ±10% in 3dB BW of each filter in VPI 
Transmission Maker for a cascade of five filters. Fig.4(c), 
shows the resulted signal 3dB BW at different cascade levels. 
We observed ~2.1GHz uncertainty in the signal 3dB BW 
(dotted red line) at the end of the cascade/path. This uncertainty    

 
Fig.  2. End to end EDFA gain tilt equalization on experimentally collected (a) ripple profile with gain = gdes., VOA = 0dB, (b) go ≠ gdes. leading to gain tilt, 
(c) first order correction by setting VOA = |gdes. - go |   

 
Fig.  3. (a) experimental setup to capture EDFA gain ripple profiles, (b) VPI Tx. Maker set up of 40, 100G DP-QPSK WDM channels having span EDFA 
gain ripple profile, (c) SNR penalty for ripple of 0.5dB for central channel 
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would contribute to inaccurate OSNR filter penalty estimation 
and should be covered by a related margin. 
 These preliminary results, obtained from the above 
described experiments and simulations for EDFA gain ripple 
and spectral uncertainties of filters, motivated us to explore 
these effects further. Our goal was to integrate them in QoT 
estimators to yield higher accuracy (or lower design margin) for 
future connections, as discussed in the upcoming sections.  

IV. MATHEMATICAL MODELING OF RIPPLE AND FILTER 

SPECTRAL UNCERTAINTIES 

This section outlines the formulation of EDFA gain ripple and 
spectral uncertainties of ROADM filters in QoT estimation.  

A. Modelling of Ripple Unaware and Aware EDFA Gain 

In this subsection, we outline the modelling used in a 
standard and extended PLM to accounts for the gain ripple. In 
general, a PLM calculates ASE and NLI noises and adds 
margins on top for simplifications/ noise contributing factors 
that it partially covers.  

Let us focus on a multi-span link as shown in Fig. 5. Current 
generation commercial EDFAs are dual staged having low NF, 
and a large dynamic range (up to 15 dB) [41]. Moreover, in real 
networks, a Dynamic Gain Equalizer, DGE, is used to 
compensate the cumulative EFDA gain ripple effect on multi-
span links, resulting in almost flat output power [42]. For a 
typical scenario of a 6 span link the DGE is applied at the 3rd 
span as shown in Fig. 5.  For longer links a new DGE is installed 
every ~6 spans. Even though the use of DGEs, residual gain 
ripple effect is still present, affecting the overall QoT estimation 
accuracy. 

The ASE noise (linear noise) estimation is straightforward to 
model and depends upon the gains and noise-figures of the 
EDFAs along the path. For NLI several models have been 
proposed and validated [43]- [46]. The Gaussian Noise (GN) 
model [44], [46] is computationally very efficient while 
maintaining good accuracy [26]. Hence, we implemented it and 
also extended it to account for the additional wavelength 
dependent gain ripple penalties.  

Assume now that we have a connection 𝑐 = (𝑝𝑐, 𝜆𝑐) and use 
the standard GN model that does not model the gain ripple. The 
SNR at the end of link m on the path pc calculated with the 

standard GN model (ripple unaware-RU) is denoted by 𝑆𝑁𝑅𝑅𝑈,𝑚(𝑝𝑐 , 𝜆𝑐), respectively. We can then accumulate the 

inverse of SNR over the links of the path pc to obtain the total 
SNR calculated at connection’s end as 𝑆𝑁𝑅𝑅𝑈(𝑝𝑐 , 𝜆𝑐). We 
denote the Qtool that uses the standard GN which is ripple 
unaware as QRU. Such tool, since it is ripple unaware, has to use 
a margin (part of 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛1) on top of 𝑆𝑁𝑅𝑅𝑈(𝑝𝑐 , 𝜆𝑐) to 
account for the penalties due to neglected wavelength 
dependent gain ripples. 

 

 
Fig. 5. WDM link indicating span EDFAs with gain ripple, 𝑔𝑟(λ) and DGE 
location with dual stage EDFA resulting in flat output at link end 

As discussed, in reality, EDFAs have gain ripples, which 
makes the PSD of each channel to change after each traversed 
span (even for uniform launch power and baudrate). Assuming 

known ripple profiles 𝑔𝑛𝑠(λ𝑐) of each span ns we can calculate 

the PSD of each channel and also the PSD of NLI noise at the 
end of each span. In deployed networks with DGEs installed at 
certain spans (as shown in Fig. 5), the DGE alters the power 
profile of the applied span so as to flatten the output power at 
the end of the covered spans via a feedback loop. We can 
account for this in modeling, by setting on the span on which 
the DGE is applied the signals PSD to be equal to the DGE 
feedback power profile. This is calculated by the known EDFA 
ripple profiles so as to obtain zero ripple at the end of the link.  

The above described GN model is thus ripple aware (RA). 
We calculate the ASE and NLI noise (including effect of gain 
ripples) per link, and then, using the per link inverse SNR 
addition, we obtain the total SNR for connection c, denoted by 𝑆𝑁𝑅𝑅𝐴(𝑝𝑐 , 𝜆𝑐). Then, on top of that, we add the design margin2 

to cover for modeling inaccuracies, excluding the gain ripple. 
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Fig.  4. (a) VPI Tx. Maker set up of single channel, 100G DP-QPSK signal having uncertain filtering, Δm at ROADM node, (b) effective 3dB BW reduction 
after cascading of 5 filter with zero uncertainty Δm=0, (c) effective 3dB BW reduction after cascading of identical filter with uncertainty, Δm of ±10% 
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We call the Qtool that uses this ripple aware PLM as QRA. The 
details about the assumptions and extensions in the GN model 
to account for ripple penalties are presented in Appendix1. Note 
that in case of ripple aware QRA the total noise generated at the 
end of path is closer to the reality, compared to ripple unaware 
QRU, since it models/accounts for the wavelength dependent 
ripple. This leads to better accuracy and a lower design margin 
i.e. design margin2 < design margin1. 

B. Modelling of Filters Spectral Uncertainties inside ROADM  

We now discuss briefly the mathematical formulas used for 
standard and extended PLM to account for the uncertainties in 
ROADM filtering penalties. As the connection traverses 
multiple nodes, the OSNR filter penalty accumulates in a 
nonlinear fashion as shown in Fig. 6 (we used VPI 
Transmission Maker to measure the penalty for three different 
modulation formats).  We consider the standard CDC switch & 

select (S&S) architecture of ROADM node as shown in inset of 
Fig. 6(a), although our approach can be also used for broadcast 

& select (B&S) architecture, or a mix. In S&S, two WSSs are 
used to route the signal to the outgoing link together with two 
EDFAs acting as pre and booster amplifier, respectively. For 
add/drop signal at source/destination node, we assume that the 
penalty comes from only one WSS/filter. Depending on 
add/drop or crossing direction, different filters are encountered 
in the ROADM. To account for this and also for the cascading 
effect, we account the filters by considering subpaths.  So, 
extending the above notation, for connection c that uses path pc 
and wavelength 𝜆𝑐 we denote by pc,m the subpath from the 
source/Tx up to link m. We also denote by 𝑆𝑝𝑐,𝑚(𝑝𝑐 , 𝜆𝑐) the 

signal spectrum at the end of link m, due to the cascade of 
previous filters over the subpath, pc,m. This is given by:  𝑆𝑝𝑐,𝑚(𝑝𝑐 , 𝜆𝑐) =  ∏ 𝐹𝑘(𝑝𝑐 , 𝜆𝑐)𝑘∈𝑝𝑐,𝑚                                        (1) 

where 𝐹𝑘(𝑝𝑐 , 𝜆𝑐) is the spectral response of filter k in path 𝑝𝑐. 
In the following, we drop 𝜆𝑐 and 𝑝𝑐 for simplicity. From 𝑆𝑝𝑐,𝑚 

we can extract a set of attributes, indexed by j, that reflects the 

key properties of the cascade up to link m, denoted by 𝑆𝑝𝑐,𝑚𝑗
. 

