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Correspondence 

Modeling Edges at Subpixel Accuracy 
Using the Local Energy Approach 

M. Kisworo, S. Venkatesh, and G. West 

Abstract-In this paper we describe a new technique for 1-D and 2-D 
edge feature extraction to subpixel accuracy using edge models and the 
local energy approach. A candidate edge is modeled as one of a number 
of parametric edge models, and the fit is refined by a least-squared error 
fitting technique. 

Index Terms-Edge detection, local energy, subpixel feature detection, 
computer vision. 

I. INTRODUCTION 

Most images used for computer and machine vision are of low 
resolution because of the underlying television standards used and the 
need for fast acquisition and low memory requirement. Subpixel mea- 
surement is highly desirable because a low-resolution imaging system 
can be used for more accurate applications, such as dimensional 
measurement for inspection. This paper presents a new technique 
for subpixel measurement based on the concept of edge models and 
the local energy approach. 

Various methods have been proposed for the measurement of edges 
at subpixel accuracy. Macvicar-Whelan et al. [ I ]  used the gradient 
operator to determine the pixel location of zero crossings and then 
linearly interpolated the location. Hueckel [2] developed an algorithm 
to fit the data in Hilbert space and interpolated to compute the 
subpixel location of the edge. Nevatia et al. [3] used matched filters 
convolved with the data to get the maxima of the filter response 
and compute the subpixel step location. Tabatabai et al. [4] fitted the 
first three statistical moments to a step edge model by determining 
the optimal values of the moments. Huertas et al. [ 5 ]  implemented 
LOG masks combined with a facet model followed by interpolation 
to detect edges at subpixel accuracy. Lyvers ef al. [6] developed 
a subpixel edge operator that locates edges by fitting the spatial 
moments of a step edge model to the data. 

In all of these techniques, the subpixel analysis is based on using 
a perfect step edge as the underlying edge model. Although useful, 
the choice of a step edge restricts the analysis because there are other 
types of edges present, such as roofs, ramps, etc. Perona et al. [ 181 
propose a subpixel technique based on energy models to determine 
the localization of steps, peaks, and roofs. However, their subpixel 
technique involves an interpolation method based on fitting a 2nd- 
order model (a paraboloid) to the computed energy function. In this 
paper, an edge feature extraction technique with subpixel accuracy is 
presented using a general edge model. With this technique step, ramp, 
and roof edges can be detected and classified at subpixel accuracy. 

TO perform this clasification and detection, the local energy model 
is used. There are three reasons for this choice. First, not being 
a gradient-based approach, the local energy model does not suffer 
from the problem of amplification of high-frequency noise. Second, 
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this model does not give rise to the detection of false positives 
arising from points of inflection, or points of maximum gradient in 
the image. Third, feature extraction processes that require the use of 
several optimal operators and techniques [7], [8] to detect different 
edge types must resolve the problem of integrating the outputs of 
different operators. The local energy operator identifies all feature 
types without the need to invoke multiple operators. 

To detect and classify edges at subpixel accuracy, a parameterized 
function is used to model an edge. The initial model is determined by 
a decision process that is based on the response of the signal to the 
local energy filters [9]. The model is then fitted in a least-squared error 
sense to the signal in the energy domain. The parameters describing 
the best fit of the model to the data define the position of the edge 
to subpixel accuracy. The advantages of this method are twofold. 
First, i t  is not limited to the subpixel edge detection of monotonically 
increasing and decreasing sequences. Second, and more important, i t  
can detect all feature types at subpixel accuracy robustly. 

The layout of this correspondence is as follows: The underlying 
principles of the local energy approach are presented in .Section 
11. The development of the edge feature extraction technique for 
one-dimensional signals is presented in Section 111, and results are 
presented in Section IV. The extension to two-dimensional signals is 
described in Section V, followed by the results in Section VI. 

