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ABSTRACT Social contact networks and the way people interact with each other are the key factors that

impact on epidemics spreading. However, it is challenging to model the behavior of epidemics based on social

contact networks due to their high dynamics. Traditional models such as susceptible-infected-recovered (SIR)

model ignore the crowding or protection effect and thus has some unrealistic assumption. In this paper, we

consider the crowding or protection effect and develop a novel model called improved SIR model. Then, we

use both deterministic and stochastic models to characterize the dynamics of epidemics on social contact

networks. The results from both simulations and real data set conclude that the epidemics are more likely to

outbreak on social contact networkswith higher average degree.We also present some potential immunization

strategies, such as random set immunization, dominating set immunization, and high degree set immunization

to further prove the conclusion.

INDEX TERMS Epidemic modeling, social contact network, epidemic control, optimal strategies.

I. INTRODUCTION

Social networks are a social structure made up a set of social

actors, such as individuals or organizations, and the ‘‘ties’’

between them [1]. The ties can be either online interactions

or face-to-face interactions. Social contact networks are the

social networks made up of individuals and the interpersonal

contact between them. In this paper, we study the stochastic

epidemic models on social contact networks, in which the

links between persons are fact-to-face interactions whichmay

cause infections.

The modeling of the epidemics on social contact networks

has been studied in recent years. The standard Susceptible-

Infected-Recovered (SIR) model is widely used for its

simplification and usability. In SIR, individuals in

the network are labeled with three compartments:

Susceptible (S), Infected (I ) and Recovered (R) [2]. Each

individual belongs to one of the three compartments and can

transit from S to I or from I to R.

Studying the epidemic models helps people to know the

dynamics of epidemics on networks and help the decision

makers to mitigate the diseases when epidemic outbreaks.

The standard SIR model based on assumptions that the net-

works are homogenous which means all nodes have the

same linkage and the probability that there is a link between

any two nodes are equal. However, recent research works

have shown that the social contact networks have community

structure [3]–[5] in which nodes have different linkages and

nodes have more links within a cluster than that of between

communities. Thus, when there is a significant number of

infected individuals in a community, the effected contacts

(the contacts that transmit diseases) between susceptible and

infected individuals do not grow quickly. This phenomenon

is called ‘‘crowding’’ or ‘‘protection effect’’ [6]. Therefore,

the linear force of infection used in the standard SIR model

has limitation under the typical scenario.

To address this limitation, we proposed a novel ISIR

model to capture the dynamics of epidemics. In ISIR, the

infection rate (also called the transmission rate of diseases)

modeled as a function of the infected individuals considering

the ‘‘crowding’’ or ‘‘protection effect’’. In our ISIR model,
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at the early stage of the epidemics when the number of

infected individuals are small, the infection rate grows

quickly with the increase of number of infected individuals.

For the spread of diseases, the infection rate also grows slower

than a linear increase.

Further, the above SIR model can be used to analyze the

number of individuals in the three compartments. But, consid-

ering a real epidemic on a small community, it is reasonable

to assume the uncertainty or randomness of the final number

of infected individuals. For example, in a community with a

single epidemic source, the epidemic may never outbreak to

a significant number of individuals although the SIR model

would predict a significant number of infected individuals.

Therefore, we further proposed to use stochastic models to

estimate epidemic parameters. With the stochastic models,

we further examine the effectiveness of different immuniza-

tion strategies.

In this work, we study the stochastic epidemic models

on social contact networks. The real social contact

networks exhibit heterogeneous properties [7]–[9] rather than

the homogeneous properties on which the standard SIR

model is based. In social contact networks, there are some

nodes that have more links than the average. There nodes are

often called ‘‘hubs’’, and they are more likely to be infected

quickly when an epidemic outbreaks. The social contact

networks are considered to be scale-free networks [10], [11],

whose degree distribution follows a power law, at least

asymptotically. The Barabási-Albert (BA) model is usually

used to generate artificial social contact networks [12].

We studied the propagation of the epidemic diseases in BA

network and also evaluate some immunization strategies. It is

observed that the high-degree set immunization outperforms

random set immunization and dominating set immunization.

This result indicate the ‘‘hubs’’ has more impact on the spread

of epidemics.

