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Abstract: In order to model the emergency facility location-allocation problem with uncertain param-
eters, an uncertain multi-objective model is developed within the framework of uncertainty theory.
The proposed model minimizes time penalty cost, distribution cost and carbon dioxide emissions.
The equivalents of the model are discussed via operational laws of uncertainty distribution. By
employing the goal attainment technique, a series of Pareto-optimal solutions are generated that
can be used for decision-making. Finally, several numerical experiments are presented to verify the
validity of the proposed model and to illustrate decision-making strategy.
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1. Introduction

Emergency logistics is one of the most active fields in Operations Research and Man-
agement Science, which involve planning, managing, and controlling the flow of resources
to provide relief to the people affected (Sheu [1]). Providing an adequate service level is a
struggle for many emergency response systems, but it is of special concern in the field of
emergency management. Despite the recent progress in hardware equipment, information
access, human resources, some pressing issues are worth to be further concerned: the reduc-
tion of the urgency of the emergency response, the funding shortfalls, the carbon emission
issues, to mention a few. As a critical part of emergency logistics, the location-allocation
problem concerns to open a set of candidate emergency distribution centers such that the
transportation cost from centers to demand points is minimized.

As its general practical application backgrounds, location-allocation problem has
received considerable attention since Cooper [2] studied it for the first time. For reviews
on optimization models of emergency location-allocation problem, we may consult Beau-
mont [3] and de Camargo and Miranda [4], where various cases were discussed. In Murtagh
and Niwattisyawong [5], a capacitated location-allocation problem, in which the capacities
of facilities are limited, was proposed and a new model was introduced. Then Badri [6]
and Fang and Li [7] studied multi-objective location-allocation problems using goal pro-
gramming. Recently, Fan et al. [8] formulated a reliable location-allocation model for
hazardous materials by considering the depot disruption. Chu and Chen [9] proposed
a multi-objective location-allocation model for a three-level logistics network. There is
considerable research that has been carried out for emergency facility location-allocation
problems; the interested readers may refer to Wang et al. [10].

A limitation of most existing studies on the location-allocation problem is that most
work is done for the deterministic case. In practice, many parameters, such as the timing,
location and magnitude of a natural disaster are unpredictable rather than deterministic.

Systems 2022, 10, 51. https://doi.org/10.3390/systems10020051 https://www.mdpi.com/journal/systems

https://doi.org/10.3390/systems10020051
https://doi.org/10.3390/systems10020051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0002-4189-9185
https://orcid.org/0000-0001-6840-0981
https://orcid.org/0000-0002-4850-5134
https://doi.org/10.3390/systems10020051
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems10020051?type=check_update&version=2


Systems 2022, 10, 51 2 of 17

The highly unpredictable of natural disasters causes the real decisions are usually sur-
rounded in the state of indeterminacy. Some scholars thought that parameters in this case
can be described as random variables. Accordingly, probability theory (Kolmogorov [11]) is
introduced into location-allocation problems and a wide range of stochastic programming
models and a series of heuristic algorithms have been developed. For instance, Zhou and
Liu [12] formulated three kinds of stochastic programming models according to different
criteria and presented a hybrid intelligent algorithm on the basis of stochastic simula-
tion, network simplex algorithm and genetic algorithm. Alizadeh et al. [13] studied a
location-allocation problem in the heterogeneous environment and employed the normal
approximation method to assess the probability distribution of the demand. Cheng and
Wang [14] developed a stochastic chance-constrained programming location model for
capacitated alternative-fuel stations by considering road condition. Hu et al. [15] proposed
a stochastic programming model for a capacitated single allocation hub location problem.

Although the stochastic programming models have been widely used, and tally with
the facts in widespread cases, it is also not suitable in a great many situations. As a matter
of fact, the probability distributions for indeterminate quantities are not easy to obtain
due to the lack of sufficient data. Instead, experts’ belief degrees are usually employed to
describe the quantities with indeterministic information. Considering this, how can we deal
with belief degrees? Fuzziologists believe belief degrees can be interpreted as fuzziness.
This calls for the incorporation of fuzzy set theory (Zadeh [16]) into location-allocation
problem. A fuzzy set A in X is characterized by its membership function which assigns to
each element x a real number µA(x) ∈ [0, 1]. The value of µA(x) is interpreted as the degree
of membership of x in fuzzy set A for each x ∈ X (Zadeh [16]). Within the framework of
fuzzy set theory, location-allocation problem has been widely studied and a variety of fuzzy
programming models have been carried out. For example, Zhou and Liu [17] investigated
a capacitated location-allocation problem with fuzzy demands and proposed three types
of fuzzy programming models. Wen and Iwamura [18] formulated an α-cost model for
fuzzy location-allocation problem under the Hurwicz criterion. Liu et al. [19] proposed a
two-stage fuzzy 0–1 mixed integer programming model for a three-level location-allocation
transfer center.

However, is it reasonable to use fuzzy set theory to deal with belief degrees? Through
a lot of investigation and analysis, Kahneman and Tversky [20] concluded that human
beings usually overweight some unlikely events. With the further research, Liu [21] reveals
that paradoxes may appear when we use fuzzy set theory to handle belief degrees. That
is to say, it is not suitable to employ fuzzy set theory to handle belief degrees. As a
breakthrough to cope with indeterminate information, uncertainty theory, which was
created by Liu [22] based on normality, duality, subadditivity and product axioms, provides
a powerful alternative to address belief degrees. In turn, uncertain programming was
proposed by Liu [23] as a spectrum of mathematical programming to handle optimization
problems involving uncertain variables. Subsequently, uncertain programming has been
gradually developed and successfully applied to a series of optimization problems, such as
network optimization (Gao [24]), supply chain design (Ma and Li [25]), and optimal control
problems (Sheng et al. [26]), and so forth.

