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Abstract
Background: Concern over bio-terrorism has led to recognition that traditional public health
surveillance for specific conditions is unlikely to provide timely indication of some disease
outbreaks, either naturally occurring or induced by a bioweapon. In non-traditional surveillance,
the use of health care resources are monitored in "near real" time for the first signs of an outbreak,
such as increases in emergency department (ED) visits for respiratory, gastrointestinal or
neurological chief complaints (CC).

Methods: We collected ED CCs from 2/1/94 – 5/31/02 as a training set. A first-order model was
developed for each of seven CC categories by accounting for long-term, day-of-week, and seasonal
effects. We assessed predictive performance on subsequent data from 6/1/02 – 5/31/03, compared
CC counts to predictions and confidence limits, and identified anomalies (simulated and real).

Results: Each CC category exhibited significant day-of-week differences. For most categories,
counts peaked on Monday. There were seasonal cycles in both respiratory and undifferentiated
infection complaints and the season-to-season variability in peak date was summarized using a
hierarchical model. For example, the average peak date for respiratory complaints was January 22,
with a season-to-season standard deviation of 12 days. This season-to-season variation makes it
challenging to predict respiratory CCs so we focused our effort and discussion on prediction
performance for this difficult category. Total ED visits increased over the study period by 4%, but
respiratory complaints decreased by roughly 20%, illustrating that long-term averages in the data
set need not reflect future behavior in data subsets.

Conclusion: We found that ED CCs provided timely indicators for outbreaks. Our approach led
to successful identification of a respiratory outbreak one-to-two weeks in advance of reports from
the state-wide sentinel flu surveillance and of a reported increase in positive laboratory test results.
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Background
Traditional public health surveillance for specific condi-
tions is unlikely to quickly identify a disease outbreak.
Emergency department (ED) data appears to have the
potential for more timely disease surveillance [1-6]. In
non-traditional surveillance, signs of an outbreak might
include an increase in ED visits for respiratory, gastroin-
testinal or neurologic chief complaints (CC).

Crucial to any surveillance is an understanding of normal
patterns in the data. Utilization patterns in the ED are
thought to be difficult to predict, due to large variability
that arises in part because EDs are required to medically
evaluate and stabilize everyone who requests care. There-
fore, ED visit rates cannot be controlled by insurers, insti-
tutions or policies.

Many "drop in" surveillance systems have been hampered
by a lack of knowledge of baseline activity [7]. Other sys-
tems have used short-term moving averages of the recent
past to predict current usage [8], but this does not provide
optimal performance when day-of-the-week or seasonal
effects are smoothed away by the averaging.

Some "active" ED surveillance systems provide on-going
data collection. The EMERGEncy ID NET [9] and RSVP
[10] function as sentinel surveillance systems where data
from a small sample used may not represent the overall
occurrence of disease. If data collection is inconsistent, it
does not provide reliable information about syndrome
incidence.

This paper reviews our experience with an operational
near-real-time surveillance system, the Bio-Surveillance
Analysis, Feedback, Evaluation and Response (B-SAFER)
system. B-SAFER is the result of collaboration between the
Los Alamos National Laboratory, the University of New
Mexico Health Sciences Center, and the New Mexico
Department of Health. Medical surveillance systems such
as B-SAFER require considerable expertise in computer sci-
ence and systems integration for their design and architec-
ture, to comply with security and privacy issues, and to
ensure timely flow of information [11,12]. These systems
also require medical and epidemiological expertise to
identify appropriate items to monitor for anomalous
events and to understand their significance.

Methods
Setting
This observational study uses data from the Emergency
Center of the University Hospital, Albuquerque NM
(UH), a tertiary-care county-university health sciences
center. The Emergency Center includes pediatric and adult
emergency departments, an urgent care center, a trauma
center and an observation unit. There are roughly 200

patient visits per day, or 73,000 per year, representing 36
% of Emergency Department visits in Albuquerque. This
study was approved by the Institutional Review Boards of
the University of New Mexico Health Sciences Center and
Los Alamos National Laboratory.