Our major contribution in the paper can be summarized as

follow: 1) We proposed a novel ISIR deterministic epidemic

model which using a nonlinear force of infection considering

the ‘‘crowding’’ or ‘‘protection effect’’ to address the

limitation of standard SIR model where the linear fixed force

of infection used. Our model is able to present the fact that

the actual infect rates increase slower than the rates increase

linearly when there are a significant number of individuals in

the community are infected;

2) Unlike many existing studies, we employ both deter-

ministic and stochastic models to study the propagation of

epidemics on social contact networks with heterogeneous

properties. Our results show that the epidemics are more

likely to outbreak on the networks with more links among

nodes.

3) We examine our models using both simulation and

real data set. Especially, we evaluated four immuniza-

tion strategies on social contact networks. It is observed

that the high-degree set and critical set immunization

methods outperforms random immunization and dominating

set immunization strategies.

The rest of the paper is organized as follows. Section II

discusses related research works. Section III presents the

deterministic epidemic model. Section IV introduces the

stochastic epidemic models on social contact networks.

The numerical results are discussed in section V. Section VI

presents four immunization strategies, and we conclude the

paper in Section VI.

II. RELATED WORK

The standard SIR model has been widely studied since it was

proposed in 1927 [2]. Some similar models, i.e., SIS model,

SIRS and SEIR, also have been studied. The SEIR model

has an additional compartment which consists of exposed

individuals in the latent period [13]. These models make

the following assumptions: 1) susceptible individuals can get

infected from infected individuals via contacts; and 2) an

infected individual becomes immune after recovering from

the disease. According to these models, if the basic repro-

duction number R0 is less than λc, an epidemic threshold,

the epidemic would not outbreak on the network. Otherwise,

a significant number of individuals in the network will be

infected [14].

Due to the ‘‘crowding’’ or ‘‘protection effect’’, the force of

infection will not grow quickly with the increase of number

of infected individuals. [15], [16] propose a force of infection

model, which is βI2, in which β is contact rate and I is num-

ber of infected individuals. All symbols and notations used in

the paper are listed in Table 1. The authors use this model

to study the dynamic of epidemics. However, the model

shows the force of infection grows faster when the fraction

of infected individuals becomes big, which ignores the facts

of ‘‘crowding’’ or ‘‘protection effect’’. [6], [17] propose more

general force of infection models which also consider the

‘‘intervation affect’’. When the fraction of infected individ-

uals is large, some intervention policies may be placed, such

as closing restaurants and schools. In these models, the force

of infection is set to be αI2/(b+I2). However, it is difficult to

estimate the effect of these kinds of interventions, especially

when several intervention strategies are combined to use.

In this work, we proposed a nonlinear force of infection

in format of βI/(1 + αI ), to consider the ‘‘crowding’’ and

‘‘protection effect’’, which are ignored in existing models.

The deterministic epidemic model can predict the overall

infected individuals, but it is not able to provide the fluctu-

ation of the total infected nodes [14]. Even when R0 > λc,

the epidemic may disappear at the early stage of the spread

of epidemics. In contrast, the stochastic epidemic models are

able to capture the fluctuation of dynamics of epidemic on

real networks [18]. [14] studies the dynamics of epidemic

using a fixed probability of infection, but a node representing

a person with more infected neighbors are more likely to be

infected in reality. [19] uses a linear probability of infection.

However, the infection of a node from its infected neighbors

should be independent and identically distributed (i.i.d).

Therefore, in this paper, a q-influence model is used to

simulate the propagation of epidemics on social

VOLUME 3, NO. 3, SEPTEMBER 2015 411
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TABLE 1. Symbols and notations.

contact networks. The the fluctuations of the number of

infected individuals is demonstrated usingMonte Carlo (MC)

simulations.

The social contact networks are considered to be

scale-free networks [10], [11]. A social contact networks

generator, named BA generator, is widely used to generate

artificial social networks as the generated network satisfies

the statistics of the real social contact networks. The random

immunization of the network has been studied in [14]. Awide

variety of epidemic control strategies have been proposed

and evaluated by kinds of frameworks. An enhancing risk

communication method has been proposed to increase the

probability of successful control of diseases [20]. An opti-

mized resource allocation algorithm is proposed in the control

of epidemics under fixed budget is designed in [21]. The

authors in [22] have designed a framework for modeling

infectious diseases and optimizing control strategies. In [23],

the authors proposed to optimize the stabilization of disease

control efficiency. The authors in [24] proposed a frame-

work to evaluate the effectiveness of random and targeted

epidemic interventions for spatially separated patches in

meta-population models. In [25], a convex framework is

proposed to find cost-optimal distribution of vaccination

resources when different levels of vaccination are allowed.