In terms of emergency logistics network design, Gao [27] first proposed two types of
uncertain models for a single facility location problem. Then Wen et al. [28] formulated
an uncertain location-allocation model via chance-constraints, and designed a hybrid
intelligent algorithm to solve the model. Wang and Yang [29] studied a hierarchical facility
location problem from different decision criteria and proposed two types of uncertain
models. Zhang et al. [30] developed three types of covering location models for emergency
facilities and discussed the analytical solutions of the models based on operational laws of
uncertainty distribution. Soltanpour et al. [31] investigated an inverse 1-median location
problem with uncertain parameters, and discussed the necessary and sufficient condition
for the α-1-median on uncertain trees. Wang and Qin [32] studied a hub maximal covering
location problem in the presence of partial coverage with uncertain travel times, proposed
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two types of uncertain models and presented a greedy variable neighborhood search
heuristic. Gradually, more researchers investigated emergency facility location problems,
see Wen et al. [33], Gao and Qin [34], Zhang et al. [35] and Zhang et al. [36], for example.

The above discussion makes it clear that a whole range of research has been carried
out to address location-allocation problem within the framework of uncertainty theory.
However, most of studies did not take into account the urgency of emergency response.
Additionally, sustainability is currently a societal concern for development, especially in
the aspect of the environment. However, large-scale logistics activities will inevitably
aggravate the environment. This fact provides our motivation to design a sustainable
emergency logistics network, which can not only timely rescue the affected people but also
effectively reduce the pollution to the environment.

Inspired by the above discussion, this article mainly concerns the following two
issues: First, how can we quantitatively characterize urgency and environmental pollution?
Second, how can we provide a good trade-off the relationship among urgency, cost and
environmental pollution? To answer the questions, the time penalty cost function and
carbon dioxide (CO2) emissions are used to describe urgency and environmental pollution,
respectively. Then, we formulate a multi-objective uncertain programming model that
includes (i) minimization of the time penalty cost, (ii) minimization of the total distribution
cost, and (iii) minimization of the CO2 emissions. To solve the model, we apply goal
attainment technique to obtain Pareto-optimal solutions. As a consequence, a set of Pareto-
optimal solutions is provided for decision-makers to seek the best strategy in accordance
with their preferences.

In comparison to the existing works, this paper mainly focuses on optimizing facility
location-allocation strategies with uncertain information. The main contributions of this
paper can be summarized as follows. First, compared to the use of other approaches, such as
probability theory and fuzzy set theory, for location-allocation with uncertain information,
this paper provides an opportunity to advance uncertainty theory to address location-
allocation problem. Second, compared to the existing works related to the uncertain facility
location-allocation problem, this paper develops a novel multi-objective location-allocation
model. This paper thus complements existing literature, and it will certainly further
improve the efficiency of emergency response.

The rest of the paper is organized as follows. Section 2 briefly reviews some rel-
evant basic knowledge about uncertainty theory for readers to better understand this
paper. Section 3 introduces the location-allocation problem and presents a novel multi-
objective model for the deterministic case. In Section 4, an uncertain multi-objective
location-allocation model is developed. After that, some crisp equivalents of the model
are discussed and a solution methodology is introduced. Section 5 discusses the main
contributions of the paper by comparing it with the existing works. Section 6 presents
the computational experiments and illustrates the results of the analysis in detail. Finally,
conclusion remarks and future research directions are provided in Section 7.

2. Preliminaries

Since its introduction in 2007 by Liu [22], uncertainty theory has been well studied
and applied in a wide variety of fields. In the following, we briefly review the basic
concepts, such as uncertainty space, uncertain variable, and uncertainty distribution, of
uncertainty theory.

Let Γ be a nonempty set, L a σ-algebra over Γ, and M{Λ} ∈ [0, 1] an uncertain
measure. Then the triplet (Γ,L,M) is said to be an uncertainty space. The uncertain
measureM satisfies the following three axioms (Liu [22]) : (i)M{Γ} = 1 for the universal
set Γ; (ii) M{Λ} +M{Λc} = 1 for any event Λ; (iii) For every countable sequence of
events Λ1, Λ2, · · · , we haveM{⋃∞

i=1 Λi} ≤ ∑∞
i=1M{Λi}.
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To obtain an uncertain measure of compound event, Liu [37] defined a product uncer-
tain measure on multiple uncertainty spaces: Let (Γk,Lk,Mk) be uncertainty spaces for
k = 1, 2, · · · . The product uncertain measureM is an uncertain measure satisfying

M
{

∞

∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
An uncertain variable (Liu [22]) is defined as a measurable function ξ from an un-

certainty space to the set of real numbers such that {ξ ∈ B} is an event for any Borel set
B of real numbers. The uncertainty distribution Φ (Liu [22]) of an uncertain variable ξ is
defined as

Φ(x) =M{ξ ≤ x}, for any x ∈ <.

If an uncertain variable ξ has a linear uncertainty distribution

Φ(x) =


0, if x ≤ a

x− a
b− a

, if a < x ≤ b

1, if b < x

where a and b are both real numbers with a < b, we name it linear and denote this by
ξ ∼ L(a, b) (Liu [22]). It is easy to verify that the inverse uncertainty distribution of
ξ ∼ L(a, b) is

Φ−1(α) = (1− α)a + αb, α ∈ (0, 1).

