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This review highlights the fundamental role of nutrition in the maintenance of health, the 

immune response, and disease prevention. Emerging global mechanistic insights in the 

field of nutritional immunology cannot be gained through reductionist methods alone or 

by analyzing a single nutrient at a time. We propose to investigate nutritional immunology 

as a massively interacting system of interconnected multistage and multiscale networks 

that encompass hidden mechanisms by which nutrition, microbiome, metabolism, 

genetic predisposition, and the immune system interact to delineate health and disease. 

The review sets an unconventional path to apply complex science methodologies to 

nutritional immunology research, discovery, and development through “use cases” 

centered around the impact of nutrition on the gut microbiome and immune responses. 

Our systems nutritional immunology analyses, which include modeling and informatics 

methodologies in combination with pre-clinical and clinical studies, have the potential 

to discover emerging systems-wide properties at the interface of the immune system, 

nutrition, microbiome, and metabolism.

Keywords: nutritional immunology, nutrition, systems biology, informatics, computational modeling, big data, 

complex systems

INTRODUCTION

�e knowledge that food a�ects health was �rst mentioned in the writings of ancient Egyptians and 
Indians (1–3). Around 2,500 years ago, Hippocrates, stated “Let food be your medicine and medicine 
be your food” (4). Modern nutritional immunology dates back to the eighteenth century, when the 
explanation of lymphoid tissue atrophy in malnourished population in England (1, 3) suggested an 
association between nutritional status and immune function. Epidemiological and clinical data also 
suggest that nutritional de�ciencies of essential dietary components, such as vitamins and micro-
nutrients, alter immune competence and increase the risk of infection. �e de�ciency of adequate 
macronutrients and selected micronutrients, such as zinc, selenium, iron, copper, and vitamins A, 
B-6, C, E, leads to immune de�ciency-related infections in children (5, 6). Micronutrient de�ciencies 
a�ect innate immune responses as well as adaptive cellular immune responses (7). �e immune 
response is dependent on the nutritional components of food intake, which modulates the induction 
of regulatory versus e�ector response at the gut mucosal level (3). However, recent studies (3) suggest 
that the current immune de�ciency cases are also the result of increased stress, increased caloric 
intake, obesity, autoimmunity, allergic disorders, and an aging population, which do not necessarily 
relate to under-nutrition. �us, unbalanced nutrition, unhealthy lifestyle choices, limited physical 
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activity, and the e�ect of the environment, in general, compro-
mise the host immune response, thereby increasing susceptibility 
to a wide range of diseases. �e �eld of nutritional immunology 
primarily focuses on the role of diet and its nutritional contents 
in disease prevention. However, advancement in the �eld of 
nutritional immunology has not been investigated through the 
point of view of a massively interacting system of interconnected 
networks, which includes four key players – nutrition, microbi-
ome, metabolism, and the immune system. Recent evidence (8) 
also suggests the involvement of diet and the role of composition 
of microbiota in reduced risk of Parkinson’s disease (PD). �ere 
are �ndings that support the role of altered gut microbiome 
involved in in�uencing the activity of enteric neurons in PD 
patients (8). Although it is still unclear, the neuroendocrine 
system can be considered as an important part of the massively 
interacting multistage networks that de�ne health and wellness. 
An understanding of the interaction between networks can help 
design better strategies for primary prevention for diseases, 
such as PD, which show the involvement of gut–brain axis in 
the disease pathogenesis (8). �e investigation from the above-
mentioned point of view requires modeling tools, informatics 
techniques, and major computational resources in order to gain 
a better understanding of the mechanisms by which the four key 
players interact, to delineate health and disease. �e vast aspects 
of this interconnected network operate on the basis of complex 
regulatory networks that can be analyzed in a well-de�ned man-
ner using mathematical and computational modeling. �e recent 
modeling frameworks applied include the use of (1) ordinary dif-
ferential equations (ODEs) that are used for cancer immunology, 
natural killer cell responses, B cell responses (naïve and memory), 
T regulatory cell dynamics and T cell responses; (2) partial dif-
ferential equations are used for modeling age-structured and spa-
tiotemporal models; (3) stochastic di�erential equations account 
for noise and sporadic events, (4) agent-based models account 
for probabilistic uncertainty in biological interaction (9), and (5) 
advanced machine-learning algorithms that correlate cellular 
and molecular events to changes in health and disease outcomes. 
In the following sections, we dissect the essence of interactions 
between the four key players following with the review of techno-
logical advances in the �eld of nutritional immunology research 
and development.

THE INTERPLAY BETWEEN DIET, 

MICROBIOME, METABOLISM, AND 

IMMUNE RESPONSE

�e proper nutritional supply during the period of gestation, 
neonatal maturation, and weaning contributes toward the devel-
opment of balanced immune responses. With an increasing shi� 
in our focus toward using dietary interventions to regulate the 
host defense, it is important to understand the e�ect of overall 
nutrition derived from these interventions. �e nutritional qual-
ity of the wholesome diet modulates the interactions between the 
immune system, microbiome, and metabolism.

It is estimated that demand of feeding a population will 
increase up to nine billion people needing food by 2050, which 

necessitates the need for devising methods that not only meet 
the demand but also ensure continuous wholesome food supply 
(10). �erefore, understanding the relationship between immune 
system, microbiome, and metabolism regulated by nutrition (as 
shown in Figure 1) will assist in targeting one component at a 
time, while recognizing their systems-wide e�ects. �is would 
lead to identi�cation of emerging properties of this complex 
system and utilization of the newly derived information and 
knowledge for improved health outcomes.

Microbiome, and Its Interaction with 

Nutrition, Immune Response, and 

Metabolism
Microbes are important components of the human ecosystem, 
and they account for approximately 100 trillion, including both 
the ones residing outside as well as inside the human body (11, 
12). �e gut microbiome is a key player in regulating the defense 
responses and metabolism, thereby contributing toward shaping 
the immune responses (regulatory or e�ector) and aiding in the 
maturation of the immune system. �e various physiological 
factors responsible for di�erences in genetic elements of the 
microbiome within a host include diet, geographical location, 
and environmental interaction (13). �e interactions between the 
gut microbiome, immune system, metabolism, and nutrition are 
crucial determinants of health outcomes. However, their systems-
wide mechanisms of interaction remain largely unknown. �e 
advent of computational modeling and informatics provides the 
technology to integrate and comprehensively analyze the mul-
tiscale interactions within such networks. �us, a systems-wide 
approach can provide signi�cant insights into nutritional regula-
tion of this holistic network, without unnecessarily resorting to 
reductionism.