Such attributes can be the 3dB BW, cascaded filter central 

frequency, signal distribution parameters, etc., or 𝑆𝑝𝑐,𝑚𝑗
= {𝑆𝑝𝑐,𝑚3𝑑𝐵 , 𝑆𝑝𝑐,𝑚𝑓𝑐 , …., 𝑆𝑝𝑐,𝑚𝑠𝑦𝑚.

}. However, variations within spectral 

responses of filters and misalignments result in uncertainties in 

these attributes 𝑆𝑝𝑐,𝑚𝑗
 which we denote by 𝛥𝑝𝑐,𝑚𝑗 ={𝛥𝑝𝑐,𝑚3𝑑𝐵 , 𝛥𝑝𝑐,𝑚𝑓𝑐 , … . , 𝛥𝑝𝑐,𝑚𝑠𝑦𝑚.}.  

Extending this notation to PLM/Qtool, let us consider 
connection c=(𝑝𝑐 , 𝜆𝑐). The standard PLM would assume that 

the filters along its path are perfectly identical, 𝛥𝑝𝑐,𝑚𝑗 = 0. The 

standard PLM estimates an attribute 𝑠𝑝𝑐,𝑚𝑗
 (lowercase as 

opposed to real attributes 𝑆𝑝𝑐,𝑚𝑗
 ) at the end of link m, and 

employs an attribute dependent filter penalty function, 𝑤𝑗 , to 

calculate the attribute at the next link 𝑠𝑝𝑐,𝑚+1𝑗
=𝑤𝑗(𝑠𝑝𝑐,𝑚𝑗 , 𝐹𝑖). An 

example of such a function for the attribute j=3dB, 𝑤3𝑑𝐵, is 
shown in Fig. 6(a), coming from VPI simulations. We see that 

the 3dB BW (𝑠𝑝𝑐,𝑚3𝑑𝐵 ) degrades as the function of the cascaded 

filters. The standard PLM would also employ a function q to 

map the attributes 𝑠𝑝𝑐,𝑚𝑗
 to (modulation format dependent) 

OSNR penalty at each link end and at the end of the path 𝑝𝑐. An 
example of such q function that translates 3dB BW to OSNR 
penalty, according to the channel modulation format is shown 
in Fig. 6(b), again obtained through VPI. Note that a standard 
PLM could do the above in one step, go directly from subpaths 
to filtering penalties, without calculating the attributes, but the 
above description gives us the intermediate step that helps us 
model the uncertainties. 

  
Fig. 6. (a) effective 3dB BW degradation with cascading of WSSs, (b) OSNR 
penalty function q (in dB) due to tight optical filtering for DP-QPSK, DP-
8QAM and DP- 16-QAM as a function of 3dB BW. 

We denote the Qtool that uses the filtering uncertainty unaware 
PLM discussed above by QFU. This tool calculates the SNR at 

the end of link m, 𝑆𝑁𝑅𝐹𝑈,𝑚(𝑝𝑐 , 𝜆𝑐), and then at the end of the 

path 𝑆𝑁𝑅𝐹𝑈(𝑝𝑐 , 𝜆𝑐), as described in Appendix 2. Since it is 
filter uncertainty unaware (FU) it has to include in its margin 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛1 a part to cover the filter penalty uncertainty 
error. Note that as in the previous section (and also in the next) 
we denote by 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛1 the margin of the unaware 
Qtool and by 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛2 the lower margin of the aware 
Qtool. 

However, in real networks there are variations in the spectral 
responses of filters and misalignments of Tx and filters central 
channels. For example, as shown in Fig. 4(c), an uncertainty of 𝛥𝑚3𝑑𝐵±10% in 3dB BW of each filter in a cascade of 5 filters 
resulted in ~2.1GHz uncertainty in the signal 3dB BW, which 
according to Fig. 6(b), results in ~0.6 dB in OSNR penalty 
estimation. Assuming that we know the filtering uncertainties 𝛥𝑝𝑐,𝑚𝑗

 we can calculate the SNR at the end of each link and at 

the end of the path 𝑆𝑁𝑅𝐹𝐴(𝑝𝑐 , 𝜆𝑐) taking those into account. 
The details about the assumptions and the extensions to the 
standard PLM to account for filtering uncertainties are 
presented in Appendix2. We denote the Qtool that uses this 
filtering uncertainties aware PLM as QFA. Such Qtool will use 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛2 on top of 𝑆𝑁𝑅𝐹𝐴(𝑝𝑐 , 𝜆𝑐) to cover other 
estimation errors, but not of filters. As discussed, it stands to 
reason that filter uncertainty aware Qtool, QFA, has a lower 
design margin i.e. design margin2 < design margin1.  

C. Combined Mathematical Modelling of EDFA Gain Ripple 

and Filter Spectral Uncertainties  

Lastly, we want to highlight the most realistic case which 
merges both effects. We consider a standard PLM which 
assumes EDFA with no ripples and no filtering penalty 
uncertainties. This PLM/Qtool is a combination of QRU and 
QFU. So, it is ripple plus filtering uncertainties unaware (RFU) 
and is denoted by QRFU. The overall accumulated noise and the 
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SNR calculated at the end of link m is denoted by 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐹𝑈,𝑚(𝑝𝑐 , 𝜆𝑐) and 𝑆𝑁𝑅𝑅𝐹𝑈,𝑚(𝑝𝑐 , 𝜆𝑐), respectively. We 
can then calculate the total SNR of the connection as 𝑆𝑁𝑅𝑅𝐹𝑈(𝑝𝑐 , 𝜆𝑐), and we add the design margin1 to account for 
inaccurate model of ripple, filters uncertainties, and other 
factors.  