Theorem 1 (Liu [38]). Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular un-
certainty distributions Φ1, Φ2, · · · , Φn, respectively. If f (ξ1, ξ2, · · · , ξn) is a continuous and
strictly increasing function, then ξ = f (ξ1, ξ2, · · · , ξn) is an uncertain variable with inverse
uncertainty distribution

Ψ−1(α) = f (Φ−1
1 (α), Φ−1

2 (α), · · · , Φ−1
n (α)).

Definition 1 (Liu [22]). Let ξ be an uncertain variable. Then, the expected value of ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals is finite.

It can be verified that the expected value of the linear uncertain variable ξ ∼ L(a, b)
is (a + b)/2, i.e., E[ξ] = a+b

2 . For detailed expositions, the interested reader may refer to
Liu [21,22,38].

3. Problem Description and Formulation

In this paper, the location-allocation problem contains two levels (emergency distri-
bution centers and demand points) and aims to open some centers to supply resources to
demand points. In consideration of urgency, relief cost and CO2 emissions, the goals of the
problem are (i) to determine the subset of candidate emergency distribution centers to open
and (ii) to draw up the resource allocation plan from the centers to the demand points.

3.1. Notations

To clearly describe the problem by a mathematical model, Table 1 lists some parameters
and variables which are used to formulate the problem.
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Table 1. List of notations.

Parameters

I The set of candidate emergency distribution centers with index i = 1, 2, . . . , n
J The set of demand points with index j = 1, 2, . . . , m
Ci The ith candidate emergency distribution center, i ∈ I
Dj The jth demand point, j ∈ J
pij The unit material time penalty cost from Ci to Dj, i ∈ I, j ∈ J
cij The unit material distribution cost from Ci to Dj, i ∈ I, j ∈ J
dij The distance from Ci to Dj, i ∈ I, j ∈ J
eij The unit material CO2 emissions per kilometer from Ci to Dj, i ∈ I, j ∈ J
sj The minimal demand of materials in Dj, j ∈ J
qi The capacity of Ci, i ∈ I
p The maximum number of emergency distribution centers selected
fi The operation cost of opening Ci, i ∈ I
W The budget for opening the emergency distribution centers

Variables

yi 1 if Ci is selected to open, 0 otherwise, i ∈ I
xij The material distribution volume from Ci to Dj, i ∈ I, j ∈ J
Y The set of yi, i ∈ I
X The set of xij, i ∈ I, j ∈ J

3.2. Multi-Objective Location-Allocation Model

In our model, three objectives are considered: (i) urgency, i.e., the urgency of emer-
gency response; (ii) cost, i.e., the distribution costs for supplying the demand points with
relief goods; and (iii) sustainability, i.e., the carbon dioxide emissions from transportation.

3.2.1. Objective 1: Minimization of the Time Penalty Cost

The urgency of demand points often has a significant effect on emergency response
decision-making. Now, the critical issue is how to measure urgency. It follows from Wan
et al. [39] that the time penalty cost approach can be used for the quantization of urgency.
Denote pij as the unit material time penalty cost from the candidate emergency distribution
center Ci to the demand point Dj, and use xij to denote the material distribution volume
from Ci to Dj. Therefore, the time penalty cost from Ci to Dj is pijxij. Then, the objective 1
can be formulated as:

min F1(X, Y) = max
j∈J

∑
i∈I

pijxij, (1)

which tries to minimize the maximal time penalty cost.

3.2.2. Objective 2: Minimization of the Total Distribution Cost

Our model tries to simultaneously determine the locations of emergency distribution
centers and the material distribution volume such that the total material distribution cost is
minimized. Denote cij as the unit material distribution cost from Ci to Dj. Objective 2 is
as follows:

min F2(X, Y) = max
j∈J

∑
i∈I

cijxij. (2)

3.2.3. Objective 3: Minimization of the CO2 Emissions

In the past few years, a growing number of authors have paid attention to address
the issue of carbon emissions in emergency response. Road transportation has become a
major factor causing the rapid growing of carbon emissions. Denote eij and dij as the unit
material CO2 emissions per kilometer and distance from Ci to Dj, respectively. Thus, the
formulation for objective 3 is given by

min F3(X, Y) = max
j∈J

∑
i∈I

dijeijxij. (3)
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3.3. Constraints

By considering some realistic constraints, the constraints shown in (4)–(8) are estab-
lished. Constraint (4) requires that the total goods transported from n emergency distribu-
tion centers should satisfy the demand of Dj. Constrain (5) guarantees that the amount of
the relief distributed from Ci does not exceed its capacity; it also prevents materials from
being distributed from an emergency distribution center that is not open. Constraint (6)
ensures that all expenditures on the operations of the distribution centers cannot exceed
the budget. Constraint (7) limits the maximum number of emergency distribution centers
opened at p. Constraint (8) provides the range of the decision variables xij and yi.