11. FEATURE DETECTION USING LOCAL ENERGY 

Analyzing visual features, Morrone et ul. [ I O ]  proposed an alternate 
method for feature extraction based on discerning how features are 
built up in an image, rather than by considering differential properties. 
This meant examining the Fourier expansion of a luminance profile 
function and studying the properties of the components of this 
expansion. It was first noted that in the Fourier expansion of a 
negative-going step edge, all the components are in phase and have a 
90" phase in the cosine expansion at the point where the step occurs. 
The point of the step edge is, moreover, the only point in this profile at 
which this phase congruency property occurs. Needless to say, other 
luminance profiles exhibit different types of phase congruency. At the 
peak point in a positive roof profile, all the components of the Fourier 
expansion are in 0" phase. In some luminance profiles-for example, 
a trapezoidal profile-no such points of total phase congruency exist, 
but the points for which the variance of the phase values is minimum 
are still of interest. In a trapezoidal profile, these points correspond 
to the places where Mach bands are perceived. 

To locate these points of local phase congruency, it is necessary to 
consider a quadrature pair of functions, namely, the original profile 
and its Hilbert transform to define local energy. The norm of the 
local energy function is the square root of the sums of squares of the 
function and its Hilbert transform. The maxima of the norm of the 
local energy function are coincident with both the points of maximum 
phase congruency and visual features. As a computationally simpler 
alternative to computing local energy in terms of the image and its 
Hilbert transform, it was suggested [ I O ]  that a quadrature pair of 
functions obtained by convolving the image with a set of quadrature 
filters be used. The norm of local energy is then computed as 
the square root of the sums of squares of the functions obtained 
by convolving the image profile with a set of quadrature masks. 

0 I62-8828/94$04.00 0 I994 IEEE 



406 IEEE TRANSACTIONS ON PAlTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 16, NO, 4, APRIL 1994 

I F(x)=Za, COB( INOX tt) 
I 
I 
I 

Fig. 1 .  
function F ( . r )  and its Hilbert transform H ( . r ) .  

The local energy function, whose components at any point x are the 

Experimental results indicated that the computed maxima of the norm 
of the local energy function coincided with visual features. 

More formally, an absolutely integratable function F defined in 
an interval can be expanded in terms of the Fourier series and is 
given as: 

F( .r )  = fl,, cos( n-d,t.r + a,z ). ( 1 )  

where a,, > 0. a,, is the phase shift of the nth term and the 
summation is taken over positive integers. The Hilbert transform of 
F is given as 

~ ( s )  = - ~ a , , s i i ~ ( i ~ ~ ~ ~ . r  +a,>). (2) 

Consider an analytic signal E given as 

E ( . r )  = F ( x )  - i H ( . r )  = ( F ( . r ) , H ( . r ) )  

that can be written as 

C a , , ( r o s ( n ~ , l . l . + a , , ) +  i s in(nd , , . r+  a,,)). 
The function E ,  therefore, is in general an infinite vector sum, where 
the nth  component has a length of a ,  and a phase of ~ ? - d , ~ . r  + arX. 

The local energy function E of a function F is a 
complex-valued function, with a real component that is the function 
F and with an imaginary component that is (minus) the corresponding 
Hilbert transform H at the point .r (see Fig. 1). Thus, 

Dejinition 1: 

E ( x )  = F ( z )  - iH( . r ) .  (3) 

Given an antisymmetric and symmetric quadrature 
filter pair, the local energy function can be computed from the 
complex-valued function whose real component is f f ,  obtained by 
convolving F with the symmetric mask, and whose imaginary compo- 
nent is (minus) fo, obtained by convolving F with the antisymmetric 
mask. The maxima of the norm of the local energy function computed 
in this manner coincides with points of maximum phase congruency 
of E. (See 11 for the full proof.) 

Theorem I :  

111. SUBPIXEL FEATURE DETECTION IN ONE-DIMENSIONAL SIGNALS 

To detect edges at subpixel level, it is necessary to first classify 
the feature at pixel resolution as a step, a roof, or a ramp edge. Then, 
for each feature type, a model of the ideal feature is matched to the 
signal (in the least-squared sense) so that the parameters of the bestfit 
model provide the subpixel parameters of the signal being analyzed. 