Assuming that we know the gain ripple profiles 𝑔𝑛𝑠(λ𝑐) for 

all EDFAs and also the uncertainties in the filter responses 𝛥𝑝𝑐,𝑚𝑗 ≠ 0 for all filters. Then we can calculate the PSD of NLI 

at each link end and the filtering penalty at each node. We 
combine those to obtain the total SNR at the end of the path 𝑝𝑐, 𝑆𝑁𝑅𝑅𝐹𝐴(𝑝𝑐 , 𝜆𝑐). We call this a ripple and filtering aware Qtool 
as QRFA. Such QRFA would use 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛2 on top of 𝑆𝑁𝑅𝑅𝐹𝐴(𝑝𝑐 , 𝜆𝑐) to account for uncertainties other than the two 
under consideration. The details about the assumptions, 
extensions and modification in standard PLM to account for 
both ripple and filtering penalties are presented in detail in 
Appendix3. 

V. MACHINE LEARNING BASED MODELING 

In the previous section we outlined the mathematical 
modeling of the gain ripple and filter response uncertainties. 
However, such modeling is feasible if we accurately know the 

gain profiles of the EDFAs 𝑔𝑛𝑠(λ𝑐) and the spectral responses 

of the filters 𝐹𝑘(𝑝𝑐 , 𝜆𝑐), or their related uncertainties 𝛥𝑝𝑐,𝑚𝑗
. 

Such assumptions are rather unrealistic. They would require the 
measurement of all EDFAs and filters in the network, which 
would have to be repeated because they would vary with time 
(aging, traffic changes, etc.). So, in this section we present our 
proposed solution: use monitoring information in an operating 
network combined with machine learning (ML) to model the 
penalties due to these effects. The proposed ML model is 
trained with the current network state and then used for 
estimating the ‘unseen’ penalties of future connections, 
achieving higher QoT estimation accuracy and requiring lower 
margins.  

We assume an optical network with established connections 
and their attributes (also referred to as the state of network at a 
given time) denoted by C. Note that C contains the attributes 
for each connection such as, the traversed path 𝑝𝑐, central 
wavelength 𝜆𝑐, transmitted power etc. We also assume that the 
network has OCMs installed at the end of each link [47], that is, 
before each ROADM. In Fig. 7, we show a simple network 
where we indicate the locations of OCMs and main parameters 
extracted (output power, set of j attributes from monitored 

spectra 𝑆𝑝𝑐,𝑚𝑗
 etc.). In Fig. 7, we also indicate the DGEs location 

that flatten the EDFA gain ripples before every ROADM node, 
that is, at the end of each link. We also assume that we can 
monitor the feedback power profiles of the DGEs and also the 
electrical SNR information at the coherent Rx at the 
transmission endpoints [27], [28]. Finally, we assume that all 
monitoring information is made available through a suitable 
control plane.  

We start with a standard Qtool that is gain ripple and/or 
filtering uncertainty unaware, according to the considered case 
out of the three described in the previous section (corresponding 

unaware tools: QRU, QFU, QRFU). We use the monitored 
information from established connections to calculate the 
estimation error of the standard unaware Qtool due to the 
considered effect. Based on those we train a supervised ML 
regression model to estimate those errors. The model is then 
used to calculate the related corrections for new unestablished 
connections. Then for new connections we use the trained ML 
model as a correction on the standard unaware Qtool 
estimation. The main difference of the three considered cases 
lies in the ML feature extraction and modelling and will be 
described in the following.  

 

 
Fig. 7. Sample 4-node network depicting monitoring port locations and DGE 
placement locations. 

A.  ML-based gain ripple effect modeling 

We assume a ripple unaware PLM QRU, as discussed in the 
first half of section IV.A, which calculates the end-to-end noise 
of each established connection as 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝑈(𝑝𝑐 , 𝜆𝑐), for all 
connections c ∈ C. As a first step, using the monitored DGE 
power profiles we can improve such estimations. We use the 
ripple aware QRA formulas with flat EDFA gain profiles, but we 
use the monitored power profiles at the DGE spans. We call this 
ripple dynamic gain equalizer aware QREA Qtool. We denote the 
estimated noise by 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐸𝐴(𝑝𝑐 , 𝜆𝑐) and the set of estimated 
values for all established connections C by 𝑌𝑅𝐸𝐴 (C).  

We then monitor the electrical SNR of the established 
connections and thus their noise (ASE and NLI) at the coherent 
receiver/ path level, 𝑌𝑅𝐴(𝐶) and store it in the Qtool database. 
This data serves as the ground truth, it defines the true 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐴(𝐶), with zero margin. We denote the difference of the 
real/monitored 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐴 and the estimated 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐸𝐴 at path 
level as 𝐸𝑅(𝐶)=𝑌𝑅𝐸𝐴(𝐶) − 𝑌𝑅𝐴(𝐶). 𝐸𝑅 is a vector that includes 
the estimation errors of QREA of the established connections due 
to the real gain ripples. From connections attributes, C, we 
extract features which depend on connections’ routes and 
central wavelengths. To be more specific, for each connection 
c we assign its used wavelength on the links that it utilizes (links 
used in the path are one hot encoded). Additional to these 
features, a bias is also considered to account for any monitoring 
calibration error and for the non-zero equalized tilt. The per 
connection features along with the bias term are merged into a 
gain ripple features matrix 𝑋𝑅=fGR(C). The feature matrix 
enables the correlation between connections crossing the same 
link while accounting for their utilized wavelengths. Our goal 
is to identify the function 𝛩𝑅(𝑋𝑅)≈ 𝐸𝑅 that maps well the 
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features matrix 𝑋𝑅 to the penalty 𝐸𝑅 generated due to the gain 
ripple. Based on the monitored information of established 
connection, we can train supervised ML models on the above 
features and their corresponding labels, 𝐸𝑅. Under the hood, 𝛩𝑅   implements a wavelength dependent ripple penalty function 
per link.  

We rely on ML for training and fitting of 𝑋𝑅 on 𝐸𝑅 and 
finding the function 𝛩𝑅. Assuming a new connection request 
r∉ C, we will use QREA to obtain the total approximated noise 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐸𝐴 = 𝑌𝑅𝐸𝐴(𝑟). Then we use our trained ML model 𝛩𝑅 to 
estimate the ripple noise penalty on the new connection 𝛩𝑅(f(r)) 
and estimate the total noise including ripple as 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐸𝐴+𝛩𝑅(f(r)). The testing error will be identified once we 
establish the connection, monitor the SNR and the noise at the 
receiver and compare it to that. The interactions between the 
collected monitoring information, the Qtool QREA and the ML 
assisted ripple noise penalty estimation are depicted in Fig. 8. 

 

 
Fig 8. Overall flowchart of ML-based penalty estimator (i.e., train/test/estimate) 
for EDFA gain ripple case 

B. ML-based node filter uncertainty modeling 

The standard filter uncertainty unaware Qtool QFU starts from 
the transmitter parameters and calculates the cascaded attributes 
for identical filters down the path until the receiver. So, as 
discussed in Section IV.B, QFU implements the attribute 

dependent function 𝑤𝑗  which calculates the attribute of the next 

link based on the attribute of the previous link, 𝑠𝑝𝑐,𝑚+1𝑗 =𝑤𝑗(𝑠𝑝𝑐,𝑚𝑗 , 𝐹𝑚) for a specific filter 𝐹𝑚 assuming no uncertainty 𝛥𝑝𝑐,𝑚𝑗
=0 (Fig. 6(a) shows a 𝑤3𝑑𝐵  function). Based on 

monitoring information we understand the actual filtering 
uncertainties and use that for estimation of future connections 
requests as described in the following.   