Data stream
The data is from the computerized ED patient tracking sys-
tem in place since 1994. Data in the system includes: date
and time of arrival and discharge, age, sex, chief com-
plaints, discharge diagnoses and disposition. CCs are
recorded by the nurse at the time of triage and entered
into the system by a clerk. The clerk may select from a
drop-down menu of complaints or may enter the com-
plaints as free text. The menu option is rarely used because
clerks find free-text entry more flexible and convenient.

We group daily CC counts into seven categories: respira-
tory, gastrointestinal (GI), undifferentiated infection
(UDI), lymphatic, skin, neurological, and "other" (Table
1). The "other" category includes all visits except those in
the first six categories. These grouping categories are also
used by other surveillance programs, such as ESSENCE
(Walter Reed Army Institute of Research) and the Real-
time Outbreak Detection System ((RODS, University of
Pittsburgh) [11,13,14]. Our grouping scheme is provided
in Table 1.

To obtain this scheme, we reviewed a frequency table of
all CCs which occurred at least 5 times over nine years and
assigned relevant CCs to groups, as was done for example
in [15] and [16]. Key words were selected to capture mul-
tiple chief complaints containing that word. For instance
"breath" captures "shortness of breath", "trouble breath-
ing", "I can't breathe", "can't catch breath", "breathing
problems", etc. Common abbreviations were also
included as key words. The groupings were then reviewed
by the project medical advisory board which included epi-
demiologists, infectious disease, emergency and occupa-
tional health physicians.

Each CC is assigned to a group when the first match was
made between a word in the CC and a word in our CC dic-
tionary. There were no examples of negative chief com-
plaints such as "no cough", in our nine-year database, so
we did not develop a system for handling these. Any neg-
ative complaint would have been classified into the cate-
gory of the key word.

First order model
The training set for model development was retrospective
cohort data from 2/1/94 through 5/31/02. We used least
squares regression in started log scale to fit trends, sea-
sonal effects, and day-of-week effects. The "started log" is
the logarithm of one plus the number of daily CCs. We
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add one before taking the logarithm to avoid problems
with taking the logarithm of zero counts. The started log
scale results in more symmetrically distributed forecast
errors with variance that is much less dependent on the
mean count. Results are back-transformed to natural scale
for display. Error bars behave as desired (widening when
the CC count increases) and skewing is commensurate
with the magnitudes of the baseline values.

A model that incorporates the above effects is

S(d) = [Σi ci × Ii(d)] + [c8 + c9 × d] + [c10 × cos(2πd / 365.25)
+ c11 × sin(2πd / 365.25)]

where

a) S(d) denotes the started log of the number of chief com-
plaints) for day d, where "Day 1" is taken as February 1,
1994,

b) [Σi ci × Ii(d)] captures the day-of-the-week effect, where
the sum is over the indices i = 1 to 7 and Ii(d) denotes the
indicator function for day d, i.e., Ii(d) equals 1 when day
d is the i-th day of the week and equals zero otherwise,

and the seven model coefficients {ci} are constrained to
sum to zero,

c) [c8 + c9 × d] captures a long term linear effect,

d) [c10 × cos(2πd / 365.25) + c11 × sin(2πd / 365.25)] cap-
tures the seasonal component, where the average number
of days per year is 365.25, with the model coefficients c10
and c11 dictating the time and amplitude of the seasonal
effect.

This model arises from transforming the counts to started
log scale and adding day-of-the-week effects to the regres-
sor variables in a cyclical regression model [16,17]. Appli-
cation of the model allows for coefficients to be set to zero
when the corresponding constituent effects are not statis-
tically apparent. For example, the coefficient c9 is zero for
complaint categories that do not exhibit linear long term
trends, and the coefficients c10 and c11 are zero for catego-
ries which do not exhibit seasonality. A plot of the pre-
dicted respiratory complaints and corresponding upper
confidence limits from this model is given in Figure 1,
illustrating how the constituent effects interact to yield
baseline predictions. The predictions were obtained using

Table 1: B-SAFER dictionary for matching chief complaints to body systems

Respiratory Gastro-intestinal Neurologic Skin Lympatic UDI 
(undifferentiated 

infection) 

Breath
Bronchiolitis
Chest congestion
Chest pain
Cold Congested
Congestion
Cough
Croup
Flu
Headache
Laryngitis
Pneumonia
Respiratory
Sinus
Stuffy nose
Throat