However, these strategies are not cost-effective.

To find a better immunization strategy, we study the

dominating set immunization. However, it is NP-hard to find

the minimal k-dominating set of a network when k ≥ 2 [26].

The way to find a small size of k-dominating set is presented

in [27]. The high-degree nodes immunization is studied

in [28] and [29]. In this work, we compare the performance

of the four immunization strategies, and demonstrate that

the high-degree immunization is the best one of the four

immunization strategies, which also prove the fact that the

high degree node usually has high impact on the epidemic

spread.

III. THE DETERMINISTIC MODELS OF EPIDEMIC

ON SOCIAL CONTACT NETWORKS

A. THE STANDARD SIR MODEL

The SIR model is created by

W.O. Kermack and A.G. McKendrick in 1927 [2]. In the

SIR model, a fixed population is represented by only

three compartments: Susceptible, S(t); Infected, I (t); and

Recovered, R(t). S(t) denotes the number of individuals

that are not yet infected but susceptible to the diseases at

time t; I (t) is used to represent the number of individuals

who have been infected with the diseases at time t . Those

infected individuals are capable of spreading the diseases to

the susceptible individuals. R(t) is the compartment used for

people who have recovered from the disease by time t . The

recovered people are not able to be infected again or spread

the disease to others.

FIGURE 1. The flow of the standard SIR model.

In the above SIR model, many of the details about the

progression of infections are neglected, i.e., the differences in

response between individuals. But it has been widely studied

for its simplification and effectiveness. Fig. 1 shows the flow

of the standard SIR model [2]. The standard SIR model

can be presented mathematically by the following nonlinear

Ordinary Differential Equations (ODE):

dS

dt
= −βS

dI

dt
= βS − γ I

dR

dt
= γ I (1)

in which S(t) + I (t) + R(t) = N , N is the number of individ-

uals in the community. β is the contact rate. γ represents the

mean recovery rate. The following are the assumptions used

to generate the ODEs:

1) It is assumed that the number of community is fixed. The

births and deaths are therefore ignored.

2) It is assumed that the population are fully fixed, and each

individual has a small but equal probability of contacting

with any others.

3) Each individual in the population is considered to have

equal probability of spreading the disease, β. Therefore,

an infected individuals makes contact and transmit the

disease with βN individuals per unit time.

4) The population leaving a susceptible set are consid-

ered as equal to the number of individuals entering an

infected set, which means that an individual is not able

to recover from the disease immediately after being

infected with the disease.

The force of infection λ, is the rate of susceptible indi-

viduals getting infected, and the new infection is λI/N .

412 VOLUME 3, NO. 3, SEPTEMBER 2015
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According to the ODEs, an infected individual makes contact

with βN others per unit time, and the fraction of contacts

by an infected individual with a susceptible one is S/N .

Therefore the new infected individual in unit time per

infective is βN (S/N ), then the rate of new infections is

βN (S/N )I = βSI . Thus, the force of infection λ is

λ = β
I

N
(2)

We can derive the following equations by dividing the first

ODE by the third in equation (1), separating and integrating

the variables:

S(t) = S(0)e−R0(R(t)−R(0)) (3)

and when t → ∞, we can get

R∞ = 1 − S(0)e−R0(R∞−R(0)) (4)

in which R0 is denoted as a basic reproduction number and

R0 = Nβ/γ .

For the standard SIR model, there is an epidemic

threshold λc [30], [31]. If the basic reproduction ratio R0 is

larger than 1/S(0), the disease will spread and infect a finite

fraction of the population. On the other hand, if R0 ≤ 1/S(0),

only a small fraction of population will be infected. Thus the

threshold for the standard SIR model is

λc =
1

S(0)
(5)

B. THE IMPROVED SIR MODEL

In the standard SIR model, the community is assumed to

be fully fixed and each individual has the equal probability

(i.e., homogeneous nature) to contact with any others.