We assume that OCMs are available at links ends to monitor 
the signal spectrum 𝑆𝑝𝑐,𝑚(𝑝𝑐 , 𝜆𝑐) for all established connections 

c in C. As discussed in Section IV.B, from 𝑆𝑝𝑐,𝑚  we can extract 

appropriate attributes 𝑆𝑝𝑐,𝑚𝑗
, which serve as the ground truth and 

are stored in Qtool database. Based on this  OCM information 𝑆𝑝𝑐,𝑚𝑗
, we correct QFU as follows. We denote the expected 

attributes from the monitored data of established connection C 

by 𝑠𝑝𝑐,𝑚+1𝑗
=𝑤𝑗(𝑆𝑝𝑐,𝑚𝑗 , 𝐹𝑚). The monitored-expected error is 

given by 𝐸𝑝𝑐,𝑚+1𝑗
 =  𝑆𝑝𝑐,𝑚+1𝑗

 -  𝑠𝑝𝑐,𝑚+1𝑗
, which is due to unknown 

uncertainties 𝛥𝑝𝑐,𝑚+1𝑗
. Then, we extract a per link ML features 

matrix, 𝑋𝑝𝑐,𝑚𝑗
 = fFA(𝑆𝑝𝑐,𝑚𝑗

, 𝑠𝑝𝑐,𝑚𝑗
). By concatenating all errors and 

features matrices for the different attributes j we obtain the 
overall error and the filters attributes feature matrix, 𝐸𝐹  and 𝑋𝐹, 
respectively. Our goal is to identify a per link dependent (each 
link representing the WSS before and after it) error function 𝛩𝐹  

which maps the features matrix 𝑋𝐹 to the error 𝐸𝐹 , that is 𝛩𝐹(𝑋𝐹) ≈ 𝐸𝐹 . We rely on supervised ML regression techniques 
for training on 𝐸𝐹  as target/label vector and finding 𝛩𝐹 . Fig. 9 

shows the features matrix X utilizing OCM data 𝑆𝑝𝑐,𝑚𝑗
, and the 𝑤𝑗  expected attributes 𝑠𝑝𝑐,𝑚+1𝑗

 for the toy network of Fig.7. 

 
Fig. 9. Link based generated filters attributes features matrix 𝑋𝐹  for the sample 
network shown in Fig. 7 (4 nodes, with established connection from A to D). 

 
Assuming a new connection request r∉C, we start with its 
transmission spectrum parameters calculate the expected 
attributes for the next link using 𝑤𝑗 , extract ML features (for 
known modulation format), use trained ML to predict the 
attributes correction (new 𝐸𝐹), apply that correction, and repeat 
that link by link down the path until destination. Then we 
translate the corrected expected filter attributes at the end of the 
path to the SNR penalty using function q, as discussed in 
Section IV.B (Fig. 6(b)). The pseudo-code of this process is 
given in Algorithm 1. The testing error will be identified once 
we establish the connection, measure SNR at the receiver and 
compare it to SNR estimated by Algorithm 1.  

C. ML-based gain ripple and filter uncertainty modeling  

In this case, when both effects are simultaneously present, we 
use all available monitors, OCM, DGE and Rx, together. We 
start by implementing the ML-based filter uncertainty model 
described in Section V.B. We use OCM monitored spectra, to 

obtain filter attributes, 𝑆𝑝𝑐,𝑚𝑗
. Then we use ripple and filter 

unaware Qtool, QRFU and its functions 𝑤𝑗  to estimate the 
filtering attributes for next links and create filters attributes 
features matrix 𝑋𝐹 (Fig. 9). We then train the ML model 𝛩𝐹 . 
Then we use OSNR filter penalty estimation function q to 
calculate from the monitored attributes at end of the 

connections 𝑆𝑝𝑐𝑗  the related filter SNR penalties, denoted by 

PFA(C), which are assumed to be quite accurate since they come  
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from monitored data. We then used monitored SNR at the 
receivers (𝑆𝑁𝑅𝑅𝐹𝐴) and subtract from those the filter penalties 
PFA(C) to obtain the SNR that includes only the gain ripple 
effect (𝑆𝑁𝑅𝑅𝐴). From that we obtain the accumulated noises 
YRA(C) that include the ripple penalties. Then we use the DGE 
monitored data and the process described in Section V.A to 
create the ripple features matrix 𝑋𝑅 and train the gain ripple ML 
model 𝛩𝑅 . Note that this stepwise approach works because we 
have adequate monitoring information to distinguish between 
the two effects: OCMs gives us information to understand the 
filter penalty which we can then remove from the monitored 
SNR at the receivers and focus then on the gain ripple penalties. 
For new connection requests r, we follow the same order, and 
apply first the filter penalty correction based on 𝛩𝐹  and then the 
ripple penalty correction 𝛩𝑅 .  

VI. RESULTS & DISCUSSION 

To quantify the benefits of the developed accurate QoT 
estimators, we performed simulations to identify the amount of 
margin reduced in the presence of single or both gain ripple and 
filter penalty uncertainties. For this analysis, we consider 
Deutsche Telekom, DT topology with 12 nodes and 40 
bidirectional links. The link lengths range from 48 to 458 km as 
shown in Fig. 10. 

We assumed uncompensated bidirectional fiber links with 
spans of 80km of standard single-mode fiber (SSMF). We 
assumed 4 different traffic loads of {100, 200, 300, 400} total 
connections with uniformly chosen source-destination pairs.  
We served each demand with one wavelength, assumed to be 
modulated at 32Gbaud with a modulation-tunable pol-mux 
transponder. We assumed that the transponder could adapt to 
{QPSK, 8-QAM, 16-QAM} modulation formats, leading to 
{100, 150, 200} Gbps of datarate, respectively. We assumed a 
frequency slot size of 12.5GHz and allocated 3 spectrum slots 
for each 32Gbaud connection. We assumed a stable network 
state, where we have a specific set of connections established 
and we want to establish a new set of connections. As discussed 

above, we exploit supervised machine learning to train the 
respective ML model on monitored connections to understand 
the gain ripple and filter uncertainty penalties. Then we use this 
trained ML model to estimate the ‘unseen’ penalties of the new 
connection requests with higher accuracy/lower design margin. 
 

 
Fig. 10. DT 12 node network topology with length (in kms). 

 Assuming a specific set of connections, we routed them (with 
an RSA shortest path and first free slots algorithm) and then we 
generated monitored data using the uncertainty aware Qtools 
(Section IV and the Appendixes) with parameters described in 
the following paragraphs. We then divided the connections into 
two sets of 90%/10%, the training and testing datasets, 
respectively. The training set was assumed to be the established 
connections C and the testing set to correspond to the new 
connections to be established, r ∉ C. We averaged the results 
over 200 iterations (random sources-destinations, and random 
split of training/testing data) at each load. 