Abdominal Pain
Abdomen/back pain
Abdomen pain
Abdominal cramps
Abdominal pain
Blood in stool
Diarrhoea
Food poisoning
Hepatitis
Jaundice
Stomach pain
Vomit
Nausea
Non responsive

Altered mental status
Anxious
Confusion
Difficulty Talking
Difficulty thinking
Difficulty Walking
Disoriented
Drowsy
Facial droop
Facial weakness
Hyper
Loss of consciousness
Mental
Nervous
Numbness
Paralysis
Seizure
Slurred speech
Sores
Stroke
Swallowing
Syncope
Thinking slow
Tingling
Trouble talking
Trouble thinking
Trouble walking
Unresponsive Weak

Abscess
Abnormal Skin
Blisters
Bug Bites
Cellulitis
Chicken pox
Dermatitis
Insect bite
Itching
Pox Rash
Skin redness
Skin swelling
Tick bite

Arm pit
Glands
Lumps
Lumps in neck
Neck
Nodes
Red streaks
Skin streaks
Weak

Achy
Body aches
Body sores
Fatigue
Fever
Fussy
Infection
Tired
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ordinary least squares for parameter estimation and then
back transforming from started logs to natural scale.

Evaluation of goodness of fit
As with all statistical models, it is important to assess
goodness of fit. A careful residual analysis reveals trends in
the forecast errors, the most important of which follow
from the one-size-fits-all character of the model. That is,
the first order model postulates that complaint activity
peaks with the same magnitude and at exactly the same
time of year from season to season. Such postulated
behavior is only approximately true, and the season-to-
season differences lead to the trends in residuals from the
model.

For example, if a peak of respiratory complaints occurs
later than average in the year, then the baseline will ini-
tially over-predict (in anticipation of an average peak
time) and then under-predict (when the season's peak
actually occurs). Similarly, if the amplitude of a season's
peak is higher or lower than the historical average ampli-
tude, predictions will be consistently too low or too high
near the peak. We return to this subject in the section on
hierarchical modeling.

Near real time monitoring: Page's test
By comparing CC counts to predictions and confidence
limits, anomalies can be identified [18,19]. Extra counts
could arrive all on one day, or appear as a gradual increase

Predicted Respiratory ComplaintsFigure 1
Predicted Respiratory Complaints. The predicted respiratory complaints and corresponding upper confidence limits illus-
trates seasonality and day-of-week effects.
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starting at some particular time, or arrive sporadically,
persist at a constant level for a fixed duration, etc. The best
statistical test for detecting extra counts depends on the
pattern of extra counts, so there cannot be a single best test
for detecting all possible anomalous patterns.

A particular test, based on Page's statistic, is optimal for
detecting a constant excess above baseline when the start
time and duration of the excess is unknown [20]. This test
also has competitive power compared to other sequential
tests to detect other anomalous patterns. For these rea-
sons, Page's statistic is widely used in statistical process
control and has been proposed in the context of disease
surveillance [21]. We recommend Page's statistic unless
specific anomalous patterns are suspected, in which case a
specialized test could be developed.

Page's statistic is a type of cumulative sum, which we
denote as P(d). On each day d, the forecast error εd
between the started log of the observed number of com-
plaints and the started log of the baseline prediction is
computed for each complaint category. The standard devi-
ation sd of εd is computed as well. Then Page's statistic is
calculated for day d as

P(d) = maximum of 0 and [P(d-1) + εd/sd - 1/2].

If P(d) becomes too large, then the observed complaint
levels are significantly greater than the baseline predic-
tions and complaint levels are deemed anomalously high.
Here, the phrase "too large" is formally defined in terms
of the desired false positive rate for monitoring, and the
threshold value for P(d) is calibrated using empirical data
to account for model prediction errors.

Comparison to other data streams
A comprehensive comparison to other data streams is
beyond our scope. Briefly, we compared our respiratory
CC counts to existing influenza data for the 2002–2003
influenza season. We evaluated New Mexico (NM)
Department of Health sentinel influenza surveillance data
reported weekly by approximately 20 clinics. When the
week-long monitoring period is combined with the time
needed for compilation and dissemination, notification
of an outbreak early in one week is often not formally
received until two weeks after it occurred. We obtained
virology laboratory data from routine clinical and surveil-
lance testing of respiratory specimens reported by three
laboratories that conduct at least 75% of the clinical virol-
ogy testing for NM. Such data streams have their own
timeliness issues, due in part to culturing of samples.