However, many studies show that the social contact net-

works are heterogeneous instead of homogeneous [18], [32].

In social contact networks, the contact numbers per

unit time are reduced by the ‘‘crowding effect’’ or

‘‘protection measures’’. This means that the force of infection

should include the adaptation of individuals to the infection

risk. In this work, we proposed an improved SIRmodel called

ISIR, in which the infection rate is not a fixed value, but a

function of number of infected individuals λ = β(I ). Thenwe

have the following nonlinear ODEs to describe the proposed

ISIR model:

dS

dt
= −λ(I )S

dI

dt
= λ(I )S − γ I

dR

dt
= γ I (6)

in which S(t) + I (t) + R(t) = N , N is the number of

individuals in the community. The force of infection λ(I ) can

be represented as f (I )I , and

f (I ) =
β

1 + αI
(7)

where β is contact rate, α is a parameter describing the level

of ‘‘crowding effect’’ or ‘‘protection measures’’. Fig. 2 shows

an example of the nonlinear force of infection with parame-

ters α = β = 20. Fig. 3 shows an example of solution of

ODEs in equation (6).

FIGURE 2. Nonlinear force of infection.

FIGURE 3. Solution of ODEs of ISIR model.

For the standard SIR model, there is an epidemic

threshold λc, as shown in equation (5). In order to

see the threshold in the proposed ISIR model, first we

derive the basis reproduction ration R0, which can be

represented as

R0 =
f (0)N

γ
(8)

By equation (7), we can get f (0) = β. Then we can

prove that the epidemic threshold of proposed ISIR is the

same as that of standard SIR model. Next, we will use dif-

ferent parameters to solve ODEs in equation (6) to see how

they affect the spread of the epidemics. Fig. 4 and Fig. 5

show the total infected individuals as a function of β.

In Fig. 4, γ is fixed to be 0.1, and in Fig. 5, α is fixed to

be 0.0001.

From Fig. 4 and Fig. 5, we can observed that the epi-

demic spread to a significant number of individuals only

VOLUME 3, NO. 3, SEPTEMBER 2015 413
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FIGURE 4. Total infected individuals as a function of λ.

FIGURE 5. Total infected individuals as a function of β.

FIGURE 6. Total infected individuals as a function of γ .

when Nβ ≥ γ , which means that R0 = Nβ/γ ≥

S(0)−1 = 1. The results validate the epidemic thresh-

old of the proposed ISIR model. Fig. 6 shows the total

infected individuals as a function of γ when β is fixed to

be 0.0003.

IV. THE STOCHASTIC MODELS OF EPIDEMICS ON

SOCIAL CONTACT NETWORKS

A. SOCIAL CONTACT NETWORKS: SCALE-FREE

NETWORKS

Many networks are considered to be scale-free networks,

including World Wide Web links, biological networks, and

social networks. The research [10], [11] has shown that the

social contact networks are also scale-free networks.

A scale-free network is a network whose degree distribu-

tion follows a power law distribution, at least asymptotically.

Therefore, in social contact networks, the fraction P(k) of

nodes in the network having k connections to other nodes

goes for large values of k as

P(k) ∼ k−ν (9)

where ν is a parameter whose value is typically in the range

2 < ν < 3, although occasionally it may lie outside these

bounds.

The above formula implies that the network has infinite

size. However, the real social networks consist of finite indi-

viduals. For example, the size a social contact networks in

a school or a city has a upper limit. The authors in [33]

introduce power law with cut-off. Though real social contact

networks are actually made up by a finite number of individ-

uals which is far from the thermodynamic limit, their degree

distribution can bemodeled by a power-lawwith cut-off. This

infinite population introduces a maximum connectivity kc,

depending on N , which has the effect of restoring a bound

in the connectivity fluctuations. In this work, we use the

following equation to analyze the degree distribution of the

social contact networks.

P(k) ∼ k−ν f (k/kc) (10)

where the function f (x) decreases fast for x > 1. The cut-off

kc is used to present the constraints limiting the addition of

new links in an otherwise infinite networks.