To study the effect of gain ripple we initially assumed no 
filtering uncertainty. We assigned experimentally measured 
gain ripple profiles, g(λ), to each span EDFA, after applying 
random time shifting and amplitude scaling to them (see 
Section III). We assumed that OCM are installed before each 
ROADM node and that we can also monitor the power profiles 
applied by the DGEs through their feedbacks. All these were 
integrated in the ripple aware Qtool, QRA, that calculated the 
DGE power profiles and also the total noises at the receivers 
YRA(C). Taking as reference the ripple unaware Qtool QRU (see 
Section IV.A and Appendix1), we depict in Fig. 11(a) the 
estimation error for 400 connections, which pertains to the 
ripple penalty. The penalties were distributed in positive and 
negative sides depending upon the ripple values and were ~1.8 
dB in total. Positive/negative penalties result in upper/lower 
bounds for the design margin, which we call as “high/low 
margin”. In standards ~2-3dB of design margin is typically used 
to accommodate all uncertainties [6]. Fig. 11(a) shows that 
~1dB of QoT tool design margin would be required to 
accommodate the ripple penalties only (shown by histogram 
plot in dotted red circle).  The remaining part of the design 
margin would cover the other uncertain effects. To improve the 
estimation accuracy, we used the ML model described in 
Section V.A. We used the DGE power profiles with the ripple-
dynamic gain equalizer aware QREA Qtool to obtain the noise at 
the receiver, 𝑌𝑅𝐸𝐴(C). By subtracting 𝑌𝑅𝐸𝐴 and 𝑌𝑅𝐴, we obtain 

Algorithm 1: link by link ML correction for testing 

dataset 

1: Input:  New connection request r∉ C  
            Filters attributes feature matrix extraction fFA 
            Trained filter uncertainty ML model 𝛩𝐹  

2: Run RSA to assign wavelength 𝜆𝑟 , path 𝑝𝑟 and other 
transmission parameters, e.g. filters BW 
Assume known filters shape 𝐹𝑚 for all m in path 𝑝𝑟  

3: Assign Tx j-th attribute to 𝑆𝑝𝑟,0𝑗
  and 𝑠𝑝𝑟,0𝑗

 

4: for m = 0: N-1 (N is the number of links on path pr) 

5: 𝑠𝑝𝑟,𝑚+1𝑗
=𝑤𝑗(𝑆𝑝𝑟,𝑚𝑗 , 𝐹𝑚) 

6: calculate 𝑋𝑝𝑟,𝑚𝑗
 = fFA(𝑆𝑝𝑟,𝑚𝑗

, 𝑠𝑝𝑟,𝑚𝑗
) 

7: use trained ML model to estimate the correction,   𝐸𝑝𝑟,𝑚+1𝑗
=  𝛩𝐹(𝑋𝑝𝑟,𝑚𝑗

) 

8: apply correction, 𝑠𝑝𝑟,𝑚+1𝑗 = 𝑠𝑝𝑟,𝑚+1𝑗
+ 𝐸𝑝𝑟,𝑚+1𝑗

 

9: end for 

10: Calculate SNR estimation error at receiver with 𝑞 

using corrected estimations at receiver 𝑠𝑝𝑟𝑗  



the penalty vector 𝐸𝑅. We then created the ripple feature matrix 𝑋𝑅 and evaluated several ML assisted regression techniques to 
fit 𝛩𝑅(𝑋𝑅) on 𝐸𝑅, such as linear fitting, quadratic, polynomial 
fitting, support vector machine regression (SVMR) etc. In the 
presented results we used SVMR with linear kernel function 
that achieved maximum Mean Squared Error (MSE) of ~0.19 
on predicted SNR with load of 100 connections as shown in 
Fig. 11(b). In ML based regression models, MSE and root MSE 
(RMSE) are the key performance criteria to evaluate the 
estimation accuracy. By increasing the load from 100 to 400, 
the maximum MSE converges to a value of ~0.096. For the 
above set of simulations, the maximum used peak-to-peak 
ripple intensity among all span EDFAs was about ±0.5dB, 
which resulted in a reference margin (𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛1) of 
~1.02dB (max. of dotted red circle of histogram). Fig. 11(c) 
shows the maximum overestimation error on SNR, relative to 
Fig. 11(a). This overestimation is the reduced estimated high 

and low margin  (𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛2). For high margin, it is found 
to be ~0.28dB, yielding a ~0.73dB margin reduction at a load 
of 400 connections. For low margin, we found ~0.63dB 
reduction as the distribution of penalties was less for low 
margin side. For comparison purposes we also plot in Fig. 11 
(c) the results we obtained with our previous work [28]. In  [28] 
we assume electrical SNR monitors available at each ROADM 
node, which is a quite strong assumption. With [28] we 
obtained a reduction of the high margin to 0.08dB, that is 
~0.92dB improved accuracy. For low margin, we observed a 
reduction of ~0.75dB as shown in Fig. 11(c).  

To study the effect of filter spectral shape uncertainties, we 
assumed flat EDFAs and we randomly applied small 
uncertainties 𝛥𝑚 (resulted in end to end 3dB variation of 
±1.5GHz) at each WSS. Such uncertainties would reflect Tx. 
and filters-grid mismatches, and small variations in filters 
shapes. We used the filter uncertainty aware Qtool, QFA, to 
calculate the ground truth, the 3dB BW of the connections on 

 
Fig. 11. Effect of ripple assuming no filtering uncertainty. (a) penalty distribution for 400 connections, indicating min. required design margin to accommodate 
ripple, (b) performance evaluation (MSE of SNR (dB)) of trained ML model on testing dataset, and (c) Max. overestimation error as a function of load. 

 
Fig. 12. Effect of filtering uncertainty assuming no gain ripples. (a) increase in 3dB BW prediction accuracy with ML along with error distribution (without 
ML), and (b) performance evaluation (MSE of SNR (dB)) of trained ML model on testing dataset, and (c) Max. overestimation error as a function of load. 

 
Fig. 13. Effects of both ripple with node uncertainties. (a) penalty distribution for 400 connections, indicating min. required design margin to accommodate 
ripple with node uncertainties, (b) performance evaluation (MSE of SNR (dB)) of trained ML model on testing dataset, and (c) Max. overestimation error as 
a function of load. 
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their paths, along with their SNR filter penalties. Then, for the 
set of established connection C, we used the filter uncertainty 
unaware Qtool, QFU, to estimate the 3dB bandwidth and SNR 
filter penalties, and to calculate the errors with respect to the 
ground truth. Fig. 12(a) shows the distribution of the 3dB BW 
error at a load of 400 connections which has both positive and 
negative sides depending upon 𝛥𝑚. The corresponding SNR 
errors are also distributed in both polarities resulting in 
reference high and low margins. We then used the proposed ML 
based method discussed in Section V.B. We extracted the filters 
attributes features matrix, 𝑋𝐹 and used the calculated attributes 
(only 3dB BW here) errors, E, to train a SVMR model (with 
gaussian kernel). Then for a new connection we used 
Algorithm 1, as described above, in a link by link estimation of 
3dB BW down to the receiver. This was then used to estimate 
the filtering penalty which finally gives us the estimated SNR 
of the connection.  