A. Predicate-Based Feature Identification 

To achieve the first step of feature classfication at pixel level, 
a predicate-based algorithm [9] has been developed, based on the 
observation that the output of the convolution of a signal with a 
set of quadrature filters characterizes the feature type of the signal 

TABLE I 
OUTPUT OF THE CAUCHY QUADRATURE FILTERS WHEN 

APPLIED TO DIFFERENT FEATURE TYPES 

[12]. Steps, ramps, and roofs have unique response patterns when 
convolved with the quadrature filters, and the typical responses of 
these feature types to Cauchy quadrature filters are shown in Table I. 
Other filters, including quadrature filters, have been investigated 
and analysed recently [ 161-[ 181. A mathematical derivation of the 
response of Cauchy filters to step and ramp edges is detailed in [19]. 

The responses of the quadrature filters are used to match a signal to 
one of the eight predefined feature types shown in Table I. Predicates 
are applied to the response of the signal to the antisymmetric and 
symmetric filters, and the predicate-based algorithm identifies feature 
types by this pattern matching process. The algorithm outputs the 
best matched model and a measure ofmatch that gives the degree of 
match between the signal and the model. A threshold value can be 
applied to filter out discontinuity points that have a measure of match 
value less than the specified threshold value. 

The measure of match value is computed using the maximum 
likelihood probability method. Within a window size of U', the 
positions of maxima, minima, and zero crossings are determined. 
The significance function s (see Fig. 2) of feature li termed SA is 
defined as: 

(4) 

where U' is the window size, and ( 1 ~  is the distance from the edge 
pixel P to the minimum, maximum, or zero crossing. Where one 
of the minimum, maximum, or zero crossing does not appear in the 
window U', the probability is set to zero and hence ignored in the 
analysis. The greater the values of s h ,  the greater the probability that 
these are the best points to use. There may be many candidate points 
within the window, and only the most significant are taken as correct 
points. 

B. Computation of the Edge Parameters 

The next step is to fit the appropriate ideal model to the signal. 
For all feature types, the ideal edge model is characterized by four 
parameters: edgestart ,  edgesteady, edgeand, and edgeheight (see 
Fig. 3). These parameters are sufficient to represent the six basic edge 
models. For example, a step edge has the same values of edgestart  
and edgesteady with edge-end not defined (as it will be outside the 
window U,), while a roof edge has identical values for edgesteady 
and edgeand.  An iterative least-squared error fitting technique with 
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Fig. 2. Estimating the "measure of match" value. P is the edge pixel, I(' = 
window size, .I' = distance from P to the maxima, n = distance from P to the 
minima, and 3 = distance from P to the zero-crossing. 

f t t  
a0 a1 a2 

Fig. 3. 
= edgesteady, 0 2  = edgeand, (13 = edgeheight. 

Edge model identified by four edge parameters: (10 = edgestart, (11 

I & I 
Fig. 4. 
that generates edge paramaters based on the value of the error r. 

The iterative least-squared error fitting. MG is the model generator 

a priori information is used to estimate the edge parameters indicated 
in Fig. 3 at subpixel accuracy. The initial application of the predicate- 
based algorithm at pixel level to the input signal f, determines the 
feature type. This feature type is used to generate the initial edge 
model f,", otherwise known as the a priori model. The local energy 
function of this initial model E ( f : )  is computed, and the position 
of the maximum is compared to that generated from the local energy 
function of the signal E( f t )  (see Fig. 4). 

The error sign 30 is defined as the difference between the local 
energies E (  f, ) and E(  f: ). This error signal is then used to alter the 
parameters of the model and generate a new model, fz. The process 
continues iteratively (except for the step edge case, Case 1 below) 
until the least-squared error is obtained and the best estimate signal 
f;j' of the original signal f, is computed. Once the optimal model 
is computed, the edge parameters, edgestart ,  edgesteady, edge-end, 
and edgeheight characterize the input signal at subpixel resolution. 

A brief outline of the least-squared error fitting process follows. 
Case I :  If the input signal f, is a step edge, the local energy of 

f, has a single maximum. To compute the edge height of f,, we 
compare the local energy of f, with that of a unit step signal f, . The 

Fig. 5.  

local energy of a unit step signal fl is 

Least-squared error fitting to a ramp signal. 