Interplay between Microbiome and Nutrition
Diet and nutritional status are the key players in de�ning the 
composition and function of the gut microbiome as well as the 
host immune response. �e nutritional value of food is in�uenced 
by microbial content inside a person’s gut. A study by Turnbaugh 
et al. (14) demonstrated that transfer of microbiota from mice with 
diet-induced obesity to lean germ-free mice, showed a greater fat 
deposition in the lean mice versus the lean ones with transplants 
from the lean donors. Another study by Turnbaugh et  al. (15) 
explored the use of humanized gnotobiotic mice wherein adult 
human fecal microbial communities were transplanted into 
germ-free mice to show the e�ect of Western diet on the varying 
bacterial colonization in adult mice. �e switch from regular to 
Western diet showed the colonization of Firmicutes Bacilli along 
the length of the gut, leading to increased adiposity. �e e�ect 
was shown to be reversible, based on the combinations of recipi-
ent–donor diets. �ese studies (14–17) show that dietary intake 
in�uences the composition and activity of the gut microbiome 
in humans. Speci�c strains of bacteria have been implicated 
in the regulation of the intestinal homeostasis, which deliver 
regulatory signals to the epithelium and the mucosal immune 
system (18). Even a short-term consumption of animal-based 
diet versus plant products has a di�erential e�ect on the bacterial 
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FIGURE 1 | Systems-wide interactions between nutrition, immune system, microbiome, and metabolism.
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colonization inside the gut (19). A recent study by Daniel et al. 
(20) showed that a high-fat diet-induced changes in the chemical 
composition of cecum thereby causing changes in the bacterial 
physiology and metabolism. Furthermore, the distance between 
diet-dependent clusters of the microbial composition was higher 
than microbiota-driven clusters, thereby illustrating how diet 
can alter the microbiota pro�les to a higher extent than bacte-
rial composition. �e e�ect of diet on the composition of every 
individual’s microbiome is shown to be individual-speci�c at the 
operational taxonomic units and stable over a period of time in 
a healthy adult (21). However, as the individual ages, there is an 
extreme variability observed in composition of the core micro-
biota. Furthermore, there are other environmental factors, such 
as body weight, physical activity, and exposure to toxins, which 
also play an important role on the composition of microbiota. 
A  comprehensive understanding of nutritional quality of the 
dietary interventions (22–24) that modulate the components of 
the gut microbiota and mucosal immune responses can prove 
useful for maintenance of health. A systems-level framework that 

integrates various in vitro and in vivo models, including human 
data, can facilitate the systems-wide mechanistic insights (25).

Role of the Microbiome in Shaping a Healthy Immune 

System
Microbiome plays a crucial role in shaping the functions of the 
immune system thereby providing a protective mechanism to 
�ght against infection. �e commensal bacteria help in maintain-
ing the balance with the foreign (o�en pathogenic) bacteria, by 
modulating the components of host innate immune system. A 
dysregulation of homeostasis between host and gut microbes 
leads to dysbiosis, which can give rise to pathogenic states, such 
as in�ammatory bowel disease (IBD) (21, 26) as shown in the net-
work model of IBD in Figure 2. A change in the composition of 
gut microbes has been associated with development of asthma in 
animal models. A recent study by Arrieta et al. (27) demonstrated 
that infants who exhibit transient gut microbial dysbiosis during 
the early days of life are at high risk of asthma. �e inoculation of 
germ-free mice with the bacterial genera Lachnospira, Veillonella, 
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FIGURE 2 | Network topology of model illustrating mucosal responses to inflammatory bowel disease with novel therapeutic targets in the in-view. 

Systems biology markup language (SBML) compliant network of interactions between commensal and foreign bacteria on the cellular immune components is 

created using CellDesigner.1 The bigger panel in the figure represents the different compartments of the gut that includes the lumen, epithelium, lamina propria, and 

mesenteric lymph node. The red and the green objects represent foreign bacteria and commensal bacteria, respectively, found inside the lumen of the gut. The 

stacked column bar graph depicts the relative abundances and distribution of the various microbial communities present inside the gut. The imbalance between the 

red (foreign bacteria) and green (commensal bacteria) objects represents the dysbiosis inside the lumen in inflammatory bowel disease (IBD). The dysbiosis in the 

lumen causes the activation of inflammatory cytokines (shown by green arrows) in the lamina propria. The three in-view of the molecules represents the modeling-

enabled discovery of lanthionine synthetase cyclase-like 2 (LANCL2), nod-like receptor-X1 (NLRX1), and peroxisome proliferator-activated receptor γ (PPAR γ) that 

are the targets for therapeutic intervention for treatment of IBD. The rectangular in-view represents the complex intracellular signaling pathways and transcriptional 

factors controlling T cell network (124).

1 http://www.celldesigner.org/
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Faecalibacterium, and Rothia (missing in children at high risk 
asthma), ameliorated the airway in�ammation in germ-free adult 
o�spring (27). �e study elucidates the role of gut microbiome in 
protecting the body against asthma. A recent study by Fonseca 
et  al. (28) showed that during the post resolution of infection 
stage from Yersinia pseudotuberculosis, the signals derived from 
the gut microbiota aided in the maintenance of in�ammatory 
mesentery remodeling and restoration of mucosal immunity. 
However, persistent disruption of communication between 
tissues and the immune system, following the clearance of an 
acute infection represents a point beyond which tissue immu-
nity is compromised for the long term. �e intestinal immune 
system, thus, plays an important role in maintaining the balance 

of commensal and foreign microorganisms inside the gut along 
with keeping the diversity of the commensal microorganisms. 
However, due to high bacterial densities inside the gut, the task is 
challenging as compared to other organs and tissues. �e immune 
system has adopted certain ways, such as immunological toler-
ance, by diverting various resources to segregate the microbiome 
on the luminal side of the epithelial barrier (29). �e production 
of mucus by the goblet cells residing in the intestinal epithelium 
creates a protective layer that separates the commensal and 
pathogenic bacteria. �is protective zone aids in the maintenance 
of the symbiotic relationship with the lumen microbiota. �e 
compartmentalization of pathogenic bacteria includes the trap-
ping of bacteria inside the mucus layer, complement-associated 
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bacterial killing, and promotion of phagocytosis of bacteria that 
invade the epithelial barrier (30). Another mechanism that pro-
motes the segregation of the bacterial colonies is the secretion of 
antimicrobial proteins. Activation of the intestinal epithelial cells 
triggers the expression of antimicrobial proteins that provides 
a protective mechanism against the invasion of the pathogenic 
bacteria into the host tissues (30). �e production of IgA also 
helps in the maintenance of the symbiotic relationship, but the 
mechanisms of protection by IgA remain unclear.

