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Motivations

Transmembrane (3-barrel (TMB) proteins are embedded in the outer membrane of Gram-negative bacteria,

mitochondria and chloroplasts. These proteins display a wide variety of functions and are relevant to various E '

aspects of cell metabolism. In particular, outer-membrane proteins (omps) are used in active ion transport, “‘,
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passive nutrient intake, membrane anchors, membrane-bound enzymes, and defense against membrane-attack ér
“‘-

proteins. :
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Current TMB structure prediction programs output only an optimal or near-optimal solutions and hence
cannot reflect all folds that can be potentially adopted by a polypeptide. Inspired by previous work on
RNA secondary structure [1], and expanding upon our previous transFold model [2], we move beyond
the classical single structure prediction methods and introduce the first family of algorithms for investi-
gating the set of all conformations present in the low energy ensemble by using the Boltzmann partition function.
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Methods Results

Structure modeling
We use the grammatical framework introduced with transFold [2]. r ik
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| ) The inter-strand residue contact
Parsing f’f N probabilities are merged into a
i L stochastic contact map.
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Predicting
Mapping the Boltzmann contact jjjjjj
orobabilities onto the hydrogen o — ot — ran
bonds experimentally observed, al- e — ko — n — ot — bt — o1 — o
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3D structure
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Instead of computing the minimum folding energy, we use the model

to compute the Boltzmann partition function.
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Novel energy model 1 The contact probability profile
Inspired by the RNA nearest neighbor energy model, we design an /_\ | F | (i.e. the probability of a residue
energy model using statistical potentials for stacking pairs of residues (\4 | to interact with any other residue)
in TM (3-strands. g \ correlates with the experimental
\M B-values.
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