Ent,rtn = ( f i ( . ~ ' )  ~ ( . r ) ) ~  + ( f i ( . j . )  ~ .S(.I ')) '  

= (l+= < l ( . I ' ) < ~ . I ' ) 2  + (.l,+* S( . I . )d . r )2 .  

where .s and n are the symmetric and antisymmetric filters, respec- 
tively. It has been established that the energy function of clfl( .r)  is 
r: times the local energy of f1c.z) [19]. Using this relation, given the 
local energy of f l  (s 1, we can compute the factor C I ,  which is the 
value of edgeheight of the fitted model as 

m . 2 ' )  - 2  
c1. -- 

Enorm(.r) 
Note that no iteration of the algorithm is required in this case. 

Case 2: If the input signal f t  is a ramp edge as shown in Fig. 5, 
the local energy will have two maxima, as shown at A and B .  First, 
the a priori model is generated by calculating the edge height in 
much the same way as in Case 1. In computing the correct slope of 
the ramp, the position of .-I is fixed. If the point .4 is fixed, and the 
edge height is calculated, the question that remains is how to fix the 
position of the point where the ramp meets the plateau, i.e., position 
B. To do so, the error signal is used as a heuristic. If the error 5 is 
positive, the slope of the model is increased, and if 5 is negative, the 
slope of the model is decreased. This then fixes the point where the 
ramp meets the plateau. This initial model is then used to compute 
the next value of 5 ,  and the process of fitting continues by gradient 
descent until the error is minimized in the least-square sense. 

Case 3: If the input signal f, is a roof edge, the fitting process 
is similar to that for a ramp edge. A roof edge is distinguished 
from a ramp by the number of energy maxima in the window under 
consideration. Although the local energy has two maxima for a ramp, 
it has three maxima for a roof. Once the positions of A and B have 
been established, if a third maxima exists within a distance equal to 
half the window size ( I C )  pixels of 13, the feature is a roof edge. 

Iv. RESULTS FOR ONE-DIMENSIONAL SIGNALS 

In experiments, the Cauchy function [14] has been used for the 
quadrature filter functions. It is defined as a Poisson probability 
distribution in the frequency domain: 

( 5 )  
Transforming ( 5 )  into the Fourier domain and separating its real and 
imaginary parts yields 

C,, ( r )  = .r"exp( - . I . ) .  

o , 2 - 1 ( d )  = - Im(l  +id) - "  (6)  
S , ~ - ~ ( - . V )  = Re(1 + i d ) - " .  (7) 

where i is a, 
A value of 1) = G is used since this is the minimum value of 11 that 

guarantees independence to the contrast sensitivity function [ 141. The 
symmetric and the antisymmetric functions (s and 0, respectively, are 

where .I' = tan(o) = t / g  and (T is a scaling parameter. 



408 

9 81 

2.5 2.5 

2.0 2.0 

3.5 3.5 

4.0 4.0 

1.5 6.5 

1.4 1.7 

1.8 6.5 

1.4 7.7 

1.5 5.8 

2.0 3.7 

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. 16, NO. 4, APRIL 1994 

9 (al+ad/L - 2.5 - 2.0 - 3.5 

m 4.0 

00 4.0 - 4.5 

00 4.1 

DO 4.5 

8.1 NJA 

4.3 NJA 

TABLE I1 
EDGE PARAMETERS COMPUTED BY OUR ALGORITHM, AS COMPARED WITH TABATABAI'S RESULTS 

10 

0 0 0 1  1 1  

0 0 0.5 1 1 

1 1  1 1 0 0 0 0  

1 1 1 1 0 . 5 0 0  

1 1 1.5 2 2.5 3 3.5 4 

1 1 2 3 3 . 5 1 8 9 1 0 1 0  

4 4 3.5 3.2 2.5 2 1.5 1 

10109 8 7.5 4 3 2 1 1  

0 0 0.5 0.6 0.7 0.8 0.8 0.6 0 0 

4 4 4 2 1 . 5 4  4 

Feallm. 

