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Abstract

In this paper we address the issue of modeling spot electricity prices. After summa-
rizing the stylized facts about spot electricity prices, we review a number of models
proposed in the literature. Afterwards we fit a jump diffusion and a regime switch-
ing model to spot prices from the Nordic power exchange and discuss the pros and
cons of each one.
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1 Introduction

The last decade has witnessed radical changes in the structure of the power
markets world-wide. Electricity has transformed from a primarily technical
business, to one in which the product is treated in much the same way as
any other commodity, with trading and risk management as key tools to run
a successful business [1-4]. However, for the modeling of electricity prices
and the valuation of electricity derivatives we cannot simply rely on models
developed for financial or other commodity markets. Electricity is non-storable
(at least not economically), which causes demand and supply to be balanced
on a knife-edge. Relatively small changes in load or generation can cause large
changes in price and all in a matter of hours, if not minutes. In this respect
there is no other market like it.
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All this calls for adequate models of price dynamics capturing the main char-
acteristics of electricity prices. In this paper we address the issue of modeling
spot prices, because spot prices are one of the key factors in strategic planning
and decision support systems of a majority of market players. After summa-
rizing the stylized facts about spot electricity prices, in Section 3 we review
the jump diffusion and regime switching models proposed in the literature to
date. In Section 4 we fit two such models to spot prices from the Nordic power
exchange and discuss the pros and cons of each one.

2 Stylized facts about spot electricity prices

2.1 The spot market

The spot electricity market is actually a day-ahead market. A classical spot
market would not be possible, since the system operator needs advanced notice
to verify that the schedule is feasible and lies within transmission constraints.
The spot is normally an hourly contract with physical delivery and is not
traded on a continuous basis, but rather in the form of a conducted once per
day auction. It is the underlying of most electricity derivatives.

Several countries have deregulated their power markets in the last decade. Yet,
typically there are only one or two years of ”stationary” data available due
to the regulatory changes which are constantly taking place. In our analysis,
therefore, we use spot prices from the Nordic power exchange — Nord Pool,
which is one of the oldest and generally regarded as the most mature and
"stable” power market in the world. Nord Pool offers two types of standardized
contracts — physically settled spot contracts and financially settled futures,
forward, option and other specialized contracts. Every day is divided into 24
hourly spot contracts. Before noon, the previous day, all participants send in
their bids for each hour. The system price is calculated as the equilibrium
point for the aggregated supply and demand curves and for each of the 24
hours. It is a theoretical price in the sense that it assumes that no congestions
will occur and is the same in the whole Nordic area [5].

2.2 Seasonality

It is well known that electricity demand exhibits seasonal fluctuations [1-4].
They mostly arise due to changing climate conditions, like temperature and
the number of daylight hours. In some countries also the supply side shows
seasonal variations in output. Hydro units, for example, are heavily depen-



dent on precipitation and snow melting, which varies from season to season.
These seasonal fluctuations in demand and supply translate into the seasonal
behavior of spot electricity prices. In the top panel of Fig. 1, we have plotted
the Nord Pool market daily average system prices since January 1, 1997 until
April 25, 2000. Superimposed on the plot is the annual cycle obtained through
a wavelet decomposition technique, i.e. a technique consisting of removing sev-
eral layers of noise and leaving out only the large scale wavelets [6-8]. As it
turns out, in this period the annual cycle can be quite well approximated by
a sinusoid with a linear trend, see Section 4. This is in line with the approach
of Pilipovic [1], who suggests fitting a proper sinusoidal function (eg. a sum
of two cosine functions with distinct periods) to spot prices. However, such
an approach would not be suitable for some power markets like the German
one, where no clear annual seasonality is present and the spot prices behave
similarly throughout the year with peaks occurring sometimes in the winter
(December 2001 and December-January 2002) and, surprisingly, sometimes in
the summer (July 2002 and July-August 2003). Another method of model-
ing seasonality consists of fitting a piecewise constant function of a one year
period, where for each month one tries to determine an average value out of
the whole analyzed time series [9,10]. Although flexible, this method lacks
smoothness, which may have a negative impact on statistical inference of the
deseasonalized price process.

2.8 Mean reversion

Energy spot prices are in general regarded to be mean reverting [11]. Among
other financial time series spot electricity prices are perhaps the best exam-
ple of anti-persistent data, see [8,12-14] where the R/S analysis, Detrended
Fluctuation Analysis (DFA), Average Wavelet Coefficient (AWC) and peri-
odogram regression methods were used to verify this claim. For time intervals
ranging from a day to almost four years the Hurst exponent H was found to
be significantly lower than 0.5, indicating mean reversion. For time intervals
of less than 24 hours, however, H is above 0.5, suggesting persistence on the
intra~daily level [14].