∑
i∈I

xij ≥ sj, ∀j ∈ J, (4)

∑
j∈J

xij ≤ qiyi, ∀i ∈ I, (5)

∑
i∈I

fiyi ≤W, (6)

∑
i∈I

yi ≤ p, (7)

xij ≥ 0, yi ∈ {0, 1}, ∀i ∈ I, j ∈ J. (8)

4. Uncertain Location-Allocation Model

Notice that the parameters in the above model are all assumed to be constants. How-
ever, in the real world, especially in the emergency response system, indeterminate factors
may exist, and it is difficult for us to describe them as random variables due to the lack of
history data. In this case, we usually invite some domain experts to evaluate the values of
the parameters. As a result, we may get states such as “about 10 km”, “about 5 tons” and
“between 3 and 5 h”. Uncertainty theory is a mathematical subject specially used to address
this kind of expert’s experimental data. To formulate the location-allocation problem with
uncertain information, we assume that pij, cij, dij, sj, qi, and fi are all uncertain variables,
and rewrite them as ξij, ηij, ζij, ψj, ϕi, and ωi, respectively. That is,

ξij: Uncertain unit material time penalty cost from Ci to Dj, i ∈ I, j ∈ J
ηij: Uncertain unit material distribution cost from Ci to Dj, i ∈ I, j ∈ J
ζij: Uncertain distance from Ci to Dj, i ∈ I, j ∈ J
ψj: Uncertain minimal demand of materials in Dj, j ∈ J
ϕi: Uncertain capacity of Ci, i ∈ I
ωi: Uncertain operation cost of opening Ci, i ∈ I.

Accordingly, the model formulated above becomes an uncertain model. Employing
expected value and chance-constraint, the uncertain location-allocation model can be
developed as follows:

min F̃1(X, Y) = max
j∈J

E

[
∑
i∈I

ξijxij

]
(9)

min F̃2(X, Y) = max
j∈J

E

[
∑
i∈I

ηijxij

]
(10)

min F̃3(X, Y) = max
j∈J

E

[
∑
i∈I

ζijeijxij

]
(11)

s.t. M
{

∑
i∈I

xij ≥ ψj

}
≥ αj, ∀j ∈ J, (12)

M
{

∑
j∈J

xij ≤ ϕiyi

}
≥ βi, ∀i ∈ I, (13)
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M
{

∑
i∈I

ωiyi ≤W

}
≥ γ, (14)

∑
i∈I

yi ≤ p, (15)

xij ≥ 0, yi ∈ {0, 1}, ∀i ∈ I, j ∈ J, (16)

where αj, βi and γ are predetermined confidence levels.

4.1. Deterministic Transformations

To solve the proposed uncertain model, it is necessary for us to discuss the equivalence
of the model. Using θ, δ and µ as auxiliary variables, which are defined as follows:

θ = max
j∈J

E

[
∑
i∈I

ξijxij

]
,

δ = max
j∈J

E

[
∑
i∈I

ηijxij

]
,

µ = max
j∈J

E

[
∑
i∈I

ζijeijxij

]
.

Then, Models (9)–(16) is reformulated as

min θ (17)

min δ (18)

min µ (19)

s.t. E

[
∑
i∈I

ξijxij

]
≤ θ, ∀j ∈ J, (20)

E

[
∑
i∈I

ηijxij

]
≤ δ, ∀j ∈ J, (21)

E

[
∑
i∈I

ζijeijxij

]
≤ µ, ∀j ∈ J, (22)

s.t. M
{

∑
i∈I

xij ≥ ψj

}
≥ αj, ∀j ∈ J, (23)

M
{

∑
j∈J

xij ≤ ϕiyi

}
≥ βi, ∀i ∈ I,

M
{

∑
i∈I

ωiyi ≤W

}
≥ γ,

∑
i∈I

yi ≤ p,

xij ≥ 0, yi ∈ {0, 1}, ∀i ∈ I, j ∈ J,

Theorem 2. Let ξij, ηij, and ζij be independent uncertain variables with finite expected values. If
ψj, ϕi, and ωi are independent uncertain variables with regular uncertainty distributions Φj, Ψi,
and Ωi, respectively. Then, Models (17)–(23) can be converted into the following form:

min θ (24)

min δ (25)

min µ (26)
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s.t. ∑
i∈I

E[ξij]xij ≤ θ, ∀j ∈ J, (27)

∑
i∈I

E[ηij]xij ≤ δ, ∀j ∈ J, (28)

∑
i∈I

E[ζij]eijxij ≤ µ, ∀j ∈ J, (29)

∑
i∈I

xij ≥ Φ−1
j (αj), ∀j ∈ J, (30)

∑
j∈J

xij ≤ yiΨ−1
i (1− βi), ∀i ∈ I, (31)

∑
i∈I

yiΩ−1
i (γ) ≤W, (32)

∑
i∈I

yi ≤ p, (33)

xij ≥ 0, yi ∈ {0, 1}, ∀i ∈ I, j ∈ J,

Proof. It follows from the linearity of expected value operator of uncertain variable that

E

[
∑
i∈I

ξijxij

]
= ∑

i∈I
E[ξij]xij,

which shows that constraint (27) holds for any j ∈ J. Similarly, we may verify that
constraints (21) and (22) can be equivalently transformed into constraints (28) and (29),
respectively.

Next, we prove that constraint (13) can be transformed into constraint (31). Denote Υi
as the uncertainty distribution of ϕiyi. That is,

Υi(x) =M{ϕiyi ≤ x}

for any real number x. It follows from Theorem 1 that Υi is regular since ϕi has a regular
uncertainty distribution Ψi. In other words, for any βi ∈ (0, 1), we have

Υ−1
i (βi) = yiΨ−1

i (βi).

In addition,

M{ϕiyi ≤ yiΨ−1
i (1− βi)} =M{ϕiyi ≤ Υ−1

i (1− βi)} = 1− βi, (34)

since Υi is regular. According to constraint (13), for each i, we know

M
{

ϕiyi ≤ ∑
j∈J

xij

}
≤ 1− βi. (35)

As a result, it follows from (34) and (35) that constraint (31) holds. Similarly, we may
also verify that constraints (12) and (14) can be converted into constraints (30) and (32),
respectively. Thus, the proof is completed.