Type 

positive step 

positive step 

negatiwstcp 

Dcgativestcp 
positive ramp 
positive ramp 
negative ramp 

negativeramp 

positive roof 

m&vemf 

Using these filters, the techniques outlined in the earlier section 
have been applied to one-dimensional signals and the results com- 
pared to those of Tabatabai [4]. Table I1 shows the results of applying 
the two techniques to various step edges. The input sequence of pixel 
values is analyzed and some intermediate parameters tabulated. Note 
that for most of the examples, if the edge position is defined as the 
mid-distance between 0 0  and o l ,  the results are in close agreement 
with those of Tabatabai. Two results (rows 9 and 10) are shown for 
roof edges. Both edges are detected by our method. As expected, 
Tabatabai's operator does not detect roofs, as it is not designed for 
this type of edge. 

v. EXTENSION TO TWO-DIMENSIONAL SIGNALS 

The techniques for I-D signals can be extended to 2-D signals. 
In particular, the technique can be extended to certain types of 2-D 
features. The question arises as to what is a 2-D feature. In the context 
of this analysis, a 2-D feature is defined as one for which the curvature 
along the edge describing the feature is continuous. Therefore, 2- 
D features include straight edges, arcs, ellipses, polynomials, etc. 
This does not include vertices. Vertices are important features from 
a computer vision point of view because of the robustness of the 
position and orientation of the vertex in the presence of disconnected 
edges and noise. Here it is argued that a vertex can be regarded as a 
junction between two features that satisfy the constraint of continuous 
curvature, e.g., between two straight lines, or between one line and 
an arc. The junction between a pair of features where the tangents 
are equal is not a vertex and will be accommodated by our technique. 
The current analysis is essentially concerned with modeling edges as 
straight-edge features. This technique works by estimating the edge 
orientation and then determining the direction perpendicular to that 
edge so that the 1-D operator can be applied in the correct direction 
to obtain subpixel accuracy. 

Five parameters are used to model 2-D edges (Fig. 6). The first 
four parameters are the same as those for I-D signals, and the fifth is 
the edge orientation parameter that specifies the angle that the edge 
makes with respect to the x-axis (8). 

A. Estimation of the Edge Orientation Parameter 

The approximate edge position is computed by taking the union of 
the maxima of local energy in the horizontal and vertical directions 
[ 131. The edge orientation parameter is then computed by rotating 
the local energy vector such that the magnitude of the perpendicular 

T8lXUabi 

Result 

A 
2.5 

2.0 

3.5 

4.0 

4.0 

4.5 

4.2 

4.5 

NJA 

N/A 

Fig. 6. Two-dimensional edge parameters at noncorner points; (10  = 
edgestart, (I 1 = edgesteady, (I 3 = edge-end, (14 = edgeheight, and H = 
edge-orientation. 

energy (kl,) is maximized and as a consequence the tangential energy 
( k l )  is minimized [15]. 

The edge orientation is then used to fit a straight line to the edge 
points within a neighborhood in a window of size I( '  centered at the 
pixel of interest (in our method, we take CC equal to the size of the 
filters). Fitting is performed using the least-squares line fitting method 
in windows of sizes U'  - k ,  A- = 0 . . . I C  -3. The line with the minimal 
variance is chosen to accurately represent the line parallel to the edge 
at the pixel. Let the line that gives minimal variance be 

yo(.(') = 111.1'+ 1 1 .  (10) 

y1(.r) = -(1/111).r+p. ( 1  1 )  

Then, the line perpendicular to that in ( I O )  is 

These become the axes of a new coordinate frame, centered at the 
pixel (Fig. 7). The pixel values in the new grid are computed from 
the underlying pixel values by projecting the old pixel areas onto the 
new grid so that a new pixel is made up of proportions of areas of 
the old pixels. 

The predicate-based algorithm is applied to the edge pixels in the 
new coordinate frame (in the direction H) and each edge pixel labeled 
with its edge type. This process determines the initial parameters of 
the model that is used as the a priori information in the least-squared 
error fitting procedure. The least-squared error fitting procedure (as 
outlined in Section 111) is then applied to an area centered on the edge 
pixel in the direction H to get the best estimate of the edge parameters. 