2.4  Jumps

In addition to mean reversion and strong seasonality on the annual, weekly
and daily level, spot electricity prices exhibit infrequent, but large jumps. The
spot price can increase tenfold during a single hour. Jumps in the spot prices
are an effect of extreme load fluctuations, caused by severe weather conditions
often in combination with generation outages or transmission failures. These
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Fig. 1. Top panel: Nord Pool market daily average system prices since January 1,
1997 until April 25, 2000. Superimposed on the plot is the annual cycle obtained
through a wavelet decomposition technique and its approximation by a sinusoid
with a linear trend. Observe that the sinusoid approximates the annual cycle quite

well justifying its use in the analysis. Bottom panel: The deseasonalized log-spot
price d; for the same time period.

spikes are normally quite short-lived, and as soon as the weather phenomenon
or outage is over, prices fall back to a normal level [2,8].

3 Spot price modeling

Having discussed the properties of spot electricity prices we can review the
standard modeling approaches and their possible power market modifications.
The starting point is the diffusion-type stochastic differential equation (SDE)
which, since the pioneering work of Bachelier [15] in 1900, is the standard
approach to modeling price processes of stochastic nature. In its most general
form the diffusion-type SDE can be written as:

dXt = ,LL(X, t)dt + O'(X, t)dBt, (]_)



where p(X,t) is the drift, o(X,t) is the volatility (scaling factor) and dB; are
the increments of standard Brownian motion. Some phenomena are modeled
by a set of related SDE’s, leading to so called multi-factor models. On the
other hand, both p and o can be defined by SDE’s of their own, leading to
stochastic drift and/or volatility models. Probably the best known member
of this family of processes is geometric Brownian motion, with u(X,t) = pX
and o(X,t) = 0 X, introduced to finance by Samuelson [16].

Mean reversion is typically modeled by having a drift term that is negative
if the spot price is higher than the mean reversion level and positive if it
is lower. To make things easy we start with a very simple mean reverting
model originally proposed for specifying interest rate dynamics. The Vasicek
[17] model, also referred to as an arithmetic Ornstein-Uhlenbeck process, is
described by the following SDE:

dX; = (o — BXy)dt + 0dB; = B(L — X;)dt + 0dB,. (2)

This is a one-factor model that reverts to the mean L = ¢ with § being the

magnitude of the speed of adjustment. The second term is responsible for the
volatility of the process. The conditional distribution of X at time ¢ is normal
with mean E[X,] = § + (Xo — %)e*m and variance Var[X;] = %(1 — e 28,
These relations imply that E[X;] — L = 3 as ¢ — oo. Starting at different
points the Vasicek model trajectories tend to reverse to the long run mean
and stabilize in the corridor defined by the standard deviation of the process.
The equilibrium level L can be also made time dependent to reflect the fact

that electricity prices tend to revert to different levels over the year.

The ”jumpy” character of electricity prices calls for spot price modeling which
is not continuous. One approach is to introduce to eqn. (2) a jump component
Jedg; [3,18], where J; is a random jump size, eg. a lognormal random variable
log J; ~ N(u, p?), and ¢; is a Poisson random variable with intensity . Eyde-
land and Geman [4] propose a similar model, where — to account for the fact
that jumps tend to be more severe during high price periods — the jump part
is given by J;X;dq;. In these models the price after a spike is forced back to
its normal level by the mean reversion mechanism. However, this may be not
fast enough. Geman and Roncoroni [19] suggest using mean reversion coupled
with downward jumps. Alternatively, a positive jump may be always followed
by a negative jump to capture the rapid decline of electricity prices after a
spike. The latter approach is used in the jump diffusion model proposed by
Weron et al. [8], which is analyzed in the next Section.

Yet another possibility is to divide the time series into different phases or
regimes with different underlying process parameters to be modeled. A jump
in electricity prices can then be considered as a change to another regime (the
spike regime) that follows a different stochastic process than the so-called



base regime [20-22]. The switching mechanism is typically assumed to be
governed by a random variable that follows a Markov chain with two possible
states. Clearly the probability of being (and also staying) in the base regime is
supposed to be much higher than that for the spike regime. Regime switching
models are also able to consider spikes that last for more than just one day,
without the disadvantage of slow mean reversion after a jump.

4 Empirical analysis

Having described the stylized facts and the approaches proposed in the litera-
ture we are ready to test various spot price models. For the empirical analysis
we chose the Nord Pool market daily average system prices (denoted by F;)
for the period January 1, 1997 — April 25, 2000. The choice of the period
used in the analysis is not incidental — 1996 was a dry year with exception-
ally high electricity prices and the first half of 2000 was used for testing the
Asian options pricing model [8,23], since later that year these derivatives were
withdrawn from exchange trading.