4.2. Solution Methodology

As mentioned above, to solve the proposed uncertain Models (9)–(16), the most im-
portant but most difficult step is to solve the Models (24)–(33), which is essentially a
multi-objective programming model. Typically, no single optimal solution can be found
to optimize all of the objectives at the same time. Instead, the efficient solution/Pareto
optimal is commonly used for multi-objective optimization. To date, an assortment of
methods, such as heuristic algorithms (Zhang and Xiong [40], Majumder et al. [41]), goal
programming methods (Liu and Chen [42]) and multi-objective evolutionary algorithms
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(Alcaraz et al. [43]), have been developed to solve multi-objective problems. Goal attain-
ment technique (Azaron et al. [44]) is one of the multi-objective techniques, and has been
successfully applied to production systems (Azaron et al. [45]) and supply chain design
(Azaron et al. [44]). In the following, we will use the goal attainment technique to solve
Models (24)–(33) and to generate Pareto-optimal solutions. Different from interactive multi-
objective technology, the goal attainment technique is a one-stage method, so it will be
computationally faster.

By using the goal attainment technique, Models (24)–(33) can be reformulated as follows:

min π (36)

s.t. θ − w1π ≤ g1, (37)

δ− w2π ≤ g2, (38)

µ− w3π ≤ g3, (39)

s.t. ∑
i∈I

E[ξij]xij ≤ θ, ∀j ∈ J, (40)

∑
i∈I

E[ηij]xij ≤ δ, ∀j ∈ J,

∑
i∈I

E[ζij]eijxij ≤ µ, ∀j ∈ J,

∑
i∈I

xij ≥ Φ−1
j (αj), ∀j ∈ J,

∑
j∈J

xij ≤ yiΨ−1
i (1− βi), ∀i ∈ I,

∑
i∈I

yiΩ−1
i (γ) ≤W,

∑
i∈I

yi ≤ p,

xij ≥ 0, yi ∈ {0, 1}, ∀i ∈ I, j ∈ J,

In Models (36)–(40), gi and wi, i = 1, 2, 3, are goals and weights for the three objective
functions. The values of wi are generally normalized such that ∑3

i=1 wi = 1 and wi ≥ 0
for i = 1, 2, 3. The weights wi relate the relative under-attainment of the goals gi. In other
words, the more important the goal gi, the smaller the weight wi.

Notice that if (X∗, Y∗) is Pareto-optimal, then there exists a pair of (g = {gi}, w = {wi})
such that (X∗, Y∗) is an optimal solution to the optimization Problems (36)–(40) (Azaron
et al. [44]). Obviously, the optimal solution to model (36)–(40) is sensitive to (g, w). In the
numerical experiments, we will generate different Pareto-optimal solutions by changing
the values of g and w.

5. Innovations and Comparisons

In order to highlight the contributions of the proposed work, we will compare the
article with existing works in two main aspects. First, the modeling method of this paper is
discussed by comparing it with stochastic optimization models. Second, the innovations
of the paper are further illustrated by comparing it with the existing works within the
framework of uncertainty theory.

As previously discussed, we are usually in the state of indeterminacy since the highly
unpredictable nature of emergencies. To date, a wide range of innovative studies on facility
location and resource allocation problem have been conducted within the framework of
probability theory. Although stochastic models have been widely accepted and applied
to practical problems, it is not suitable to regard every indeterminate factor as a random
factor. It is universally acknowledged that a premise of applying probability theory is that
we can obtain sufficient historical data to estimate probability distribution. However, we
often have no access to get the required observational data due to economical or technical
reasons. In this case, we have no choice but to rely on the subjective-intuitive opinions of
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experts, which is named “belief degree”. Obviously, it is not suitable to deal with belief
degree by probability theory. In order to address belief degree rationally, uncertainty
theory was founded by Liu [22] based on normality, duality, subadditivity and product
axioms. Liu [22] also pointed out that belief degree follows the laws of uncertainty theory.
Subsequently, uncertainty theory has been successfully applied to the fields of information
science, management science and engineering. In this paper, uncertainty theory is employed
to address location-allocation problem with uncertain parameters, which are described as
uncertain variables. An uncertain multi-objective model is proposed by using of uncertainty
theory. In more detail, the main difference between the proposed model and stochastic
location-allocation models are demonstrated in Table 2.

Table 2. Comparison between the proposed model and stochastic models.

Stochastic
Location-Allocation Models The Proposed Model

Sample size Large enough Too small (even no-sample)

Type of indeterminacy Stochastic factors Subjective-intuitive opinions
of experts

Uncertain parameter Random variable Uncertain variable
Theoretical basis Probability theory Uncertainty theory

As a powerful tool to address belief degrees, uncertainty theory has been applied to
the field of location problem and resource allocation problem. Compared with existing
articles within the framework of uncertainty theory, the main innovation of the proposed
paper is to introduce an approach to quantitatively characterizing urgency, and further
develop a novel multi-objective model. The main difference among them are illustrated in
Table 3 for better readability.

Table 3. Comparison between the proposed model and some related uncertain models.