The Barabási-Albert (BA) graph was proposed in [12] as a

model of growing networks. Paper [31] also described and

used the BA algorithm. In BA algorithm, the successively

added nodes establish links with higher probability pointing

to already highly connected nodes. Therefore, the generated

social contact networks are constructed using the following

algorithm:

1) The algorithm starts from a small number of m0 of

nodes;

2) At each step when adding a new node, the algorithm

adds m links connecting the new node to an old node i

with a probability.

The probability the new node has a link to connect an old

node i is

pi =
ki

∑
j kj

(11)

where ki is the degree of node i and the sum is over all

pre-existing nodes j.

414 VOLUME 3, NO. 3, SEPTEMBER 2015
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After iterating this algorithm for a sufficient number of

times, we can add the amount of nodesN as we want to. Then

social contact networks we simulated consists of N nodes

with connectivity distribution P(k) ∼ k−3 and average con-

nectivity 〈k〉 = 2m. The average connectivity, defined by the

average node degree, play a major role on these networks.

TABLE 2. Infection models.

B. EPIDEMIC PROPAGATION ON

SCALE-FREE NETWORKS

Table 2 shows three infection models. In the first one, a node

will be infected with a fixed probability q if it has at least one

infected neighbor, which means that a node with one infected

neighbor has the same probability to be infected with a node

has n, n > 1 infected neighbors. To consider the hierarchical

infection probability, we can use the second infection model,

which shows a linear probability of infections. In the second

model, a node with more infected neighbors is more likely to

be infected, and the infected probability is proportional to the

number of infected neighbors. We use the q-influence model

to show the fact that the infection probability increases faster

than a linear infection. In q-influence model, the probability

that a susceptible node will be infected by one of its infected

neighbors is q, and the infections from all its infected neigh-

bors are independent. So if a susceptible node has n infected

nodes at time t , the probability that it will be infected at the

next time by its n infected neighbors is

p = 1 − (1 − q)n (12)

Fig. 7 shows an example of the q-influencemodel, in which

the central node A has five neighbors and two out of them are

infected nodes. According to equation (12), the probability

that node A will be infected by its infected neighbors is

p = 1 − (1 − q)2. When q = 0.5, then the probability that

node A will be infected is equal to 0.75. In the following of

this paper, the q-influence model is utilized to simulate the

propagation of the epidemics on social contact networks.

FIGURE 7. An example of q-influence model.

V. NUMERICAL RESULTS

In this section, we will simulate epidemics on both artificial

social contact networks and real social contact networks. The

artificial social networks are generated by BA generator [12],

and the data for real social contact networks are download

from the SocioPatterns datasets [34].

A. EPIDEMICS ON BA NETWORKS

We simulate the spread of epidemics on artificial social

contact networks generated using BA models with different

parameters. We consider the BA network size N = 103,

and thus the average degree of nodes in hte network with

m = 1 and m = 6, are 〈k〉 = 2 and 〈k〉 = 6, respectively.

Figure 8 shows the degree distribution of the two artificial

social contact networks generate by BA models with m = 1

and m = 3.

FIGURE 8. The degree distribution of the artificial social contact

networks generate by BA models m = 1 and m = 3.

We study the effects of q in the spreading of epidemics on

BA networks. We set q = {0.09, 0.1, 0.11} and γ = 0.1.

We have run 1000 times of simulations for each pair of

parameters to avoid the disappearance of epidemics at the

early stage. The distributions of the epidemic size for each

pair of (q, γ ) on networks with m = 1 and m = 3 are shown

in Figure 9 and Figure 10, respectively.

From figure 9 we can find when q is small, the epidemic

size is small. With the increase of q, it is more likely that all

the nodes in the network are infected or have been recovered

from the disease. Figure 10 shows the same trend with the

increase of q, but it should be noted that the epidemic size

is larger when m = 3 than that of m = 1. That is because

the epidemics are more likely to outbreak on networks with

high average degree which means that individuals have more

interactions with each other.

B. EPIDEMICS ON REAL SOCIAL CONTACT NETWORKS

In the above, we study the spread of epidemics on

artificial social contact networks. Next, we will investigate

the spread of epidemics on real social contact networks.
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FIGURE 9. Distribution of the epidemic size from 1000 simulations with q = 0.09 (a), q = 0.1 (b), q = 0.11 (c), γ = 0.1 and m = 1.