As stated previously (see the top panel of Fig. 1), the annual cycle can be quite
well approximated by a sinusoid of the form S; = Asin (?)%(t + B)) + Ct,
where A = 44.27, B = 9791 and C = —0.0271 are constants (obtained
through a least squares fit). Like demand, spot electricity prices are not uni-
form throughout the week. The intra-week and intra-day variations of demand
caused by different level of working activities translate into periodical fluctu-
ations in electricity prices. However, in the present analysis we do not address
the issue of intra-day variations and analyze only daily average prices. We
deal with the intra-week variations by preprocessing the data using the mov-
ing average technique, which reduces to calculating the weekly profile s, i.e. an
average week, and subtracting it from the spot prices [8,24]. In what follows we
model the logarithm of the deseasonalized prices (with respect to the weekly
and annual cycles; in short: deseasonalized log-prices) d; = log(P; — sy — S¢),
see the bottom panel of Fig. 1.

4.1 The jump diffusion model

Despite their rarity, price spikes are the very motive for designing insurance
protection against electricity price movements. This is one of the most serious
reasons for including jump components in realistic models of electricity price
dynamics. Reflecting the fact that on the daily scale spikes typically do not
last more than one time point (i.e. one day), like in [8], we let a positive
jump be always followed by a negative jump of about the same magnitude.



This is achieved by letting the stochastic part X; be independent of the jump
component Jydg;. For the sake of simplicity we let .J; be a lognormal random
variable log J; ~ N(u, p?) and ¢; be a Poisson random variable with intensity
k. The jump component is estimated from the deseasonalized log-prices d;
through a two-step procedure. First, all jumps — defined as price increments
exceeding 3 standard deviations of all price changes — are removed from d;.
Next, the intensity « and the distribution of the magnitude J; of the jumps
is estimated from these few selected points (6 in the whole series), yielding
rk = 0.0050, p = —0.8618 and p = 0.5266.

Putting all the facts together, the jump diffusion model of Weron et al. [8] has
the following form:

dy = Jydg; + X or P, = s + S + et (3)

where X; is defined by eqn. (2). The exponent in the last term of eqn. (3)
reflects the fact that the marginal distribution of X; is Gaussian, whereas the
deseasonalized, with respect to the weekly and annual cycles, and ”spikeless”
spot prices can be very well described by a lognormal distribution, i.e. their
logarithms are approximately Gaussian. The fit is surprisingly good, the Bera-
Jarque test [25] for normality yields a p-value of 0.98; for comparison, the p-
value for the "spiky” deseasonalized log-prices d; is less than 0.0001, allowing
us to reject normality at any reasonable level. The parameters of the mean
reverting process (2), o = 0.2438, 5 = 0.0499 and o = 0.0529, were estimated
using the Generalized Method of Moments (GMM) [8,26].

4.2 The regime switching model

We now turn to regime switching models as, in general, they offer the possi-
bility of having spikes that last for more than just one day. In such models we
have an unobservable variable in the time series that switches between a cer-
tain number of states and for each state we have an independent price process
[26-29]. Additionally we have a probability law that governs the transition
from one state to another.

In this Section we construct a two-regime model, although multi-regime mod-
els have also been proposed in the literature [21]. It distinguishes between a
base mean reverting regime (R; = 1) and a spike regime (R; = 2), i.e. the
spot price is supposed to display either mean reverting or jump behavior at
each point of time. The price processes Y; ; and Y; 5 that are linked to each of
the two regimes are assumed to be independent of each other. The variable R,
that determines the current state is a random variable that follows a Markov
chain with two possible states, R; = {1,2}. The transition matrix P contains
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Fig. 2. Top panel: The deseasonalized log-spot price d; since October 27, 1997 until
December 16, 1997. Bottom panel: Probability of being in the spike regime for the
same time period.

the probabilities p;; of switching from regime ¢ at time ¢ to regime j at time
t+4 1:

D11 P12 pii 1 —pn
P = (p;;) = - : (4)
D21 D22 1 —pa  pa

The current state R; of a Markov chain depends on the past only, through the
most recent value R;_q:

P{Rt = j’Rt,1 = Z‘,Rt,Q = k, .. } = P{Rt = j’Rt,1 = Z} = pl] (5)
The probability of being in state j at time ¢ +m starting from state ¢ at time
t is given by:

P(Riym = 1|R, = i)
P(Riym = 2|R, = i)

= (P)" e, (6)

where P’ denotes the transpose of P and e; denotes the ith column of the



Table 1

Estimation results for the two-regime switching model and the deseasonalized log-
price d; for the period January 1, 1997 — April 25, 2000. E(Y;;) is the level of mean
reversion for the base regime (i = 1) or the mean jump size for the spike regime
(i = 2), py; is the probability of remaining in the same regime in the next time step,
and P(R = 1) is the unconditional probability of being in regime i.