Overall the changes in the composition of the gut microbiome 
can modulate the induction of regulatory versus e�ector immune 
responses. Probiotics have been shown to bene�cially modulate 
the intestinal ecosystem. Another group of non-digestible food 
ingredients is the prebiotics that favors the growth of health-
promoting bacteria, proving bene�cial to the host (18, 22, 31). 
A large group of prebiotics comprises the carbohydrates that 
are indigestible by human digestive enzymes, such as resistant 
starches. �e bacterial community inside the intestinal mucosal 
surface ferments the undigested �bers to generate lipid mol-
ecules, such as oleic acid and conjugated linoleic acids (CLAs), 
and short chain fatty acids (SCFAs), such as acetate, propionate, 
and butyrate, that in�uences the colonic mucosal growth and 
intestinal permeability that enhances the gastrointestinal health 
(31, 32). A study by Bassaganya-Riera et al. (32) compared the 
anti-in�ammatory e�cacy and studied how di�erent dietary 
soluble �bers and resistant starch in�uence regulatory T cells 
(Tregs), colonic peroxisome proliferator-activated receptor γ 
(PPAR γ), and interferon gamma (IFN-γ) to suppress gut in�am-
mation. �us, both probiotics and prebiotics can in�uence the 
composition of the intestinal micro�ora and alter the metabolic 
composition of the microbiome (22, 32, 33) In fact, in cases of 
dysbiosis, the possibility of manipulating the gut bacterial com-
position by using probiotic bacteria has already been explored as 
a promising therapeutic intervention against IBD (22). �e study 
(22) investigated the molecular mechanism underlying the anti-
in�ammatory e�ect of probiotic bacteria using a mouse model 
of colitis. �e results from the study (22) showed that probiotic 
bacteria modulated microbial diversity of the gut and favored the 
production of CLA that targeted myeloid cells PPAR γ to suppress 
colitis. �e network topology model of IBD shown in Figure 2 
refers to IBD condition caused due to dysbiosis and highlights the 
complexity of the multi-network, multiscale mucosal immune 
responses that in�uences initiation, progression, and outcome of 
the disease.

Metabolism and Its Effect on Immune 

System and Microbiome
Multiple bacterial genomes modulate the metabolic reactions 
inside the body exempli�ed by the production of SCFAs, an 
essential component of host health. Humans lack enzymes 
required for digestion of dietary �bers (34). �e microbial com-
munity inside the gut ferments these undigested carbohydrates 
for energy storage. As mentioned in the previous section, the fer-
mentation results in a wide variety of lipid molecules, including 
oleic acid and SCFAs (34) such as butyrate, propionate, acetate, 
that provide the colon with energy required during metabolic 

demands as well as regulatory signals that help in the mainte-
nance of homeostasis. Along with being a local nutrient source 
for colonocytes, SCFAs regulate energy homeostasis by stimu-
lating lectin production in adipocytes as well as glucagon-like 
peptide secretion by the intestinal endocrine cells. �e SCFAs 
also regulate neutrophil function and migration, inhibit in�am-
matory cytokine-induced expression of vascular cell adhesion 
molecule-1, and increase the expression of tight junction proteins 
in the colon epithelia. Overall, they a�ect a wide range of host 
processes, including energy utilization, host–microbe signaling, 
epithelial cell integrity, and gut mobility (35). Oleic acid is a com-
monly found dietary component and is also a microbial metabo-
lism product. Increased concentrations of oleic acid are found 
within Parabacteroides (36), and oral treatment with commensal 
Parabacteroides distasonis has been shown to signi�cantly reduce 
the severity of intestinal in�ammation in murine models of acute 
and chronic colitis (37). �us, it is important to understand 
whether the diet-derived products of microbial metabolism are 
released under similar conditions in presence of varying food 
substrates that may include proteins, carbohydrates, and fat. 
�e host metabolome is a rich resource for studying metabolic 
function of the gut microbiome. Multi-omic data integration 
through modeling can facilitate a comprehensive mechanistic 
understanding of how dietary and microbial components in the 
gut modulate immune responses. �ese technologies are at the 
very core of advancing nutritional-based precision medicine 
interventions and moving from understanding single nutrients 
to understanding the impact of nutrition at the systems level.

Nutrition – A Key Player in the Immune 

System–Diet Interaction Network
�e nutritional status of an individual is a key determinant of the 
susceptibility of the immune system to infection and disease (10, 
38). During infection, the host requirements for energy substrates 
and nutrients rapidly increase in the presence of invading micro-
organisms or in any immune-mediated disease that involves 
proliferation of immune cell subsets. However, it is widely known 
that infectious agents reduce the motivation for voluntary food 
intake due to the stimulation of leukocytes to produce in�amma-
tory cytokines. �e immune cells use these cytokines to convey 
information to other physiological systems, including the brain 
that modulates the food intake (39, 40). �e increased metabolic 
demands are utilized to raise the body temperature (for e.g., in 
fever) (41) required for the proliferation of the immune cells in 
the course of elimination of an infectious pathogen. �e growth, 
survival, and di�erentiation of the activated immune cells depend 
on glucose metabolism as a source of energy, which has a huge 
impact on our health (42). �e identi�cation of the metabolic 
processes during the in�ammatory processes would provide new 
therapeutic opportunities. �e study of the T cell metabolism has 
provided ample resources regarding the pathways important for 
the T cell plasticity and e�ector functions (42). �e metabolic 
demand of every immune cell depends on the particular func-
tion it performs, this is evident in the subsets of CD4+ T cells 
where e�ector and �17 cells rely on aerobic glycolysis while 
memory T cells and Tregs rely on fatty acid oxidation to produce 
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energy (42). �e other activated immune cells, such as dendritic 
cells, neutrophils, and pro-in�ammatory macrophages, rely on 
aerobic glycolysis for energy. During activation, T cells increase 
their glucose uptake through Glut1, which facilitates increased 
oxidative phosphorylation and glycolysis to sustain proliferation 
of these cells (42). �e two main biochemical pathways that lead 
to generation of adenosine triphosphate (ATP) and the metabolic 
precursors for biosynthesis of immune cells includes glycolysis 
and tricarboxylic acid (TCA) cycle (43). In proliferating cells, 
glucose is broken down to pyruvate by glycolysis, which is fur-
ther oxidized by the TCA cycle in mitochondria (43). �e study 
by Michalek et al. (44) determined that pro-in�ammatory cells 
displayed a stronger bias toward glycolysis whereas the induced 
regulatory cells displayed mixed metabolism, including glycolysis 
and lipid oxidation. Since, nutrients a�ect metabolic changes, 
which in turn a�ect the di�erentiation state of the immune cells, 
dietary interventions could be used to cause metabolic changes 
in a response to infection.

Malnutrition is an important example of immunosuppression 
caused due to macronutrient and micronutrient de�ciencies in 
our immune system (7). It predisposes individuals to infection 
by impairing the integrity of epithelial cell barrier and sup-
pressing the immune responses (45). Enteroaggregative E. coli 
(EAEC) infections causes diarrhea-like symptoms in immune- 
compromised individuals and particularly in severe cases in 
children with malnutrition. A study by Philipson et al. (46) dem-
onstrated that malnourished mice exhibited an impaired ability 
to induce pro-in�ammatory cytokine during the EAEC infection. 
�e observed immunode�ciency of the mice demonstrated that 
the malnourished mice were unable to mount protective innate or 
adaptive immune responses against EAEC infection (46). Another 