Fig. 12(a) shows the achieved error reduction in 3dB BW 
(from ±1.5GHz → ~0.18GHz) using the trained SVMR model. 
Fig. 12(b) shows a maximum MSE of ~0.04 dB on estimated 
SNR at a maximum load of 400 connections (200 times average 
@ 400 connections) using the trained SVMR model.  Fig. 12(c) 
reflects the SNR accuracy / margin reduction as a function of 
the load. We observed a maximum error reduction/accuracy 
improvement of ~0.67dB for high margin and ~0.68dB for low 
margin, respectively. For high/low margin, we found an overall 
reduction of 80.4/83.4% at a load of 400 connections. 

Then for the most realistic case of both effects present 
together in the network, we assigned ripple profiles 
(perturbating the experimentally collected profiles) at each 

EDFA and applied small 3dB BW uncertainties Δ𝑚3𝑑𝐵 at each 
WSS. Then we used the ripple and filtering uncertainties aware 
Qtool QRFA (see Section IV.C and Appendix3) to produce 
monitoring data. We obtained the SNR error distribution for 
400 connections shown in Fig 13(a). Note that since we 
considered both effects, we ended up with wider error 
distribution than the individual cases discussed above.  
 

 
Fig. 14. New margins for (a) ripple and no node uncertainty, with different 
intensities of peak-to-peak gain ripple (reference as ±0.5dB), (b) filter and no 
ripple uncertainty, with reference 𝛥𝑚 = ±10%.  

 
To improve the estimation accuracy, we followed the process 

described in Section V.C to train the related ML models. We 
first accounted for the filtering penalties; using the monitored 
spectra we trained SVMR ML model 𝛩𝐹 . Then we removed the 
filtering penalties from the monitored SNR at the receivers to 
focus on the ripple. So, we trained 𝛩𝐹  to estimate the 
accumulated noise or ripple penalty. Figure 13(b) shows the 

obtained SNR MSE while (c) shows the reduction in the 
reference high and lower margins. For high margin, the overall 
related margin savings is found to be ~1.2 dB and ~1.3 dB for 
the case of high and low margin, respectively. 

Finally, we extended our simulations to verify that the 
proposed ML based solution works for different intensities of 
ripple and filtering uncertainties and to quantify the related 
benefits. At first, we varied the gain ripple intensity, assuming 
only ripple with no filter uncertainty effect. We divided the span 
EDFA gain ripple profiles by a factor of 1 to 4, resulting in 
peak-to-peak fluctuations of ±0.5dB to ±0.125dB. We 
estimated the high and low margins at a fixed load of 400 
connections as shown in Fig. 14(a). The obtained savings were 
higher than 70% for the examined peak-to-peak values. We 
then varied the filter attributes uncertainty 𝛥𝑚, assuming only 
filtering uncertainties. We multiplied 𝛥𝑚 by a factor of 1/3 to 3 
and estimated high and low margins/errors at a fixed load of 
400 connections. Note that high value of 𝛥𝑚 reflect ROADMs 
nodes with higher uncertainty, which are expected in 
disaggregated/ multi-vendor networks. As expected, higher 
reference margins are required in this scenario, and our accurate 
modeling results in more pronounced savings that reach >85% 
and >1.5 dB on both high and low margins.   

 

 
Fig 15. New reduced margin for different intensities of peak to peak gain ripple 
with fixed uncertainties, 𝛥𝑚 inside ROADM node. 
 
Finally, when both uncertainties are present, we again varied 
peak-to-peak EDFA gain ripple intensity (similar to Fig. 14(a)) 
but  this time we assumed a fixed range of node uncertainties 
(Δm= ±10%.). In Fig. 15 we show the reduction of the related 
margin at a load of 400 connections is achieved. For the 
examined intensities of the uncertainties, an overall margin 
reduction of >75% on both high and low margins.  

VII. CONCLUSION AND FUTURE WORK 

We proposed to use available monitored information from 
established connections and appropriate supervised ML to 
model the EDFA gain ripple and filtering penalties. We 
developed independent models for the two effects and then a 
joint model. The ML model would be then used for estimating 
the penalties of new connection requests, improving the Qtool 
estimation accuracy and thus reducing the required design 
margin. With combine span EDFA gain ripples and ROADM 
node uncertainties, we accomplished a design margin reduction 
of 1.68dB to 0.37dB for new connection requests with respect 
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to the reference ripple and filtering uncertainty unaware Qtool. 
In future, we plan to further verify the proposed approach on 
experimentally measured datasets. Also, we plan to integrate 
this intelligent Qtool with advanced resource allocation 
strategies, and quantify the reduction in overprovisioning and 
thus, the cost of future optical networks. 

APPENDIX 

Appendix1: 
Assuming link m with 𝑁𝑠 spans (Fig. 5), the PSD of ASE 

noise at the link end accumulated over span EDFAs is given by 𝐺𝑎𝑠𝑒,𝑚 = ∑  𝑁𝑠𝑛𝑠=1 𝑁𝐹𝑛𝑠 ∗ ℎ ∗ 𝑣 ∗ (𝑔𝑛𝑠 − 1)                   (2) 

where, 𝑁𝐹𝑛𝑠 and 𝑔𝑛𝑠 is the noise figure and average gain of 𝑛𝑠- th span EDFA, h is the Planks constant, v is the reference 
frequency (typically 193.1 THz). 

Let us now assume that link m has 𝑁𝑐ℎ  WDM channels (Fig. 
5). For channel n, we assume transmitted power 𝑃𝑛 and symbol 
rate, Rn. In general, with incoherent noise accumulation 
assumption, the PSD of NLI noise at link end can be calculated 
as the sum of the NLI noise produced in each single span. With 
the assumption of noise to be additive gaussian, the GN model 
calculates PSD of NLI noise at link end, as 𝐺𝑛𝑙𝑖,𝑚(𝜆𝑐) =  1627 ∑  𝛾𝑛𝑠2𝑁𝑠

𝑛𝑠=1 𝐿𝑒𝑓𝑓,𝑛𝑠2 ∙ ∑ 𝐺𝑛,𝑛𝑠𝐺𝑛,𝑛𝑠𝐺𝑐,𝑛𝑠𝑁𝑐ℎ𝑛=1 (2 − 𝛿𝑛𝑐) 𝛹𝜆𝑛,𝜆𝑛,𝑛𝑠 ∙                                (3) 