Results
ED data from 2/1/94 – 5/31/02 is used as training data for
least squares fitting to establish control limits; data from

6/1/02 – 53/31/03 is then used in near real time surveil-
lance. Approximately, 17% of the complaints fall into the
respiratory category, 10% gastrointestinal, 6% undifferen-
tiated infection, 3% skin, 3% neurological, 1% lymphatic
and 60% "other."

Day-of-week effects
For all systemic complaint categories there are day-of-
week differences. See Figure 2. For five of the seven catego-
ries, there are more visits on Monday than on any other
day; UDI and skin peak on Sunday. Weekly minimums
occur later in the week: on Thursday for skin, Friday for GI
and UDI, and Saturday for respiratory, neurologic and
lymphatic. In some cases, there is a high-to-low trend as
the week progresses.

For respiratory and UDI complaints, there is an average
difference of 7 cases per week between Monday and Fri-
day, and the weekly differences conform to a bell-shaped
statistical distribution. While day-of-week effects are sta-
tistically significant in all categories owing to the size of
the data set, in some categories there are so few com-
plaints that the difference is of no practical consequence.
For example, in the lymphatic and neurologic categories,
the average difference between the weekly peak (Monday)
and weekly minimum (Saturday) is less than one case per
day. Certain other daily effects may exist, e.g. holiday
effects [22], but sample sizes for UH data are not large
enough to detect them.

Seasonal effects
As is well known, there are annual cycles of respiratory
complaints with peaks in January or February. Figure 3
demonstrates these cycles in our data for respiratory com-
plaints; the cycles are similar but less pronounced for UDI
complaints.

Long term trends
Total ED visits increased over the study period by 4%, in
part reflecting the population increase of about 1.5 % per
year for the metropolitan area. Rates for most of the com-
plaint categories have changed over the eight years that
data has been collected. Respiratory complaints show a
decrease of roughly 20% over the monitoring period (Fig-
ure 4), illustrating that long term averages need not reflect
current or future behavior. Skin-related complaints also
show a slight decrease, while increases are observed in
nearly all other categories. Only lymphatic complaints do
not appear to change over the monitoring period. Had
there been a complaint category where a nonlinear trend
were clearly present, either the c9 component would have
been modified periodically, or a nonlinear model would
have been used.
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Surveillance
Patterns observed in the Test Year
We focus on respiratory CCs because they have the strong-
est season-to-season variation, which makes them the
most challenging to predict, and because respiratory is
thought to be one of the most important bioterrorist cat-
egories. Overlaying the data streams on the baseline plot
in real time allows for visual inspection of the results, sim-
ilar to that for a standard control chart. Figure 5a shows
the daily counts, the baseline prediction, and the upper
control limit (for a 2.5% false alarm rate) for the respira-

tory category. Figure 5b shows the scaled forecast errors
(in the started log scale) for the prospective data. Both fig-
ures reveal a later-than-average flu season, as does Figure
5c, showing large values of Page's statistic P(d). These
plots illustrate how a misfit to the one-size-fits-all model
can produce systematic trends in surveillance data. This
subject is revisited in the section on hierarchical
modeling.

The peak in respiratory CCs and the elevated P(d) pre-
ceded a rise in reports from the state-wide influenza

Day-of-week effects for each CC categoryFigure 2
Day-of-week effects for each CC category. The average day-of-week effect with corresponding error bars for six CC 
categories.
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sentinel surveillance system. A similar pattern, delayed by
several weeks, was found in the rise of requests for
laboratory tests for influenza. ED CCs also preceded New
Mexico reporting of deaths from pneumonia and influ-
enza. We conclude that surveillance using the first order
model is sufficiently sensitive to mild departures from
baseline activity and that it can provide timely notifica-
tion relative to traditional surveillance.