study by Philipson et al. (47) showed that tryptophan is a crucial 
element for antibacterial protection against infection. Mice fed 
with tryptophan-free diet had reduced antimicrobial peptide 
production against the high EAEC pathogen levels. A study by 
Bolick et al. (48) demonstrated that zinc de�ciency impaired the 
immune responses in response to EAEC by increasing the viru-
lence factor associated with it. �e zinc-de�cient mice challenged 
with EAEC had greater weight loss, mucus production, and diar-
rhea compared to the control group. �e nutritional supplements 
and interventions, such as vitamins and mineral supplements, 
polyunsaturated fatty acids (PUFAs) have been studied exten-
sively over the past decade (49). Additional breakthrough studies 
include the association between vitamin E and T cells, vitamin A, 
and mucosal immunity, role of zinc in T and B cell development 
and the e�ect of PUFAs composition of the diet on in�ammation 
and immunity. A study by Meydani et al. (49) demonstrated the 
reversing e�ect of vitamin E on age-associated defect in T cells. 
Vitamin E enhances the T cells via a direct e�ect on T cells and 
an indirect e�ect by reduced production of PGE2 in macrophages 
(49). Furthermore, several studies have shown that retinoic acid 
(RA), a major oxidative metabolite of vitamin A, plays a key 
role in the di�erentiation of T cell subsets, migration of T cells 
into tissues and their regulatory function (50) that provides 
further evidence for the role of vitamin A in mucosal immunity. 
Adequate vitamin A status in animal models, whether derived 
from ingestion of preformed retinol or β-carotene, is important 
for maintenance of the proper balance of well-regulated T cell 
functions and prevention of excessive or prolonged in�ammatory 
reactions. In addition, zinc de�ciency (51) has been shown to be 
partially responsible for increased apoptosis of pre-T cells; and 
also crucial for the balance between the di�erent T cell subsets. 
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Accordingly, zinc supplementation restores the �1/�2 balance; 
however, high dose of Zn+2 reduces the development of �17 cells. 
Furthermore, zinc de�ciency is known to cause the reprograming 
of immune system that accelerates apoptosis among premature 
and immature B cells, and causes decreased antibody production 
due to the chronic production of glucocorticoids (52). Another, 
important component includes the proportion of di�erent types 
of PUFAs present in the diet and its e�ect on immune cell func-
tions. �e dietary n-3 PUFAs present in �sh oil modulate immune 
responses and the expression of transcription factors involved in 
controlling in�ammation (53–55). Dietary n-3 PUFAs also aid 
in the suppression of pro-in�ammatory cytokines produced by 
the macrophages and reduce the symptoms of animal models of 
autoimmune disease (24).

�ese studies show the e�ect of various dietary components on 
the immune system. However, a global mechanistic understand-
ing of the interplay between infection, microbiome, metabolism, 
and nutrition is currently lacking.

�e direct alteration of mucosal communities by the nutritional 
interventions has led to the evolution of nutritional immunology, 
leading to advancement in the �eld of medicine. One such “use 
case” for the e�ective use of nutritional-based intervention is the 
use of CLA in the treatment of immune-mediated in�ammatory 
disorder of the gastrointestinal tract, such as Crohn’s disease 
(CD). CLA is a mixture of positional and geometric isomers of 
octadecadienoic acid. �e use of CLA has been explored due to 
numerous anti-in�ammatory and anti-oxidant properties that 
have been characterized in animal models (56–58). Dietary 
CLA supplementation has been shown to suppress colonic 
in�ammation in pigs with bacterial-induced colitis (58) by the 
up-regulation of the colonic PPARs expression. CLA decreased 
the disease severity of experimental IBD in pigs by activating 
colonic PPAR γ (58). Another mechanistic theory proposed to 
explain the bene�ts of dietary CLA includes inducible eicosanoid 
suppression in the endoplasmic reticulum. CLA has also been 
shown to ameliorate in�ammation-driven colorectal cancer in 
mice (59) and has enhanced cellular immunity by modulation of 
the e�ector function of CD8+ T cells and antiviral responses in 
pig models (60, 61). It is a unique compound known to exhibit 
anti-in�ammatory e�ects along with stimulating cellular and 
adaptive immune responses to bacterial and viral infections.

�e immunomodulatory e�cacy of CLA was tested in 
patients with mild-to-moderate CD in an open-label study for 
12  weeks (62). Oral CLA administration was well tolerated in 
these patients, and CLA suppressed the ability of the peripheral 
blood T cells to produce pro-in�ammatory cytokines, such as 
interferon gamma (IFN-γ), tumor necrosis factor-α (TNF-α), and 
IL-17. �e study demonstrated decreased CD activity index and 
increased quality of life of patients with CD (62). It also provided 
insights on possible mechanisms of immune modulation by CLA, 
a nutritional intervention targeting the human system (62). �e 
patient level data obtained from the clinical study was used as 
a training dataset to develop a larger synthetic population for 
in  silico experimentation of the Phase III placebo-controlled, 
randomized clinical trial (63). �e study (63) demonstrated 
that post-treatment highlighted a positive correlation between 
the initial disease activity score and the drop in Crohn’s disease 

activity index (CDAI) score. It highlighted the need for preci-
sion medicine strategies for IBD treatment, wherein treatments 
speci�c to an individual would yield better outcome as opposed 
to the one size �t all strategy.

Another “use case” for nutritional immunology research is 
abscisic acid (ABA), a plant phytohormone, which when used 
as a dietary component elicits immunomodulatory properties. 
A bene�t of dietary ABA-supplementation in mice includes anti-
diabetic e�ects, anti-atherosclerotic, and an anti-hypersensitive 
e�ect that has been shown in various studies (64–66). �e study 
by Guri et al. (64) showed that ABA improved insulin sensitivity 
and reduced adipose tissue in�ammation when supplemented 
into diets of obese mice. Another study by Guri et al. (65) showed 
that mice treated with 100  mg/kg of racemic ABA mixture 
signi�cantly reduced recruitment of CD4+ T cells in the aortic 
root (67). ABA has also been identi�ed as a ligand of lanthionine 
synthetase C-like 2 (LANCL2), a novel therapeutic target. A study 
by Hontecillas et  al. (68) investigated the immune modulatory 
mechanisms underlying the anti-in�ammatory e�cacy of ABA 
against in�uenza-associated pulmonary in�ammation. When 
ABA was given preventively or therapeutically, it ameliorated the 
in�uenza virus-induced pathology by the activation of PPAR γ 
in pulmonary immune cells, along with suppression in the initial 
pro-in�ammatory responses and promoted resolution of the 
infection. A recent study by Magnone et al. (69) showed that the 
mechanism by which low dose of ABA (found in fruit extracts or 
exogenous) lowers the blood glucose level does not involve insu-
lin release at all. �ey showed that ABA had a lowering e�ect on 
glycemia without having an e�ect on insulin concentration in the 
blood. �e study focused on �nding the bioavailability of dietary 
ABA mainly the one found in fruits (apricots primarily used in 
the study) and the e�ect of these fruits in general on glucose 
tolerance. �e rats and human fed with fruits extract (with ABA), 
when compared to the control group had lower glycemia and 
insulinemia. When a dose ABA was administered orally without 
fruit, an equivalent dose of ~1 ug/kg (69) successfully lowered 
glycemia and insulinemia during the oral glucose tolerance test. 
�e mean glycemia with the fruit extract was signi�cantly lower 
than the exogenous ABA. �e lowering e�ect of ABA on glycemia 
lasted for at least 6 h a�er intake (69), showing that it contributed 
toward disposal of glucose in the blood. �e results also showed 
that apricot extracts increased ABAp (ABA plasma levels) higher 
than glucose did, which led them to the conclusion that high bio-
availability of oral ABA can be obtained from the fruit extracts. 
�e mechanisms by which this plant hormone and secondary by-
product of soil fungal metabolism regulate glucose metabolism 
and immune responses in humans remain largely unknown.