Bi Ci o? E(Y:;) Dii P(R=1)

2

Base regime (i = 1) 0.0426 0.2078 0.0018 4.8807 0.9800  0.9484
Spike regime (i = 2) — 1.6018 0.0024 4.9678 0.6325  0.0516

2 X 2 identity matrix.

Following Huisman and de Jong [22], we let the base regime (R; = 1) be gov-
erned by a mean-reverting process, eg. given by the Vasicek SDE (2). However,
we let the spike regime (R; = 2) be a lognormal variable, and not a Gaussian
one as in [22]. We believe that the spikes (to be more exact: log-spikes or spikes
on the log scale) are better approximated by the lognormal than the normal
distribution. Hence, the deseasonalized log-price process d; in the two-regime
switching model takes the form:

Y:1 in the base regime,
dy = (7)
Y:2 in the spike regime,

where the base regime dynamics are given by dY;1 = (¢1 — f1Y:1)dt + 01dB;
and log(Y;.2) ~ N(c3, o).

The parameter estimation can be performed using the EM algorithm [30]. First
the whole parameter set is collected in the vector 0 = {c1, 1, 01, 2, 02, P11, P22 }-
Then the EM algorithm uses an iterative procedure that basically consists of
two parts. In the first step we filter the regime R; at time ¢ of a given data
set assuming that we already know the true parameter set 6 of the underlying
stochastic processes. We obtain the probability P(R; = jlyi, ..., yr; 0) that the
process was in regime j at time t with knowledge of the complete data set
Y1, ---, y7- These probabilities are referred to as smoothed inferences.

In the second step we calculate new maximum likelihood estimates 6 for all
model parameters. Starting from an arbitrary parameter set 0© we calculate
new estimates () using the smoothed inferences from the previous step. With
the new vector 6 we start the next cycle of the algorithm to reevaluate our
smoothed inferences and so on. Every cycle of the EM algorithm produces
new estimates 81 of the unknown parameter set based on the previously
calculated value set §™. The limit of this sequence of estimates achieves a
(local) maximum of the log-likelihood function.



The estimation results are summarized in Table 1. The probability of remain-
ing in the same state is very high for the base regime (0.9800) and relatively
high (0.6325) for the spike regime, indicating that once we observe a spike
another extreme value is quite probable. This is in contrast to the previous
jump diffusion model where the price was damped back to the mean reverting
level right after the jump.

Note also that for the analyzed time period there is a 5.16% probability of
being in the spike regime. This value is substantially larger than the intensity
of the jumps in the jump diffusion model (k = 0.005 or 0.5%). However, data
points with a high probability of being in the jump regime (P{R; = 2} > 0.5)
tend to be grouped in blocks. For one jump in the price we get a block of 3-6
such data points, see Fig. 2. If we count the number of blocks it turns out that
there are only 20 such periods in the time series, indicating approximately a
1.6% probability of a spike (or a group of consecutive spikes) occuring at a
given time.

5 Conclusions

The liberalization of the power markets has created additional risks and new
challenges for players in the market. The uniqueness of electricity, discussed in
Section 2, distinguishes the power market from other financial or commodity
markets and calls for new models of price dynamics. The number of papers
addressing these problems is still scarce and the suggested solutions are usually
not universal or unsatisfactory.

In this paper we have proposed two distinct, yet in some sense similar mod-
els, which recover the main characteristics of electricity spot price dynamics.
Both models exhibit seasonality, mean reversion and jump behavior. In both
of them seasonality is modeled through a sinusoidal function coupled with a
moving average technique for the weekly cycle. Likewise, in both of them mean
reversion is achieved through a Vasicek type stochastic differential equation.
What distinguishes them is the spike formation mechanism. In the jump dif-
fusion model it is simply an independent homogeneous Poisson process, like
the claim arrival point process in risk theory [31], whose parameters are esti-
mated in an ad-hoc manner. In the regime switching model it is the regime
switching mechanism itself, which is easily able to produce spikes that last for
more than just one day. The estimation scheme is also more objective. This,
together with the larger number of the degrees of freedom, in the long term
should lead to better estimates and better modeling performance.

Although we believe that both models can be successfully used to price a
number of derivatives in the Nordic power market, this claim has to be thor-
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oughly tested. Some preliminary results [23] confirmed the adequacy of the
jump diffusion model. Yet, more work still has to be done.
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