Simulated outbreaks
In a simulation study we injected K extra respiratory CC
counts beginning at random days during the test year,
with the simulated outbreak lasting from 1 to 10 days,
from 2 to 10 days, and exactly 1 day. Generally, departures
of approximately 3 or more standard deviations from the

baseline model should be detected with high probability.
The simulated per-day shift above the baseline prediction
ranged from 1 to 5 standard deviations in our
simulations, so testing one day at a time could fail to
detect those outbreak having small per-day shifts. Also,
because of the pattern in the residuals near each seasonal
peak, we considered EWMA (exponentially weighted
moving average, see the Discussion) as one way to modify
the current forecast on the basis of errors in the recent
past.

In Table 2 we give the fraction of simulations (out of
1000) in which the Page statistic exceeded its threshold of
3.3 for the null model, baseline model, and for the same
models modified by the EWMA procedure. For

Annual cycles in Respiratory ComplaintsFigure 3
Annual cycles in Respiratory Complaints. Annual cycles in respiratory complaints (by week) for the past three flu sea-
sons, from 2000–1 through 2002–3.
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comparison to one-day-at-a-time testing, we also give the
fraction of simulations in which the maximum forecast
error that occurred during the outbreak exceeded its 2.5%
false alarm rate threshold of 1.96. We see that Page's test
outperforms the one-at-a-time test and that the EWMA
modification does not improve anomaly detection
because of its tendency to underestimate the size of mul-
tiple-day outbreaks. However, if we restrict attention to
those outbreaks that last only one day, then one-at-a-time
testing is better (for each of the models), as we would
expect. Compare the baseline model results to the null
model (which uses the average CC count in the training
data to predict the test data) results to gauge the benefit of
fitting the baseline model. Of course the null model is not
acceptable regardless of its performance in this context

because it ignores the trend (which causes the null model
to be biased high for the respiratory CCs), day-of-week
effects, and seasonality.

Discussion
Models
Long-term trends can occur in surveillance data for multi-
ple reasons. Changes may occur in: local resources (more
or specialty EDs), access and reimbursement practices
(facilities change which insurance plans with which they
are associated, major shifts in insurers drives patients to
other facilities), changes in the underlying population
(shifts in population size or age), and changes in the local
economy. Moving averages were not used because

Average daily number of respiratory complaints by calendar yearFigure 4
Average daily number of respiratory complaints by calendar year. The average daily number of respiratory CCs 
decreases over the training data.
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Results on validation data for Respiratory ComplaintsFigure 5
Results on validation data for Respiratory Complaints. Prospective data (June 1, 2002 through May 31, 2003 (a) Daily, 
predicted, and upper control limit for respiratory counts ; (b) Scaled forecast errors for respiratory counts; (c) Page's statistic 
applied to the same forecast errors. A control value of 3.3 bfor Page's statistic results in an approximate theoretical 2.5% false 
alarm rate when forecast errors are Gaussian.

Table 2: The fraction of simulations (out of 1000, so the 95% confidence limit is approximately ± 0.03) in which the Page statistic (or 
the one-at-a-time statistic) exceeded its 2.5% false alarm threshold during the simulated outbreak for the baseline model, the baseline 
model with residuals modified by EWMA, the null model, and the null model with residuals modified by EWMA.
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1–10 days Page 0.46 0.21 0.28 0.17
1–10 days One-at-a-time 0.37 0.31 0.17 0.31
>1 day Page 0.42 0.20 0.30 0.14
>1 day One-at-a-time 0.31 0.25 0.13 0.26
1 day Page 0.44 0.36 0.30 0.45
1 day One-at-a-time 0.71 0.70 0.47 0.68
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although they generate visually pleasing curves they
smooth over day-of-week and seasonal effects that are
important for developing baselines.

Concerning model quality, one useful test is whether the
forecast error variance in the testing data is approximately
the same as that in the training data. Upon dividing the
forecast errors in the test data by their standard deviations
in the training data, the scaled forecast error variances
range from 0.87 to 1.07 for the seven CC categories (ide-
ally, these ratios should be near 1). Further, the fraction of
scaled forecast errors that exceed 1.96 ranged from 0.0 to
0.033 (when the model holds and residuals are Gaussian,
the portion of one-sided residuals exceeding 1.96σ is
2.5%). Thus, departures from stationarity in the time
series are mild enough that the forecast errors show that
future complaints can be reasonably well predicted using
a single baseline model for each category.