�e research on the role of single nutrients in immune functions 
is extensive; however, this is not the case for multiple nutrients and 
the existing combinatorial e�ect of interactions between the vari-
ous nutrients remains largely unknown. �e interactions between 
multiple nutrients can negatively a�ect the immune system, for 
example, excess of calcium interferes with leukocyte function by 
displacing magnesium ions, causing reduction in cell adhesion 
processes (70). �e nutrient de�ciencies can either singly or 
combinatorialy a�ect the host immune system in multiple ways. 
�e regulation of the immune system by the nutrients can either 
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be bene�cial or detrimental. For example, the nutrients involved 
in antimicrobial and antitumoral function of macrophages can be 
modi�ed by nutrients that promote synthesis of reactive oxygen 
or nitrogen intermediates (70). A recent study by Lacroix et al. 
(71) showed how systems biology methods can be applied to 
better understand the potential role of nutritional interventions, 
such as caloric restriction and polyphenol supplementation to 
promote health aging processes and reduce metabolic risk fac-
tors. �us, although a comprehensive level understanding of 
the complex mechanisms underlying the combinatorial e�ect of 
nutrients is challenging, a systems-wide approach integrated with 
computational modeling and informatics can aid in elucidating 
this complex process.

THE CURRENT APPROACHES AND THE 

URGENT NEED FOR PARADIGM SHIFT

Understanding Reductionist Approaches 
toward Nutritional Immunology
Traditional reductionist nutritional immunology approaches 
have prevailed in the �eld and focused on studying the inter-
play between nutritional de�ciency or supplementation and 
their e�ects on speci�c parts of the system while disregarding 
global e�ects. Until recently, researchers have only been able to 
extrapolate data that involved a subset of nutrients and their gene 
interactions, along with the key pathways of the immune system. 
A comprehensive systems-wide understanding of any biological 
system requires the harnessing of data that include genes, pro-
teins, RNAs, their interactions, changes in concentration, and 
regulation under certain conditions (72). Traditional approaches 
are based on reductionist methods alone, which do not take into 
account that systems are a part of greater networks of interacting 
entities, including genes and nutrients. However, with the advent 
of �elds such as Nutrigenomics (73) and Nutrigenetics, the �eld 
is slowly advancing toward using the tools initially developed 
for genetics research. However, when analyzing massively 
interacting systems, such as the relationship between nutrients, 
microbiome, metabolism, and immune response, there is a need 
for computational modeling techniques (74). Nutrigenomics 
and Nutrigenetics refer to the interface between nutritional 
environment and their interaction with cellular and genetics 
approaches. �e development of novel sequencing tools in these 
�elds of nutritional science focuses in determining the overall 
e�ect of nutrition on the human genome and the modulation of 
several molecular mechanisms that a�ect di�erent physiological 
functions inside a human body. �e advancements in genomics 
have resulted in incremental knowledge discovery that takes 
into consideration: how an individual’s genome expresses itself 
at di�erent omic levels (proteomics, metabolomics, lipidomics) 
in response to nutrition. An e�ort toward post-genomics data, 
and multi-omic data integration by using modeling provides a 
deeper insight of the interaction between our genes, microbiome, 
and diet. Metabolomics is one of such -omics technology that 
involves the study of small molecules or metabolites present in 
the biological samples in order to study the e�ects on metabolic 

process under varying biological conditions (75). �e study of 
metabolites yields information about the biological processes 
since metabolites are implicated in number of human diseases 
(75). �e application of metabolomics in nutritional immunology 
would include detailed study of alterations caused in metabolic 
pathway following nutritional interventions. �is will allow 
enhanced understanding of the e�ect of nutrition on metabolic 
pathways. �e study by Bakker et al. (76) is an example where an 
integrated metabolomics approach was used to study e�ects of 
dietary products that showed anti-in�ammatory properties, in a 
population of overweight men. �e pro�les of gene expression, 
proteins, and metabolites were integrated with the measures 
of in�ammation markers and the results, obtained a�er inte-
grated omics approach, demonstrated that the dietary products 
modulated in�ammation and oxidation with alteration in the 
metabolism status of the healthy overweight men. A more trans-
formative approach that would include information-processing 
representations of nutritional immunology is required to tackle 
the challenges in this �eld. �is would involve using interdisci-
plinary approaches from computer science, systems modeling, 
bioinformatics, and data science for big data analysis, which 
would allow researchers to reverse-engineer the system. �us, 
the application of systems biology methods in nutritional immu-
nology research has the potential to accelerate the discovery of 
novel biomarkers and systems-level mechanistic understanding 
of how nutrition modulates our immune system and health out-
comes. One key step in this iterative process is the validation of 
modeling-derived predictions that require targeted pre-clinical, 
mechanistic, or clinical studies. �is step represents the con�u-
ence between systems-level analyses and the need for reductionist 
validation studies.

Systems Nutritional Immunology: 

A Systems-Level Approach to Nutrition–

Microbiota–Immune System Interactions
�e Modeling Immunity to Enteric Pathogens project (MIEP)1 
and the Nutritional Immunology and Molecular Medicine 
Laboratory2 are examples of successful implementation of 
modeling approaches for the study of complex mucosal immune 
responses in the context of infectious diseases. Under the MIEP 
project, a �rst step toward building information-processing 
representations of the mucosal immune system was undertaken. 
However, similar initiatives are lacking in the �eld of nutri-
tional immunology or for chronic and autoimmune diseases. 
Computational modeling in combination with big data analytics, 
portal science, and informatics, enabled by high-performance 
computing (77–79), is essential components in the study of mas-
sively interacting systems, such as host immune response–gut 
microbiota–nutritional interactions. As proposed in Goals in 
Nutrition science 2015-2020 (74), a mechanistic understanding 
of the host–nutrient–microbiota interactions enabled through 
computational modeling based on integrated information biology 

1 www.modelingimmunity.org
2 www.nimml.org
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methods have an enormous potential to predict the outcomes of 
the nutrient-microbiot-immune systems interactions as shown in 
Figure 3.

�e main challenges in systems biology frameworks are 
the complexity of systems and the output in terms of vast 
amount of data with scattered pieces of knowledge that needs 
to be connected together and be made sense of. �e need for 
development of computational tools becomes imperative for the 
integration of the data (80). �e advent of user-friendly tools for 
informatics, modeling, and advanced big data analytics enables 
the prediction of emerging global behaviors of biological sys-
tems and the characterization of novel molecular and cellular 
mechanisms (80).