B. On the Analysis of the Algorithm 

The local energy-based subpixel algorithm (detailed in [19]) has a 
complexity of order O( i t  ), where 1 1  is the number of edge pixels in 
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Second location 
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Fig. 7. Estimating the edge orientation. 

the image. For a window of i t )  x i i ) ,  the line fitting to compute the 
initial estimate of the edge orientation uses linear regression, and thus 
the complexity is O( nt ). For the subsequent orientation refinement, 
the search space is in a circular window whose size depends upon 
the covariance of the line fitting performed in the initial orientation 
estimation; the bigger the covariance, the greater the number of 
possible angles to try. If the covariance is 17, the procedure is O ( a ) .  
Similarly, the estimation of the localization parameters does not 
depend upon the number of input data. Thus the overall complexity 
of the algorithm is aproximately O(  i t  ), because I I  is significantly 
larger that both ) i t  and U. The covariance of the line fitting algorithm 
depends upon the SNR of the input image and the curvature of the 
edge boundary. In boundaries where curvature is high, such as the 
boundary of a circle, the covariance is higher than on boundaries 
that form straight lines. It has been noted from experiments that the 
time needed for the detection depends upon the quality of the input 
image. In cases where the SNR is low, the algorithm spends more 
time searching for the optimal orientation and computing the best fit 
model. 

VI. EXPERIMENTAL RESULTS 
The techniques have been applied to real images with the results 

that edge parameters are extracted to subpixel accuracy. The results 
presented in Table I11 contain the results for the edgeseady and 
edge-orientation parameters of the step edges in the image data 
contained in the marked section in Fig. 8. 

The edge-orientation H is compared with that computed from a 
least-mean-squared fit of a straight line to the subpixel data, as this 
will give the most accurate estimate of the orientation given the 
assumption that the edge can be approximated by a straight line. 
The root mean squared error of the fit is 0.03 pixels, and the range is 
-0.079 to $0.096. The average value of H is 57.76", with a standard 
deviation of 0.078'. 

The second test was performed to study the accuracy of the sub- 
pixel edge detector in detecting subpixel displacements. A straight- 
edge part of a precisely machined object was used. The object was 
located on a traveling stage capable of precisely displacing an object 
at IO-pm increments in the .r direction. Image resolution was 100 pm, 
To obtain a high-SNR image, backlighting was used. A number of 
measurements were made for the object in its initial position and after 
moving I O  p m  in the .r direction. Averaging the two sets of results 
for edge location enabled statistics to be acquired for the variation in 

TABLE 111 

edgesteady AND edgearientation PARAMETERS ARE PRESENTED. 
EDGE PARAMETERS ON A REAL IMAGE DATA. FOR SIMPLICITY, ONLY THE 

x-steady 

132.275 
131.577 
130.895 
130.779 
130.683 
130.660 
130.530 
130.498 
130.356 
130.305 

Y-SteadY 
27.01 1 
27.450 
27.884 
27.955 
28.018 
28.033 
28.117 
28.136 
28.222 
28.257 

57.760 
57.769 
57.772 
57.768 
57.767 
57.765 
57.780 
57.77 1 
57.760 L 57.761 

errm 
-0.007 
-0.004 
0.015 
-0.051 
0.052 
0.069 
0.039 
-0.079 
-0.069 
0.096 

Fig. 8. The image of a machined object at 256 x 256 resolution. 

TABLE IV 
DETECTING SUBPIXEL DISPLACEMENT. SECOND LOCATION IS MEASURED AFTER 

THE OBJECT IS DISPLACED HORIZONTALLY AT 10 pm FROM THE FIRST LOCATION: 

measurement due to image noise, etc. The statistical analysis of the 
measured values is presented in Table IV. The average positions are 
where the edge of the object was predicted to be, which is difficult 
to determine any other way. Note that it is difficult to calibrate a 
camera system to high accuracy because of lens errors, digitisation 
errors, etc. We argue that the most important statistic is the variance, 
which gives a measure of the variation in the determination of the 
edge position. In the table, the variances are small-of the order of 
5 pm. The movement of the object by 10 p m  results in a detected 
displacement of 0.08 pixels. Because the detected movement is larger 
than the variance, we can state that we can reliably detect subpixel 
movements (without averaging) to 10% accuracy. 