When monitoring complaint levels over multi-year time
frames, it is necessary to periodically update baseline
model coefficients in order to minimize the extrapolation
in forecasting. One approach to choosing an update fre-
quency is to do a planned update every year, but also
monitor residuals for patterns, including shifting vari-
ance, that have not been observed previously to check
whether additional updates are needed.

Hierarchical modeling to capture season-to-season 
differences
The first-order model is useful for routine monitoring. It
has the obvious shortcoming, however, of describing each
season in a one-size-fits-all fashion. As noted above in
evaluation of the model's goodness-of-fit, forecast errors
reflect modelling imperfections as well as random varia-
bility, limiting somewhat the sensitivity of surveillance to
detect smaller anomalies. Improving on this situation
requires more refined baselining.

Hierarchical methods [23] can overcome the one-size-fits-
all shortcoming, or, at a minimum, provide information
that is valuable in assessing the quality of one-size-fits-all
modelling assumptions. In the hierarchical approach,
each season is allowed to have its own time of peak activ-
ity, its own seasonal duration, and its own peak magni-
tude. For practical purposes, the hierarchical model shares
the global characteristics of the first order cyclical regres-
sion model. The seasonal component is modelled with a
scalable Gaussian function, in contrast with the fixed-
width sine and cosine harmonics previously. And the
underlying baseline changes linearly within a season, as
opposed to behaving linearly over a longer time period.

Applying the hierarchical model to respiratory CC data
illustrates the season-specific nature of chief complaints.

On the average, our respiratory complaints peak on Janu-
ary 22, with a season-to-season standard deviation in the
day of the peak of 12 days. The durations of individual
seasons, defined in terms of the standard deviations for
the Gaussian-shaped peaks, vary by factor of two over the
monitoring period. And there is no apparent relation
between the time that the peak occurs and the magnitude
of the flu season.

Use of hierarchical models for real time syndromic moni-
toring could be considered, but at a significant computa-
tional cost. In order to capture the peak time and
magnitude of an ongoing season, the model must be
updated on a frequent (e.g., weekly) basis, involving
lengthy runs of Markov chain Monte Carlo software.
Because the first order cyclical regression model fits the
data sufficiently well to detect anomalies of interest, we
have used the first order model for routine monitoring. A
similar first order cyclical regression model is used by the
Centers for Disease Control to monitor pneumonia and
influenza related mortality data [24], also with success.

Related efforts
Influenza surveillance basing alerts on comparison to his-
torical data were described by Irvine [25]. Daily counts
were compared to historical averages and standard devia-
tions. Their data demonstrated a peak in CCs during influ-
enza season.

Lazarus et. al. [26] use a generalized linear mixed model
based on four years of data from ambulatory health
encounters. They find that indicators for day-of-week,
month, holiday effects as well as a secular trend term con-
tribute significantly to their model fit. There may be ED
data from other hospitals where month-to-month effects
exist but are not part of a longer seasonal trend, but we
don't see them in our data. Logistic regression [26] is use-
ful for scaling over census tracts of different population
sizes and, when complaint counts behave proportional to
underlying census populations, is also useful in modeling
overall complaint levels.

Reis and Mandl [27] used CCs for their time series models
(autoregressive integrated moving average, ARIMA, mod-
els) for total and respiratory visits. After fitting a day-of-
week effect and a seasonal effect, there remained positive
autocorrelation in the forecast errors, which they mod-
elled using a particular time series model. In our CC data,
there is negligible autocorrelation in the errors after fitting
our model, except that due to the variation in when the
seasonal peak occurs. For example, if a peak occurs early,
then we observe a sequence of positive errors, which leads
to positive autocorrelation of the type reported. For our
CC data, the best-fitting ARIMA-type model applied to the
residuals after fitting the trend, seasonality, and day-of-
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week effect was the EWMA (equivalent to a moving aver-
age fit to the first differences, also denoted ARIMA(0,1,1)
for the particular autoregressive integrated moving aver-
age model that it corresponds to). Reis and Mandl [27]
note that the ARIMA model adjusts to multi-day out-
breaks and so it reduces the error on days 2, 3, ... of a
multi-day outbreak. Therefore they suggest using both the
original errors (containing serial correlation) and the
ARIMA-model-adjusted errors in two monitoring
schemes.