                                               ∏ 𝑔𝑛𝑠′3  𝑒−6𝛼𝑛𝑠′𝐿 𝑛𝑠′𝑛𝑠−1𝑛𝑠′=1    ∙  ∏ 𝑔𝑛𝑠′  𝑒−2𝛼𝑛𝑠′𝐿𝑛𝑠′𝑁𝑠𝑛𝑠′=𝑛𝑠  , 

where Ψ is the phased array factor which under the assumption 
of incoherent accumulation is given by Eq. (128) and Eq. (129) 
of [46]; 𝐿 𝑛𝑠 is the ns span length; 𝛾𝑛𝑠 is its non-linear 

coefficient; 𝐿𝑒𝑓𝑓,𝑛𝑠 is its effective length; 𝛼𝑛𝑠 is its attenuation 

coefficient,  𝑔𝑛𝑠 is the gain of the span EDFA; 𝐺𝑛,𝑛𝑠 is the PSD 

of  then n-th WDM channel (n=1, 2… , 𝑁𝑐ℎ) at the start of the 
ns-th span; 𝛿𝑛𝑐 is the factor that distinguishes the SCI and XCI 
terms as given by Eq. (122) of [46]. The detailed derivation of 
Eq. (3) along with parameters description are available in [46].  

A standard PLM/Qtool assumes that each fiber span loss 

(𝑒−2𝛼𝑛𝑠𝐿𝑛𝑠) is exactly compensated at the end of each span by 

the gain of span EDFA (𝑔𝑛𝑠). Also, a standard PLM assumes a 

flat/wavelength independent EDFA gain without ripple. Under 

this assumption the per span PSD of side channels (𝐺𝑛,𝑛𝑠) and 

channel of interest at 𝜆𝑐 (𝐺𝑐,𝑛𝑠), depends only on baud rate, 𝑅𝑛 

and per channel transmitted power, 𝑃𝑛. Thus, a standard PLM 
makes following assumptions on three terms of Eq. (3) as 

{  
  ∏ 𝑔𝑛𝑠′3  𝑒−6𝛼𝑛𝑠′𝐿 𝑛𝑠′𝑛𝑠−1𝑛𝑠′=1  = 1∏ 𝑔𝑛𝑠′  𝑒−2𝛼𝑛𝑠′𝐿𝑛𝑠′𝑁𝑠𝑛𝑠′=𝑛𝑠  = 1𝐺𝑛,𝑛𝑠 = 𝑃𝑛𝑅𝑛  for 𝑛 = 1,…𝑁𝑐ℎ , 𝑛𝑠 = 1,… ,𝑁𝑠 }  

  
            (4) 

The total NLI noise at channel centered at 𝜆𝑐, 𝐺𝑛𝑙𝑖,𝑚(𝜆𝑐) is 

calculated by using assumptions of Eq. (4) in Eq. (3) and is 
independent of per span wavelength dependent gain ripple 
effect. Also, the distortion introduced by a span EDFA ripple in 

the PSD of the channels, which are input for the next span are 
not considered for the calculation of NLI noise of next span. We 
denote the PSD of NLI calculated with the ripple unaware 

equations, that is, Eq. (4) used in Eq. (3), as 𝐺𝑛𝑙𝑖_𝑅𝑈,𝑚(𝜆𝑐).  
Assuming now a network and connection c=(𝑝𝑐 , 𝜆𝑐) crossing 

link m on its path pc. The SNR at the end of link m calculated 
with the ripple unaware GN model, is given by 𝑆𝑁𝑅𝑅𝑈,𝑚(𝑝𝑐 , 𝜆𝑐) = 𝐺𝑜,𝑚(𝜆𝑐)𝐺𝑎𝑠𝑒,𝑚+ 𝐺𝑛𝑙𝑖_𝑅𝑈,𝑚(𝜆𝑐) = 𝐺𝑜,𝑚(𝜆𝑐)𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝑈,𝑚(𝜆𝑐)      (5)      

where 𝐺𝑜,𝑚(𝜆𝑐) is the output signal PSD at the end of link m 

which is equal to 𝑃𝑐 𝑅𝑐⁄   for the assumptions of Eq. (4).  

A typical assumption for a connection that traverses multiple 
links is that the inverse SNR per link is additive. With the ripple 
unaware PLM of Eq. (5) the total SNR at end of connection c is 
given by [𝑆𝑁𝑅𝑅𝑈(𝑝𝑐 , 𝜆𝑐)]𝑑𝐵 =     [1 ( ∑ 𝑆𝑁𝑅𝑅𝑈,𝑚−1 (𝑝𝑐 , 𝜆𝑐)𝑚 ∈𝑝𝑐 )⁄ ]𝑑𝐵 + 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛1      (6) 
We now discuss how to extend the GN model to account for 
EDFA gain ripples. To model that, we assume known EDFA 

gain profiles  for the span EDFAs, denoted by 𝑔𝑛𝑠(λ) (for λ 

ranging the full C-band), which is broken down as follows 
 𝑔𝑛𝑠(λ) = 𝑔𝑛𝑠,𝑎𝑣𝑔 . 𝑔𝑛𝑠,𝑟(λ)                           (7) 

where 𝑔𝑛𝑠,𝑎𝑣𝑔 = 𝑔𝑛𝑠 (= span loss) is the average value and 𝑔𝑛𝑠,𝑟(λ) is the wavelength dependent ripple. 

Each 𝑔𝑛𝑠,𝑟(λ) alters the current span signal PSD 𝐺𝑛,𝑛𝑠 of the 

next span depending. This clearly means that to accommodate 
the ripple effect in 𝐺𝑛𝑙𝑖(𝜆𝑐) calculations, the assumptions in Eq. 
(4) need modifications and extensions at span level as follows:  

{   
   ∏ [𝑔𝑛𝑠′ ,𝑎𝑣𝑔. 𝑔𝑛𝑠′ ,𝑟(𝜆𝑐)]𝑛𝑠′3  𝑒−6𝛼𝑛𝑠′𝐿 𝑛𝑠′𝑛𝑠−1𝑛𝑠′=1  ≠ 1∏ [𝑔𝑛𝑠′ ,𝑎𝑣𝑔. 𝑔𝑛𝑠′ ,𝑟(𝜆𝑐)]𝑛𝑠′  𝑒−2𝛼𝑛𝑠′𝐿𝑛𝑠′𝑁𝑠𝑛𝑠′=𝑛𝑠  ≠ 1
𝐺𝑛,𝑛𝑠 = ( 𝑃𝑛𝑅𝑛 ;  𝑛𝑠 = 1∑ 𝐺𝑛,𝑛𝑠′ . 𝑔𝑛𝑠′ ,𝑟(𝜆𝑛)𝑛𝑠−1𝑛𝑠′=1 ;  𝑛𝑠 ≠ 1) , 𝑛 = 1, . . 𝑁𝑐ℎ }   

   
    

(8)        

This Eq. (8) is then substituted in Eq. (3) to calculate the ripple 
aware NLI noise 𝐺𝑛𝑙𝑖_𝑅𝐴,𝑚(𝜆𝑐) that takes into account per span 

wavelength dependent ripple effects in gain as well as the PSD 
of the lighted channels. Also, DGE altered power profile (from 
mid span) modifies the NLI noise contribution for all onward 
spans. We can capture this with Eq. (8) by setting the DGE 

applied channels PSD 𝐺𝑛,𝑛𝐷𝐺𝐸 at the specific span 𝑛𝐷𝐺𝐸. Using 

the extended GN model, we obtain the SNR calculated at the 
end of link m, 𝐺𝑛𝑙𝑖_𝑅𝐴,𝑚(𝜆𝑐). So, Eq. (5), is now changed to Eq. 