References Location Type Uncertain Parameters Modeling Approach Critical Factors

Gao [27] Single facility Demand Single objective Satisfaction degree

Wen et al. [28] Capacitated facility Demand Single objective;
α-optimistic criterion Transportation cost

Wang and Yang [29] Hierarchical facility Cost; the amount
of waste Single objective Logistics cost

Zhang et al. [30] Covering location Demand; time Single objective
Number of utilized

facilities; the
covered demand

Soltanpour et al. [31] Inverse 1-median Vertex weight;
modification cost Single objective Total cost; tail value

at risk

Wang and Qin [32] Hub maximal covering Travel time Multi-objective The total flows covered;
total cost

Wen et al. [33] Capacitated facility Demand Single objective;
expected value Transportation cost

Gao and Qin [34] p-hub center Travel time Minimax single
objective The maximal travel time

Zhang et al. [35] Emergency facility Demand; travel time;
opening cost Multi-objective Travel time; relief cost;

carbon dioxide emission

Zhang et al. [36] Capacitated p-center Demand; distance Minimax single
objective

The maximal travel
distance; capacity

The proposed model Emergency distribution
center

Demand; distance; time
penalty cost;

distribution cost;
capacity; opening cost

Minimax
multi-objective

Time penalty cost;
distribution cost; carbon

dioxide emission
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6. Numerical Experiments

To verify the validity of the proposed model and test the efficiency of the solution
method, numerical experiments are conducted in this section. To further illustrate the
sensitivity of the optimal solution with respect to the values of goals gi and weights wi,
more experiments with different values of gi and wi are provided.

We consider an instance with 12 demand points and 6 candidate emergency distri-
bution centers, i.e., m = 12 and n = 6. Without loss of generally, the unit material time
penalty cost ξij, unit material distribution cost ηij and distance ζij from candidate emer-
gency distribution center Ci to demand point Dj are assumed to be independent linear
uncertain variables, which are shown in Table 4, Table 5 and Table 6, respectively. The
minimal demands ψj are given in Table 7. The capacities ϕi and the operation costs ωi are
also assumed to be independent linear uncertain variables, which are shown in Table 8. In
addition, set p = 5, W = 120, eij = 6 for any i ∈ I, j ∈ J.

Table 4. Unit material time penalty cost ξij.

Ci

Dj
D1 D2 D3 D4 D5 D6

C1 L(1, 5) L(2, 6) L(1, 4) L(3, 7) L(1, 7) L(3, 8)
C2 L(2, 5) L(1, 6) L(1, 5) L(2, 7) L(4, 7) L(2, 8)
C3 L(3, 6) L(1, 4) L(2, 4) L(3, 5) L(2, 5) L(1, 4)
C4 L(2, 4) L(3, 6) L(3, 6) L(1, 5) L(2, 7) L(1, 5)
C5 L(4, 8) L(3, 6) L(2, 5) L(2, 6) L(3, 8) L(1, 3)
C6 L(3, 7) L(2, 4) L(2, 6) L(1, 5) L(2, 6) L(2, 5)

Ci

Dj
D7 D8 D9 D10 D11 D12

C1 L(2, 7) L(3, 9) L(1, 4) L(2, 5) L(3, 6) L(2, 6)
C2 L(2, 4) L(1, 5) L(2, 6) L(1, 5) L(1, 4) L(1, 6)
C3 L(2, 6) L(2, 6) L(2, 4) L(4, 8) L(3, 6) L(3, 8)
C4 L(2, 5) L(2, 4) L(3, 5) L(3, 8) L(1, 4) L(1, 6)
C5 L(1, 5) L(2, 5) L(3, 7) L(2, 5) L(2, 8) L(4, 6)
C6 L(4, 8) L(2, 7) L(5, 8) L(1, 5) L(2, 6) L(1, 3)

Table 5. Unit material distribution cost ηij.

Ci

Dj
D1 D2 D3 D4 D5 D6

C1 L(13, 16) L(10, 16) L(12, 14) L(13, 15) L(11, 13) L(14, 17)
C2 L(12, 16) L(11, 17) L(12, 14) L(10, 16) L(13, 18) L(13, 16)
C3 L(10, 15) L(12, 16) L(15, 18) L(10, 14) L(12, 16) L(13, 15)
C4 L(15, 18) L(12, 16) L(14, 16) L(10, 15) L(10, 13) L(12, 15)
C5 L(13, 16) L(11, 14) L(11, 16) L(12, 17) L(10, 15) L(11, 13)
C6 L(10, 15) L(12, 14) L(12, 16) L(11, 16) L(10, 16) L(14, 16)

Ci

Dj
D7 D8 D9 D10 D11 D12

C1 L(10, 15) L(12, 16) L(11, 13) L(13, 15) L(12, 14) L(13, 16)
C2 L(15, 18) L(10, 14) L(13, 17) L(17, 19) L(11, 16) L(11, 15)
C3 L(11, 16) L(14, 19) L(12, 14) L(12, 16) L(10, 13) L(11, 17)
C4 L(15, 17) L(12, 14) L(11, 14) L(15, 18) L(11, 14) L(15, 18)
C5 L(13, 16) L(13, 15) L(10, 13) L(13, 17) L(12, 15) L(12, 14)
C6 L(14, 18) L(12, 14) L(13, 16) L(12, 16) L(12, 14) L(11, 16)
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Table 6. Distance ζij.

Ci

Dj
D1 D2 D3 D4 D5 D6

C1 L(5, 10) L(4, 8) L(10, 15) L(3, 9) L(10, 15) L(8, 12)
C2 L(10, 14) L(8, 10) L(6, 9) L(8, 12) L(12, 15) L(10, 14)
C3 L(13, 16) L(8, 13) L(6, 10) L(10, 14) L(12, 14) L(5, 8)
C4 L(11, 15) L(7, 10) L(6, 10) L(11, 16) L(7, 12) L(13, 16)
C5 L(12, 15) L(9, 14) L(10, 13) L(10, 15) L(8, 10) L(12, 14)
C6 L(6, 11) L(14, 19) L(13, 17) L(9, 13) L(13, 18) L(13, 17)

Ci

Dj
D7 D8 D9 D10 D11 D12

C1 L(12, 16) L(6, 10) L(4, 10) L(7, 13) L(14, 17) L(8, 14)
C2 L(8, 13) L(9, 12) L(8, 13) L(7, 9) L(13, 16) L(14, 17)
C3 L(5, 7) L(9, 13) L(8, 13) L(8, 16) L(11, 14) L(7, 11)
C4 L(12, 18) L(14, 17) L(9, 15) L(15, 18) L(7, 16) L(13, 17)
C5 L(10, 17) L(7, 9) L(13, 17) L(10, 19) L(14, 17) L(10, 14)
C6 L(6, 12) L(7, 12) L(13, 16) L(7, 13) L(7, 12) L(10, 13)

Table 7. The minimal demand ψj.