Over the past decade, a signi�cant increase in computational 
power and availability of larger experimental datasets has allowed 
models to be more comprehensive and in some cases multi-scaled 
(78, 81–84). In addition, development of so�ware work�ow, such 
as Epidemic Simulation Systems (EPISIM) (85) has facilitated 
the semantic model integration for biologically skilled scientists 
especially with the growing number of available models [over 
163 nutrition themed systems biology markup language models 
(SBML)] that are already available in the Biomodels database 
(86). �e methodologies to extract actionable knowledge from 
such rich data and metadata have been facilitated by the devel-
opment of standards [such as SBML (87) and more recently 
Markup language for Allergens (AllerML) (88), ontologies (89), 
for example, Medical Subject Headings (MeSH) (90), Uni�ed 
Medical Language System (UMLS) (91), and Gene Ontology 
(GO)], and curated specialized databases such as �erapeutic 
Target Database (TTD) (92), hepatotoxicity database (93), drug 
combination database (94), Food and Drug administration (FDA) 
toxicity databases, real-time data entry (95), and White adipose 
tissue reference network (WATRefNet) (96). New bioinforma-
tion technologies combine relevant models and data to address 
important questions whereby the answers reside in the interface 
between networks.

Computational Tools
Computational tools and big data help revolutionize biological 
research in a way that is shi�ing the paradigm from top-down 
or bottom-up approaches to a middle-out approach. �e lat-
ter is based on conceptualizing models and tools at the level 
that provides the richest data and connection that to higher 
or lower levels for comprehensive integrated systems. Building 
massively interacting multiscale models (MSM, theoretical and 
data-driven) anchored around unanswered immunological 
questions holds a promise for the advancement of the �eld 
of nutritional immunology into unprecedented scienti�c 
discoveries. A recent work by Ramsundar et  al. (97) investi-
gated the aspects of multitask learning with an application 
to virtual screening. �e multitask networks trained on 40 
million experimental measurements for more than 200 targets 
showed signi�cant improvements in comparison to the basic 
machine-learning methods (97). �eir �ndings show that the 
amount of data and tasks both had an impact on the outputs. 
�e e�cacy of multitask learning was directly correlated to 

the available relevant data, which emphasized the concept that 
bigger data are of critical importance for improved predictions 
(97). Furthermore, metabolomics studies can be integrated, 
through rigorous methods, with biochemical, metabolism, 
and immunological networks in order to form more compre-
hensive pictures regarding the complex systems-level interac-
tion. Immunometabolism data include changes in metabolite 
composition and immunological parameters that can aid in 
studying the interaction between nutrients, immune system, 
and microbiome that changes during the progression of a dis-
ease. Such data and theory can be used to build computational 
models with an inclusion of the interaction e�ects of nutrients, 
such that the model can be calibrated with large time-series 
multi-omic datasets. �e outputs obtained from the models can 
be integrated with the experimental studies along with inclusion 
of molecular modeling techniques, such as molecular docking 
approaches. �e docking studies can determine how nutrients 
modulate the various metabolic and immunological networks 
that can be experimentally validated with surface plasmon reso-
nance (SPR) spectroscopy. For example, a better understand-
ing of the changes in metabolites caused during the varying 
nutritional demands of the immune cells, which includes – the 
reliance of e�ector and �17 cells on glucose and memory T 
cells and Tregs on fatty acid oxidation can elucidate – (1) how 
a set of nutrients modulate biochemical pathways and immune 
responses of speci�c cells types and (2) mechanisms underlying 
the nutritional prevention or amelioration of disease. Systems 
nutritional immunology can be built with the concept that 
analyses of multitask networks across nutrition, metabolism, 
microbiome, and immune system and are required to elucidate 
emerging mechanistic behaviors that inform health-promoting 
interventions. In addition to deterministic models, machine-
learning methods can also be highly e�ective in bridging the 
gap between big data and knowledge. For instance, it has been 
shown that supervised learning methods, such as arti�cial 
neural network (ANN) or random forest (RF) can be alternative 
solution to ODE-based modeling (63, 98–100), and can more 
e�ciently be used to model complex systems, such as the CD4+ 
T Cell di�erentiation (98). Unsupervised method can also be 
valuable in knowledge discovery as they allow deeper analysis 
of large datasets and can be instrumental in developing mecha-
nistic models as well candidate gene prioritization, and overall 
understanding of the complex intertwined systems (101, 102).

Systems Biology Tools: Contribution of Agent-Based 

Modeling and Multiscale Modeling
With the continuous generation of massive amount of data, 
there is an urgent need to integrate big data, theory, procedural 
knowledge, and mechanistic information to synthesize and 
simulate recognizable behaviors of massively interacting systems. 
Mathematical modeling and simulation are the techniques that 
can be utilized for dynamic knowledge testing. Models have the 
power to discover new �ndings through e�ective computational 
technologies. �e knowledge acquired from the computer simu-
lations can form a formal basis of testing the �nding in the lab, and 
validate the known �ndings (103). �e two major categories of 
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modeling technologies include equation-based and agent-based 
modeling, with a limited number of equations, mathematical 
models provide an e�cient solution; however, it is challenging 
to incorporate the biological processes in the mathematical 
equation. Agent-based modeling (ABM) on the other hand uses 
agents to represent the units in the biological processes (103) 
wherein these agents follow certain rules and have unique prop-
erties that represent di�erent states of the biological entities, such 
as their location (84), genotype, and movement. �e enhanced 
capability of ABMs can simulate extremely complex biologi-
cal behaviors for which the requirement of high-performance 
computing (HPC) is a must (104). Traditional ODE methods 
and ABMs provide useful information. However, analysis of the 
complex nutrient–immune system–microbiome interactions 
and study of how these interactions change over time requires 
an understanding of all the key components at varying scales 
in space that include molecular to tissue level, population level 
scales, and time from nano-seconds to year (105). �is neces-
sitates computational modeling across spatiotemporal scales. 
�e advancement in computer hardware, algorithms, as well 
as computational power has contributed to the development of 
multiscale models (MSM).

�e MIEP has developed the Enteric immunity simulator 
multi-sale modeling (ENISI MSM) (78, 84), the �rst agent-
based simulator for enteric immune systems. ENISI MSM 
integrates �ve orders of spatiotemporal scales and is based on 
both deterministic (ODE and partial di�erential equations) and 
agent-based models, integrated in a single unit. It is designed 
speci�cally for application in computational immunology 
along with strong visualization module for the representation 
of the tissue level scale in the MSM system. ENISI MSM allows 
the combination of di�erent tools, techniques, and modeling 
strategies thereby integrating diverse types of data across dif-
ferent scales along with sensitivity analysis in order to validate 
the model-driven hypothesis with experimental data. With 
respect to components, the ENISI MSM model can stimulate 
signaling pathways, metabolic networks, cytokine di�usions, 
cell movement, and tissue modeling (84). A multiscale CD4+ 
T cell di�erentiation model when calibrated with experimental 
data and tested in the context of gut in�ammatory was able to 
produce in  silico experimentation that was used to study the 
complex host–pathogen interactions as well as host–nutri-
ent–microbiota actions (106). ENISI Visual (104) provides 
a user-friendly interface for users to change the number of 
immune cells and to observe simulation speed. �e MSM tools 
can be utilized in the �eld of systems nutritional immunology, 
wherein the e�ect of nutritional components on the immune cell 
parameters can be modeled and modi�ed accordingly. ENISI 
MSM is a tool designed for modeling the mucosal immune 
responses that can simulate 107−1011 cells in high-performance 
simulations (78, 84, 104, 107–110). �e high-performance 
computing-driven ENISI MSM enhanced the development of 
massively interacting models of the mucosal immune system 
and signi�cantly increased the power of in silico experimenta-
tion with a scalability of 109−1012 (106). While the tool was 
initially developed to address problems related to infectious and 
immune-mediated diseases, ENISI can be adapted to develop 

new information-processing representations of host–micro-
biota–nutrient massive interactions.