The EWMA also adjusts to multi-day outbreaks and there-
fore suffers from signal loss if the outbreak persists for
multiple days (the results in Table 2 illustrate this effect).
Therefore, the Reis and Mandl [27] suggestion to monitor
two residual series is relevant if we use EWMA or any
approach (including the hierarchical model) that uses the
very recent past (in addition to the trend, seasonality, and
day-of-week effects) to modify the current forecast (lead-
ing to two or more forecast methods). Also, sequential
tests were not used in [27] for their 7-day simulated out-
breaks. Each simulated outbreak added simulated addi-
tional counts to the daily CC data. Forecasts were made
(on the basis of a model that used the overall mean, the
day-of-week means, and the trimmed day-of-year means)
and were modified using the ARIMA-modeling of the
residuals. If any single-day forecast error exceeded a
threshold, then the simulated outbreak was said to be
detected. Sequential tests are ideal for multi-day outbreaks
so the performance (the false negative rate for a fixed false
positive rate) of Page's statistic or a moving window such
as in [28] or the scan statistic such as in [29] would be bet-
ter than the performance of one-at-a-time tests in the case
where all simulated outbreaks lasted 7 days. Reis et al.
[28] applied several sliding detection windows, each of at
most 7 days to ED visit daily counts in which simulated
outbreaks (in the form of additional ED visits) lasting 3,
7, and 14 days were added to the real data in a simulation
study. On the other hand, if each outbreak lasted only one
day, then monitoring single-day errors would be optimal.
In summary, we concur with [30] regarding the robust-
ness and simplicity of Page's test. Alternatively, there are
occasions when using a modest number of specific tests is
effective as was done in [29].

Use of free text chief complaints
Many surveillance systems report the use of CCs or dis-
charge diagnoses based on ICD-9 codes. Most of these use
discharge diagnosis ICD-9 codes in specialized settings
such as the Military [13] or in HMOs [23]. ED ICD-9
codes were also used when processing data retrospectively
[4]. In most EDs, however, ICD-9 discharge diagnosis
coding is not performed on a "near-real" time basis and
would not be available for "near-real time" surveillance.

By contrast, free text chief complaints are obtained at the
time of patient entry into all Emergency Departments and
free text discharge diagnoses are determined at or close to
the time of ED discharge. Therefore, use of our grouping
scheme is relevant to the majority of EDs in which chief
complaints and discharge diagnoses are recorded as free
text and are available for "near-real time" surveillance.

Because of their timeliness, CCs are used in our "near-real
time" surveillance system B-SAFER [31,32]. We consid-
ered using CoCo, a naive Bayesian free-text classifier
developed by the University of Pittsburgh [33], but this
was not made available to us. Another automated classifi-
cation based on weighted key words system is used by
ESSENCE [34]. The New York City Department of Health
uses a key word and key phrase SAS-based coding system
[35]. A comparison of the performance of expert based
classification systems such as ours, and automated classi-
fication systems has not been done.

There are other potential limitations in using ICD-9 codes
for surveillance. It is to be expected that early cases of unu-
sual diseases will be misdiagnosed. Assigned ICD-9 diag-
nostic codes may be more reflective of the diagnostic bias
or practice patterns of the provider, than of the true inci-
dence of disease. Furthermore, ICD-9 diagnosis code
assignment is potentially subject to billing bias: codes
which garner the highest reimbursement may be used,
rather then those that most accurately represent the dis-
ease process. Use of ICD-9 codes for chief complaints is
also problematic. Because ICD-9 codes were developed
for classification of diagnoses, the dictionary for chief
complaints is not robust. Therefore, the use of free text
chief complaints may result in increased sensitivity,
although the B-SAFER team believes that some types of
coding standards would be beneficial [36].

Results and applications
Day-of-week patterns in EDs have been previously
reported in the literature [4,26,27,37,38]. Although the
magnitudes of the day-of-week effects vary depending on
the setting, the first day of the work week typically exhibits
the greatest number of events. And, as we have shown,
there is day-of-week variability within infectious disease
syndromes which can be obscured by the failure to con-
sider each body system's pattern individually. It is also
important to understand utilization patterns on week-
ends, which ED data provides, as the effects of bio-terror-
ist or natural outbreaks are unlikely to be limited to
weekdays.