Dj D1 D2 D3 D4 D5 D6

ψj L(25, 50) L(30, 40) L(25, 60) L(35, 65) L(20, 50) L(30, 55)

Dj D7 D8 D9 D10 D11 D12

ψj L(35, 70) L(25, 55) L(30, 40) L(35, 50) L(20, 55) L(20, 35)

Table 8. The capacity ϕi and the operation cost ωi.

Ci C1 C2 C3 C4 C5 C6

ϕi L(184, 194) L(190, 210) L(165, 185) L(220, 240) L(200, 210) L(175, 190)
ωi L(15, 30) L(20, 30) L(10, 30) L(25, 35) L(20, 40) L(20, 25)

The problem attempts to minimize the time penalty cost, the total material distribution
cost and the CO2 emissions in the sense of expected value while making the following
determinations: (i) which of the candidate emergency distribution centers to open; and
(ii) for each demand point, which distribution centers are assigned to it? We use the multi-
objective uncertain programming approach to this multi-objective optimization problem
and employ the goal attainment technique to solve the multi-objective model. Then, a
mathematical model can be formulated as model (36)–(40), which contains 82 variables and
132 constraints, is essentially a deterministic linear programming model.

To generate the Pareto-optimal solutions, the values of gi and wi (i = 1, 2, 3) are varied
manually. In order to illustrate the sensitivity of parameters, when one of the parameters
is varied, the others are fixed. According to the obtained absolute minimum values for
the maximal time penalty cost (i.e., “urgency”), the maximum material distribution cost
and the maximum CO2 emissions, by solving the corresponding single objective models,
g1 is varied from 200 (close to the absolute minimum value for the maximal time penalty
cost) to 400, g2 is varied from 850 (close to the absolute minimum value for the maximal
material distribution cost) to 1700, g3 is varied from 3000 (close to the absolute minimum
value for the maximal CO2 emissions) to 6000. Similarly, wi are varied from 0.001 to 0.998
for i = 1, 2, 3. Let αj = βi = γ = 0.9, by using of LINGO 10, 30 Pareto-optimal strategies
and the corresponding objective values for time penalty cost, material distribution cost
and the CO2 emissions are generated and are revealed in Table 9. Obviously, each strategy
generates a location-allocation strategy. For example, according to strategy 1, the candidate
emergency distribution centers 1, 3, 5 and 6 should be selected. In more detail, the resource
allocation strategy is illustrated in Figure 1.
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For each pair of (g, w), the Pareto-optimal solution is obtained. If we are not satisfied
with any Pareto-optimal solution, then the value of w should be modified. As mentioned
above, the values of wi relate the relative under-attainment of the objective goals gi. The
more important the goal gi, the smaller the value of wi. For example, if the obtained value
of objective 1 is much greater than 200, w1 should be decreased. Accordingly, both w2 and
w3 should also be modified such that the summation of wi equals to 1. Obviously, this
process can be repeated with different pairs of (g, w) until the decision-maker obtains a
satisfactory Pareto-optimal solution.

For example, strategy 1 in Table 9 implies that one unit deviation of the time penalty
cost from 200 is about 1000 times as important as one unit deviation of the CO2 emissions
from 3000 and the same important as one unit deviation of the material distribution cost
from 850. In this strategy, the weights for time penalty cost and material distribution cost
are relatively low, which result in the strategy has low time penalty cost and material
distribution cost. As shown in strategies 1–6, as the value of w2 increases, the value of
material distribution cost also increases gradually. For better readability, the results are
shown in Figure 2.

Table 9. Pareto-optimal solutions.

Strategy g1 g2 g3 w1 w2 w3
Selected
Centers Obj. 1 Obj. 2 Obj. 3

1 200 850 3000 0.001 0.001 0.998 C1 C3 C5 C6 248.68 898.68 5484.86
2 200 850 3000 0.001 0.005 0.994 C1 C3 C5 C6 217.93 939.67 5423.37
3 200 850 3000 0.001 0.01 0.989 C1 C3 C5 C6 210.02 950.22 5407.54
4 200 850 3000 0.001 0.05 0.949 C2 C3 C5 C6 202.33 966.58 5212.65
5 200 850 3000 0.001 0.1 0.899 C2 C3 C5 C6 201.83 1032.83 4643.60
6 200 850 3000 0.001 0.5 0.499 C1 C2 C3 C6 202.24 1089.04 4115.64
7 200 850 3000 0.001 0.998 0.001 C1 C3 C5 C6 255.13 995.30 3055.13
8 200 850 3000 0.01 0.989 0.001 C1 C3 C5 C6 258.41 932.25 3005.84
9 200 850 3000 0.1 0.899 0.001 C1 C3 C5 C6 258.76 927.74 3000.59