In Silico Techniques – A Nutritional Immunology 

Revolution
Traditional tools, such as in vivo and in vitro models have been 
consistently used in order to test hypothesis and perform quanti-
tative studies. However, traditional reductionist experiments have 
led incremental knowledge generation due to the abundance of 
reductionist approaches. Over the past decade, new computational 
techniques, such as in silico methods (111), have been applied to 
address the failures in trials for Alzheimer’s disease (112) and the 
clinical trial related to trauma-induced critical illness (113). �e 
in silico methods are based on quantitative relationship between the 
parameters, and include homology modeling, machine- learning, 
data mining, network analysis tools, and data analysis tools that 
require high computational power and capabilities (111). For 
instance, in silico pharmacology is a rapidly growing new �eld that 
incorporates the newly developed techniques in order to integrate 
patient clinical data. It involves the development of computational 
models based on certain algorithms to make predictions, propose 
new hypotheses, and advance toward new horizons in medicine 
and therapeutics. In silico clinical trials provide an opportunity 
to develop synthetic population and conduct large-scale clinical 
trial simulation thereby aiding in the design and testing of new 
nutritional components. �e application of in silico methods has 
also been utilized in the complex process of drug discovery. �e 
review by Ekins et al. (111) describes various in silico methods 
for pharmacology that are being utilized in the drug discovery 
process. �e process of “virtual screening” involves scoring and 
ranking the molecules in large chemical libraries according to 
their strength of a�nity to a certain target (111). �us, the valu-
able information provided by the power of in silico methods can 
be extended beyond the �elds of immunology and pharmacology 
and be applied to systems nutritional immunology in order to 
predict the outcome of dietary interventions on the human health.

�e concept of in silico trials provides insights and guidance 
into the design of clinical trials of immunomodulatory therapies, 
especially the ones that have severe side e�ects. �e process 
ranges from optimal patient selection to individualized dosage 
and duration of proposed nutritional/therapeutic intervention 
(114). Machine-learning algorithms or ABMs can be utilized to 
create synthetic patients from existing clinical trials (63).

Case Study
One of the “use cases” that explains the success of in silico experi-
mentation is the identi�cation of lanthionine synthetase com-
ponent cyclase-like 2 protein (LANCL2) and its application as a 
treatment option for the in silico clinical trial. MIEP performed 
series of modeling studies that included computational-based 
drug design methods (115), biochemical and in  vivo studies 
(116) to con�rm LANCL2 as a novel and promising target for the 
discovery and development of orally active, broad-based drugs 
against in�ammatory, immune–mediated, and chronic metabolic 
disease. �e in vivo studies comprised of using LANCL2 ligands 
as a treatment option on human peripheral blood mononuclear 
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cells that showed a signi�cant drop in the in�ammatory and 
proin�ammatory cytokine levels (116). �e results were validated 
in mouse models of IBD in which LANCL2 ligands were used 
as an alternative treatment for CD patients (116). Based on the 
preliminary results and experimental data, MIEP used advanced 
machine-learning algorithms to create a large synthetic popula-
tion of CD patients and designed a Phase III clinical in  silico 
clinical trial study (63). �e synthetic patients were randomly 
allocated to di�erent treatments under the study and the e�ective-
ness of these treatments were analyzed based on the changes in 
CDAI scores (63). �e results from the study provided an insight 
that the e�cacy of LANCL2 therapeutics can be extendable to all 
stages of CD.

Similar approaches can be designed and extended to gain 
new insights of the interactions between diet, genetic factors, 
microbiome populations, and response to treatment to precision 
medicine intervention. �e e�ect of treating the set of synthetic 
population with biologics, therapeutics, pharmaceuticals, 
nutritional components, or combinatorial interventions (i.e., 
nutritional adjuncts along with therapeutics) can be examined. 
�e output can provide valuable data for accelerating drug devel-
opment pipelines with improved capability to predict the likely 
response to any treatment (63, 114).

CHALLENGES IN COMPUTATIONAL 

CAPABILITIES

Despite the fact that in  silico experimentation and modeling 
have the capability to yield basic insights and translational 
applications in critical illnesses, many challenges still remain 
in this rapidly evolving �eld (20). �e key challenges involved 
in modeling the biologically complex systems are that they 
encompass many levels of systems and scales. �e inherently 
multiscale, multi-system, multi-network nature of critical illness 
adds on to this complexity. �e challenge also comprises the 
integration of nutrition, immunological, metabolic, and physi-
ologic processes required to decipher the multi-compartment 
and multi-dimensional landscape of biological systems (20). 
Furthermore, the process of building mathematical models of 
complex biological processes and their computer simulation is 
an iterative one. �e initial information-processing representa-
tion of the in  vivo counterparts would incorporate genomic, 
biochemical, microbial, immunological, and physiological data 
(117) that would eventually require the data calibration from 
experimental counterparts. �e major challenges that would 
arise include explosion of massive time-series biological data, 
with increasing demand for storage of the larger datasets and 
computational power. �is would require the development of 
new tools and techniques for the management of knowledge 
from the biological datasets. Furthermore, given that analysis 
and visualization of the massive data is complicated, the impor-
tance of open science becomes increasingly important (118). 
Data availability would enhance the progression of data analysis 
procedures. It is important to understand the power of big data 
and the analysis process, as it adds knowledge to the existing 
hypothesis (118). However, the high dimensionality of big data 

puts forth computational and statistical challenges that include 
scalability, storage bottleneck, computational cost, and algo-
rithm instability (119). In order to extract the knowledge and 
exploit parallelization of computation, skilled programmers and 
bioinformaticians need to adopt to the new programing plat-
forms, tools, and practices such as in memory processing, graph 
databases, and advanced machine-learning algorithms (120). 
Along with modeling and informatics tools, a web portal that 
facilitates the collection and integration of experimental and 
computational data and metadata along with analysis processes, 
model building and quality assurance are needed to support 
precision medicine interventions. �erefore, it is challenging to 
not only overcome the hardware bottlenecks and so�ware com-
plexity, but also to keep up with the ever-changing technological 
advancements and the need for seamless integration.