(9) as 𝑆𝑁𝑅𝑅𝐴,𝑚(𝑝𝑐 , 𝜆𝑐) = 
𝐺𝑜,𝑚 (𝜆𝑐)𝐺𝑎𝑠𝑒,𝑚+ 𝐺𝑛𝑙𝑖_𝑅𝐴,𝑚(𝜆𝑐) = 𝐺𝑜,𝑚 (𝜆𝑐)𝐺𝑎𝑠𝑒,𝑚+ 𝐺𝑛𝑙𝑖_𝑅𝑈,𝑚(𝜆𝑐)+𝐺𝑅𝐴,𝑚(𝜆𝑐)  = 

𝐺𝑜,𝑚 (𝜆𝑐)𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐴,𝑚(𝜆𝑐)                       (9) 

where  𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐴,𝑚(𝜆𝑐) corresponds to the total noise at the end 

of link m estimated by the PLM with EDFA gain ripple 
information. With this PLM, plus an additional margin, the total 



SNR calculated at end of connection c=(pc, 𝜆𝑐) traversing L 
links is given by [𝑆𝑁𝑅𝑅𝐴(𝑝𝑐 , 𝜆𝑐)]𝑑𝐵 =     [1 ( ∑ 𝑆𝑁𝑅𝑅𝐴,𝑚−1 (𝑝𝑐 , 𝜆𝑐)𝑚 ∈𝑝𝑐 )⁄ ]𝑑𝐵 + 𝑑𝑒𝑠𝑖𝑔𝑛 𝑚𝑎𝑟𝑔𝑖𝑛2   (10) 
Appendix 2: 

The filtering penalty assuming identical filters is based on some 
predefined function/measurement (such as in Fig. 6) and is 
unaware of the uncertainties due to the spectral variations of the 

filters (𝛥𝑚𝑗 = 0). This results in filter uncertainty unaware 

penalty denoted by 𝐺𝐹𝑈. This 𝐺𝐹𝑈 results in the following SNR 
over subpath pc,m, at the end of the link m and before the next 
node:  𝑆𝑁𝑅𝑅𝑈,𝑚(𝑝𝑐 , 𝜆𝑐) =  ( 𝐺𝑜,𝑚(𝜆𝑐)𝐺𝑎𝑠𝑒,𝑚+ 𝐺𝑛𝑙𝑖_𝑅𝑈,𝑚(𝜆𝑐)) . 𝐺𝐹𝑈(𝑝𝑐,𝑚)      (11) 

In a real network, 𝛥𝑚𝑗 ≠ 0 results in a different filtering 
uncertainty aware penalty, 𝐺𝐹𝐴, AND hence inaccurate QoT 

estimation. Assuming known 𝛥𝑚𝑗  for all filters, and thus known 
subpath penalties 𝐺𝐹𝐴(𝑝𝑐,𝑚) the SNR at the end of the link m 
before the next node is given by 𝑆𝑁𝑅𝐹𝐴,𝑚(𝑝𝑐 , 𝜆𝑐) =  ( 𝐺𝑜,𝑚(𝜆𝑐)𝐺𝑎𝑠𝑒,𝑚+ 𝐺𝑛𝑙𝑖_𝑅𝐴,𝑚(𝜆𝑐) ) . 𝐺𝐹𝐴(𝑝𝑐,𝑚)         (12)      

To calculate the SNR at the end of connection c with multiple 
links i.e. 𝑆𝑁𝑅𝐹𝑈(𝑝𝑐 , 𝜆𝑐) and 𝑆𝑁𝑅𝐹𝐴(𝑝𝑐 , 𝜆𝑐), we extend Eq.(11) 
and Eq.(12) using the inverse SNR linear additive assumption 
(similar to Eq.(6) and Eq.(10)). 

Appendix 3: 

For connection, c, the filter penalty generated by identical filters 
for subpath 𝑝𝑐,𝑚 is 𝐺𝐹𝑈(𝑝𝑐,𝑚) and the PSD of NLI noise by flat 
ripple EDFsA is 𝐺𝑅𝑈(𝜆𝑐). The overall accumulated noise, 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐹𝑈 and the equivalent SNR calculated at link m end is 
given by 𝑆𝑁𝑅𝑅𝐹𝑈,𝑚(𝑝𝑐 , 𝜆𝑐) =  ( 𝐺𝑜,𝑚 (𝜆𝑐)𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐹𝑈(𝜆𝑐) ).  𝐺𝐹𝑈(𝑝𝑐,𝑚)       (13) 

where 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐹𝑈,𝑚(𝜆𝑐)  = 𝐺𝑎𝑠𝑒,𝑚 + 𝐺𝑛𝑙𝑖_𝑅𝑈,𝑚(𝜆𝑐) 
 

Similarly, the penalty generated with known non-identical 

filter responses, 𝛥𝑖𝑗 ≠ 0 for subpath 𝑝𝑐,𝑚 is 𝐺𝐹𝐴(𝑝𝑐,𝑚) and the 
PSD of NLI noise generated by EDFAs with known gain 
ripples, is  𝐺𝑛𝑙𝑖_𝑅𝐴(𝜆𝑐). The overall accumulated noise, 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐹𝐴,𝑚 and SNR calculated at the end of link m is given 
by 𝑆𝑁𝑅𝑅𝐹𝐴,𝑚(𝑝𝑐 , 𝜆𝑐) =   ( 𝐺𝑜,𝑚 (𝜆𝑐)𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐹𝐴,𝑚(𝜆𝑐) ). 𝐺𝐹𝐴(𝑝𝑐,𝑚)        (14) 

where 𝐺𝑁𝑜𝑖𝑠𝑒_𝑅𝐹𝐴,𝑚(𝜆𝑐)  =  𝐺𝑎𝑠𝑒,𝑚 + 𝐺𝑛𝑙𝑖_𝑅𝐴,𝑚(𝜆𝑐) + 𝐺𝑅𝐴,𝑚(𝜆𝑐)  
To calculate the SNR at the end of connection c with multiple 
links i.e. 𝑆𝑁𝑅𝑅𝐹𝑈(𝑝𝑐 , 𝜆𝑐) and 𝑆𝑁𝑅𝑅𝐹𝐴(𝑝𝑐 , 𝜆𝑐), we extend 
Eq.(13) and Eq.(14) using the inverse SNR linear additive 
assumption (similar to Eq.(6) and Eq.(10)). 
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