VII. DISCUSSION AND CONCLUSION 

The new edge feature extraction technique proposed allows better 
edge modeling than previous methods. The method is versatile in that 
edge parameters at subpixel accuracy can be extracted for all edge 
types. It does not suffer from the limitation of only being applicable 
to monotonic sequences or particular edge types. Further, the use of 
edge models enables the edge parameters to be localized robustly. 
The technique gives good results for real and synthetic images for 
both I-D and 2-D edge types. 
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The proposed technique is similar to that of Perona e t  al. [ 181 in 
that their method also computes the energy of both noncomposite 
and composite edges by computing the energy function along the 
edge direction. Both methods cannot delineate the components of 
composite edge types, but they can localize them. However, their 
method involves the modeling of the local energy peak as an 
paraboloid to obtain subpixel level, whereas we determine the best 
edge model that describes the peaks correctly. While both methods 
can localize edges, our method has the advantage of describing all the 
underlying edge parameters besides localization at subpixel accuracy. 

The task now is to extend the technique to accommodate different 
types of 2-D edges. Considering only straight edges is restrictive, 
and arcs, ellipses, and other curve types will be investigated. An 
important requirement is that the edge type must be known so the 
correct model can be used. Arbitrary curves will be investigated to 
determine if locally defining the curve as one of a number of known 
types allows subpixel accuracy to be determined. 
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Interpolation Using Wavelet Bases 

Alex P. Pentland 

Abstract-Efficient solutions to regularization problems can be obtained 
using orthogonal wavelet bases for preconditioning. Good approximate 
solutions can be obtained in only two or three iterations, with each 
iteration requiring only O( n)  operations and O( n) storage locations. 
Two- and three-dimensional examples are shown using both synthetic 
and real range data. 

Index Terms- Regularization, wavelet transforms, surface interpola- 
tion, volume interpolation. 

I. INTRODUCTION 
Interpolation is a common problem in computer vision. Perhaps the 

most well-known interpolation theory is regularization [6] ,  [ 131, [3], 
[2] ,  [18]. Using this approach, optimal RMS estimates of the surface 
can be obtained under the assumption that the surface can be charac- 
terized as a stationary Markov process. However, the most commonly 
used algorithms have the drawback that they require hundreds or even 
thousands of iterations to produce a smoothly interpolated surface. 
Thus there is a need for more efficient interpolation algorithms. 

This paper will present efficient solutions to these interpolation 
problems based on the use of orthogonal wavelets as a precondi- 
tioning transform. Numerical examples using natural imagery will 
be shown. An implementation in C code, due to Sclaroff [14], is 
available by anonymous FTP from whitechapel.media.mit.edu in the 
file /u/ftp/misc/wavelet.reg.tar.Z. 

A. Background: Regularization 

Interpolation is typically formulated as the problem of constructing 
a piecewise-smooth surface given a sparse set of noisy measurements. 
Because the measurements are sparse, the problem is ill posed and 
requires adding a smoothing or regularizing term to obtain a solution 
in areas away from measured points. 

Mathematically, the interpolation problem is most commonly for- 
mulated as finding a suitable function 14 that minimizes the sum of a 
smooth energy functional K(1.l) and a functional that depends upon 
boundary conditions D(L4). By taking the variational derivative Ol, 
of the energy functional and discretizing over a lattice of t i  nodes, 
the following matrix equation is obtained [13], [18]: 

XKU + SU - D = 0. (1) 

In this equation, U is an t i  x 1 vector of unknown displacements for 
each of t i  nodes, K is an 11  x t j  matrix called the regularizing or 
smoothness matrix, D is an t t  x 1 vector whose nonzero entries are 
the measured sensor data, S is a diagonal selection matrix with ones 
at nodes with sensor measurements, and X is a scalar constant that 
balances the relative influence of the data and regularization terms. 

An interpolated surface U that solves (1) can be obtained by 
iterating a two-layer network with center-surround receptive fields 
[ 181. Unfortunately, for typical problems several thousand iterations 
are required to obtain an interpolated surface; even if multiresolution 
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