�e multiscale models represent di�erent spatiotemporal 
scales with distinct spatiotemporal properties. �is increases 
the need to improve the computational performance and syn-
chronization across scales. In a hybrid approach, for example, 
ENISI MSM (84) calls the sub-models in the di�erent scales in 
each simulation cycle, and the �nal output can be the integration 
of the outputs form each scale. Since, the ODE solver Complex 
Pathway Simulator (COPASI) (121, 122) used in ENISI MSM 
is a large object, loading millions of objects with di�erent 
scales signi�cantly slows the simulations, due to high memory 
processing activities. �e implementation of the system with 
the use of high computational power for model simulations 
can aid the analysis of increased number of realistic number 
of agents required for in silico studies. Also, there is a need for 
improvement in enhancement of the visualization components 
of the models that can aid the adaptability of the system among 
experimentalists. �e solutions designed to address the chal-
lenges related to the tools used in computational immunology 
can be extended to develop bio-information systems, models, 
web portals, and tools adaptable to systems nutritional immu-
nology research.

DEVELOPING INFORMATION-

PROCESSING REPRESENTATIONS OF 

SYSTEMS NUTRITIONAL IMMUNOLOGY

�e Modeling Immunity of Enteric Pathogens project1 has 
successfully developed user-friendly tools and models to 
characterize the mechanisms of immunoregulation underlying 
immune responses to enteric pathogens. �e MIEP technol-
ogy is HPC-driven as illustrated by ENISI MSMv2, a tool that 
models mucosal immune response and scales up to 1011 agents 
in HPC simulations (106). �is is an important hallmark 
achieved toward building large-scale information-processing 
representation of immune response at multiple levels. Overall, 
the HPC-driven ENISI MSM platform combines the study 
of molecular pathways controlling T cell di�erentiation and 
tissue-level interactions between cells with an aim to character-
ize novel mechanisms of immunoregulation at the gut mucosa. 
MIEP is also working toward the integration of bioinformatics, 
computational modeling, and experimental validation in order 

http://www.frontiersin.org/Nutrition/archive
http://www.frontiersin.org/Nutrition
http://www.frontiersin.org


February 2016 | Volume 3 | Article 512

Verma et al. Modeling-Enabled Systems Nutritional Immunology

Frontiers in Nutrition | www.frontiersin.org

to study the mechanisms of tolerance during bacterial and viral 
infection. �ese modeling-driven predictions have the potential 
to accelerate the scienti�c discovery process.

Notable MIEP-based achievements include (1) development 
and enhancement of a suite of tools for ABM (ENISI)- and ODE 
(COPASI)-based modeling of immunological processes (79, 104, 
110, 123); COPASI supports models in the SBML standard and 
can import and export models in the SBML format. �e so�ware 
allows to perform simulations either with stochastic kinetics or 
with di�erential equations and can be used to perform, analysis, 
sensitivity analysis, and user-friendly data visualizations; (2) 
development of validated computational models of CD4+ T cell 
di�erentiation and function (77, 124, 125), mucosal immune 
responses to Helicobacter pylori (126), modulation of CD4+ T 
cell responses to H. pylori by IL-21 (125); (3) development of 
mouse and pig models of H. pylori infection (127, 128) and 
mouse models of EAEC infection (46, 129, 130); (4) development 
of a methodology allowing the creation of dynamic models com-
bining theoretical knowledge and time-course high-dimensional 
datasets; (5) initial characterization of the ability of H. pylori to 
induce CD8+ T cell responses in the pig model; (6) determina-
tion of the role of H. pylori-infected mononuclear phagocytes on 
the modulation of mucosal immune responses to the bacterium; 
and (7) successful delivery of a summer school and symposium 
in Computational Immunology (131).

�e web portal resources that can be used include the “Immune 
Modeling Community Web Portal”3 where news and relevant 
resources and news related to immune response modeling for 
infectious diseases are shared in order to facilitate collabora-
tion and exchange of information between the investigators. 
Another work�ow-based modeling so�ware designed for the use 
in immunology research is the Di�erential Equation Modeling 
Solution (DEDiscover) developed at the Center for Biodefense 
Immune Modeling. �e so�ware can be utilized to perform 
simulations, parameter estimation, sensitivity analysis, residual 
analysis, and statistical analysis for a case study represented as a 
set of di�erential equations. However, DEDiscover does not fully 
support SBML and it cannot handle user-de�ned kinetics on 
import. Furthermore, it does not export SBML. �ese shortcom-
ings make COPASI the preferred tool. �e Program for Research 
on Immune Modeling and Experimentation (PRiME)4 is another 
multidisciplinary Immune Modeling Center that is focused on 
developing (1) mathematical and data-based models for elucidat-
ing the viral mechanisms of category A-C viral pathogens and 
(2) bioinformatics components for data management and model 
development. �e ImmuNet (132), developed by PRiME is a web 
interface that is aimed to provide immunology researchers with 
an easy to use resource that can be used to explore the immune-
related functional relationship networks. �ese functional 
relationship networks provide new mechanistic insights about 
the previously unknown gene–gene relations and can be used to 
predict the immune processes associated with any other pathway-
relevant components.

3 http://www.imcportal.org/
4 http://tsb.mssm.edu/primeportal/

To date, most of the nutritional immunology studies have 
focused on characterizing the e�ect of nutritional components 
on individual parts of the immune system, whereas limited e�ort 
has been placed on elucidating and modeling the complex, inter-
connected massively interacting systems. Computational models 
can be trained using the known e�ects of the nutrients (data and 
theory) and the e�ect of interaction of di�erent nutrients on the 
massively interacting system can be predicted using advanced 
machine-learning methods. �ese predictions can be tested in lab 
and the deviations can be used to update the models. A key aspect 
of the nutritional systems immunology cycle is the validation 
step. �at step is inherently reductionist. However, if performed 
in the broader context of systems nutritional immunology, then 
the validation studies are guided by the existing theory and data. 
Another way would include the use of multiscale models wherein 
the knowledge obtained from multi-omics studies, regarding the 
regulatory mechanism of nutrition, can be studied with high 
levels of details ranging from the cellular level to whole body, 
population, and policy level. �e data obtained from the nutri-
tional intervention studies integrated with -omics and targeted 
modeling-driven mechanistic studies will provide a comprehen-
sive framework to simulate the physiological mechanisms and 
immunological changes in the body a�er the intake of nutrients.

A major goal in the advancement of systems nutritional immu-
nology research and development is to build comprehensive, mul-
tiscale network models that will accurately predict global and local 
e�ects of nutrition-based interventions. �e identi�cation of the 
e�cacy of these nutritional-based interventions on the immune 
system using in silico experiments would lead to advancements 
in research for better treatment for disease mechanisms, assess-
ment of disease risk, and prediction of optimal interventions for 
the immune-mediated diseases, with an ultimate future goal of 
expanding the outputs for application in precision medicine. In 
this review, we speci�cally highlight the pressing need for the 
development of predictive systems modeling that provide a com-
prehensive mechanistic understanding of the system. �e concep-
tual modeling approaches and the computational techniques need 
to be integrated with advanced big data analytics methods, such 
as statistical and machine-learning algorithms. In summary, the 
use of an iterative systems biology cycle of experimental simula-
tion, data collection, along with mathematical and computational 
model building, simulations, prediction, calibration, re�nement, 
and validation have the potential to gain a systems-level mecha-
nistic understanding in order to guide nutrition-based precision 
medicine, health, and wellness.
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