10 200 850 3000 0.998 0.001 0.001 C1 C3 C4 C6 310.00 884.41 3034.41
11 200 850 3000 0.989 0.01 0.001 C1 C3 C4 C6 297.96 885.05 3003.51
12 200 850 3000 0.899 0.1 0.001 C1 C3 C4 C6 297.96 885.12 3000.35
13 400 850 3000 0.001 0.001 0.998 C1 C2 C3 C6 289.07 851.61 4608.60
14 400 850 3000 0.001 0.005 0.994 C1 C2 C3 C6 288.75 856.83 4358.09
15 400 850 3000 0.001 0.01 0.989 C1 C2 C3 C6 288.75 861.48 4135.09
16 400 850 3000 0.001 0.05 0.949 C1 C3 C5 C6 288.75 875.17 3477.76
17 400 850 3000 0.001 0.1 0.899 C1 C3 C5 C6 295.83 879.58 3265.96
18 400 850 3000 0.001 0.5 0.499 C1 C3 C4 C6 272.67 884.41 3034.34
19 200 1700 3000 0.001 0.998 0.001 C1 C3 C5 C6 255.13 932.25 3055.13
20 200 1700 3000 0.01 0.989 0.001 C1 C3 C5 C6 258.41 914.76 3005.84
21 200 1700 3000 0.1 0.899 0.001 C1 C3 C5 C6 258.76 914.35 3000.59
22 200 1700 3000 0.998 0.001 0.001 C1 C3 C5 C6 258.80 902.95 3000.06
23 200 1700 3000 0.989 0.01 0.001 C1 C3 C5 C6 258.80 911.22 3000.06
24 200 1700 3000 0.899 0.1 0.001 C1 C3 C5 C6 258.80 911.22 3000.07
25 200 850 6000 0.001 0.998 0.001 C1 C2 C5 C6 200.11 963.43 5387.73
26 200 850 6000 0.01 0.989 0.001 C1 C2 C5 C6 201.13 962.07 5389.77
27 200 850 6000 0.1 0.899 0.001 C1 C3 C5 C6 211.00 948.91 5409.51
28 200 850 6000 0.998 0.001 0.001 C1 C3 C5 C6 285.12 850.09 5557.75
29 200 850 6000 0.989 0.01 0.001 C1 C3 C5 C6 284.55 850.85 5556.60
30 200 850 6000 0.899 0.1 0.001 C1 C3 C5 C6 278.63 858.75 5544.76
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Figure 1. Location-allocation for strategy 1 in Table 9.
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Figure 2. The value of material distribution cost with different w2.

It follows from Table 9 that the lowest time penalty cost comes from strategy 25, with
a value of 200.11. The strategy has relatively low material distribution cost, but high CO2
emissions. The lowest CO2 emissions is obtained in strategy 22 and strategy 23, with a
time penalty cost of 258.80. The optimal material distribution cost is obtained in strategy
28, with a time penalty cost of 285.12. So, the time penalty cost ranges from 200.11 to
285.12. To find an appropriate solution, the decision-maker needs insight into this range of
outcomes, to be able to trade-off different criteria in terms of the results. According to the
numerical results, it is concluded that the relationship among time penalty cost, material
distribution cost and CO2 emissions is not clear and it is not easy to define a function to
handle the relation among them. That is why we formulate a multi-objective model to
solve this location-allocation problem.

It is also can be seen from Table 9 that increasing goal for the time penalty cost (i.e.,
g1) and keeping other parameters unchanged cause the material distribution cost and CO2
emissions to be decreased (see strategies 1–6 and strategies 13–18). In addition, the results
are shown in Figures 3 and 4. Similarly, increasing goal for the material distribution cost
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causes both the time penalty cost and the CO2 emissions to be decreased (see strategies
7–12 and strategies 19–24). In addition, the increasing goal for the CO2 emissions may
cause time penalty cost or material distribution cost to be decreased (see strategies 7–12
and strategies 25–30). In other words, it seems that by increasing the goal of any one of the
objectives, we can provide more space for other objectives to be improved.
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Figure 3. The material distribution cost with different g1.
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Figure 4. The CO2 emissions with different g1.

7. Conclusions and Future Research

This paper studies the location-allocation problem within the framework of uncertainty
theory. Its main contribution, the time penalty cost function, is introduced to characterize
the urgency of emergency response and the formulation of a multi-objective model to
consider urgency, relief costs and CO2 emissions simultaneously. In the solving procedures,
we transform the model from an uncertain programming problem to a deterministic
programming problem.

In the numerical experiments, a series of Pareto-optimal solutions are generated by
goal attainment technique. The results reveal that the goal attainment technique can
provide an effective approach to trade-off urgency, relief costs and CO2 emissions. It also
shows that the goal attainment technique will help the decision-makers to find the best
strategy based on their preferences by varying parameter (g, w). However, for large-scale
problems, this technique may no longer be effective, in terms of computational time. In this
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case, some heuristic algorithms, such as genetic algorithms or simulated annealing, would
be suitable.

Several directions for further studies are pointed out here. Future research could
take the choices by beneficiaries into account, which will improve the allocation of relief
goods and effectively enhance the use of scarce resources. The beneficiaries remain free in
their choice of the distribution centers, so the preferences of beneficiaries rather than cost
should be considered for decision-makers. Apart from that, for large-scale emergencies,
the relief goods should be delivered to distant demand points. Therefore, it is necessary
to develop a series of meta-heuristic approaches such as genetic algorithm or tabu search
algorithm to solve large-scale problems. In addition, we could consider the problem under
a more complex environment. For example, in an uncertain random environment, some
indeterminate quantities can be interpreted as uncertain variables, while others may be
interpreted as random variables.
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