Seasonal effects in infectious diseases are best known for
respiratory infections (e.g. influenza and respiratory syn-
cytial virus). This seasonality is in large part due to the
yearly winter influenza epidemics. Our data is quite con-
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sistent with these findings. However, we provide an anal-
ysis of the pattern of respiratory related chief complaints
based on the longest (8.6 years) historical data base. Fur-
thermore, the seasonality of infectious disease complaints
for other body systems, or for non-ID related complaints
has not previously been reported. Seasonality in specific
GI infections has been noted in other settings. Some gas-
trointestinal infections are more common in the winter
(e.g. rotavirus) while others (e.g. Campylobacter, Crypt-
osporidium, enterovirus) are more common in the warm
months from outdoor cooking and recreational water
exposures.

Seasonality is also important because the signal-to-noise
ratio in complaint counts maychange depending on time
of year. As illustrated in Figure 1, the error bars are larger
during the height of flu season than at other times of the
year, leading to reduced sensitivity for detecting an
increase in respiratory complaints at that time.

It is unclear why, in our data, the number of respiratory
complaints fell with time while the number of fever com-
plaints rose. This may reflect the relative mildness of
recent influenza seasons. Alternatively, rather than actual
differences in patient presentations, this may represent
changes in the practices of choosing or recording chief
complaints. This would require further investigation.
Implementation of a standard drop-down menu for chief
complaints might prevent some bias over time in the
selection of chief complaints. Use of a new system,
however, would likely change the distribution of chief
complaints and thus not allow for the creation of base-
lines based on historic data.

Surveillance
Using the models described above we successfully identi-
fied a respiratory outbreak in advance of the traditional
flu-reporting data streams described in the Methods sec-
tion. Incoming B-SAFER reports were monitored at least
once daily, seven days a week, by the project epidemiolo-
gist. This allowed for prompt handling of events indicat-
ing a condition reportable by statute to the NM
Department of Health. Because there is approximately a 2-
week delay for traditional flu-related data sources, pro-
vided our respiratory CC captures some of the NM flu
cases, we expected to, and did, identify a flu-related respi-
ratory peak in advance of these other sources.

Limitations
This analysis is based on data from one ED and patterns
identified may be somewhat specific to metropolitan Alb-
uuerque. Indigent or Hispanic populations may be over-
represented in the ED studied as compared to other EDs.
Visit patterns may differ by the local health care infrastruc-
ture, population insurance status, access to care, or local

climate. We wewere fortunate that electronic ED data was
available for the previous eight years. Other institutions
may lack the source data for a similar analysis.

CCs are determined by a nurse and recorded in free text by
a clerk. This process may conceivably distort patients' lit-
eral CCs. Free text CCs are quite variable and require
extensive processing. These CCs may also have varied had
they been recorded by a physician. Although the rationale
for using CCs rather than discharge diagnoses was pro-
vided above, there is a tradeoff between the better timeli-
ness of CC data and the better sensitivity of discharge
diagnoses [39]. Note that our modelling is as easily
applied to diagnoses codes as to chief complaints.

Any approach to disease surveillance using either CCs or
discharge diagnoses requires large numbers of sympto-
matic patients. Analyses based on such large-scale counts
are unlikely to discover a small and geographically dis-
persed event such as the anthrax Anthrax outbreak of
October 2001.

As we work more with our data, we will understand it bet-
ter. Opportunities exist for performing sensitivity analy-
ses, comparing the baseline patterns for CCs to those for
discharge diagnoses, and more thoroughly evaluating the
performance of our signals as compared to existing
standards.

Conclusion
We have demonstrated a robust statistical approach to
characterize baseline data for ED visits. We demonstrated
day-of-week, seasonal and long-term effects by infectious
disease in grouped chief complaint categories. ED data
provides information on daily visit patterns, rather than
just 5-day-a-week patterns. Using respiratory complaints
as an example, we have shown that these models when
applied to "near real-time" surveillance data provide an
early indicator of an anomaly. This increase in respiratory
visits was identified early by a rise in Page's statistic. This
anomaly corresponded to events detected later by more
traditional methods. Understanding baseline patterns in
ED data provides the ability to distinguish expected versus
unexpected events during infectious disease surveillance.
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