FIGURE 10. Distribution of the epidemic size from 1000 simulations with q = 0.09 (a), q = 0.1 (b), q = 0.11 (c), γ = 0.1 and m = 3.

Here we use a social contact networks dataset named

‘‘Primary school-cumulative networks (PS)’’. The dataset

comprises two weighted networks of face-to-face proximity

between students and teachers [35]. A daily contact network

is provided with nodes representing individuals and edges

representing the face-to-face interactions. There exists a edge

between two individuals if at least one face-to-face interac-

tion between them is recorded.

We select one day from the dataset, October 2nd, 2009, set

q = {0.1, 0.11} and γ = 0.1, and then randomly select a node

to be epidemic source to spread the epidemic disease on the

PS network. We run 1000 times simulations and the results

are shown in Fig. 11 and 12.

From Fig. 11 and Fig. 12, it is observed that the epidemic

is more likely to spread to the whole PS network compared to

that on BA network with the same parameters. This is because

the average degree of the PS network is much higher than that

of BA network generated above.

VI. IMMUNIZATION STRATEGIES

In this section, we use the proposed models to examine the

immunization methods to control the epidemics on social

contact networks. We study four epidemic control meth-

ods, random set (RS) immunization, dominating set (DS)

immunization, high-degree set (HS) immunization, and

critical node set immunization (CS). The performance of

these strategies are also compared.

FIGURE 11. Distribution of the final size from 1000 simulations

with q = γ = 0.1.

According to equation (7) and equation (8), for the network

with a single epidemic source S(0) = 1, the threshold of the

ISIR model is

λc =
Nβ

γ
. (13)

The RS method means that nodes are randomly selected

from the network and immunized. If ηN nodes are randomly

selected from the network and are immunized, the effective
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FIGURE 12. Distribution of the final size from 1000 simulations

with q = 0.11 and γ = 0.1.

contact rate β ′ is β ′ = (1 − η)β. It follows the reproduction

number after a fraction of η has been immunized to be

R′
0 =

(1 − η)β

γ
. (14)

Next, we introduce the DS immunization method. A dom-

inating set for a network is a subset of nodes such that every

other nodes in the network is adjacent to at least one node in it.

For a k-Dominating Set (k-DS), each node in the network

is either in the k-DS or can reach to one node in k-DS via

at most k hops. Here we study the performance of k-DS

immunization method for epidemic control on social contact

networks. The construction of algorithm k-DS used in this

paper are presented in [27]. Here, k = 1, 2, 3 are used in

the simulation. Then, we study the performance of epidemic

control using HS immunization method. In HS method, we

first sort all the nodes in the network according to their

degrees, and then immunize a fraction of η nodes from the

highest degree node to the lowest degree node.

We also study the performance of critical node set (CS)

immunization strategy on our ISIR model. A critical node

set is identified from the network by unequal graph

partitioning (UGP) [36]. The CS immunization works by

immunizing the critical node set to prevent the spreading

of the diseases on the networks when epidemic outbreaks.

The basic idea of UGP is to identify a subset of nodes

that can disconnect the network and decompose it to a set

of sub-networks when these nodes are removed. Thus the

number of infected individuals will be less than the size of

the largest sub-network. The algorithm of the critical node

identification in UGP is as follows: 1) Get the connected

component G’ from the graph G, which represents a social

contact network; 2) Randomly assign nodes in G’ to two

clusters G1 and G2; 3) Move all nodes in G1 that connect

to nodes in G2 and nodes in G2 that connect to nodes in G1

to cluster G3; 4) Randomly swap nodes in G3 with nodes

in G1 or G2; a swap is accepted only if the size of G3

is reduced after the swapping and it does not bring in the

connections between G1 and G2. Otherwise, the swap is

dropped. 5) Repeat step 4 until no further swap can reduce

the size of G3. Then the set of G3 is called a critical

node set. 6) Run the above steps iteratively on the

sub-networks G1 and G2 until the sizes of all the

sub-networks are smaller than a predefined value. The overall

critical node set is the union of all critical node sets.

Therefore, though this algorithm, the epidemics will be

limited to spread in a sub-network if there is only one

epidemic source and the number of infected individuals will

be less that the size of the largest sub-network.

Finally, we compare the performance of the above four

immunization strategies on both real and artificial social net-

works. We first use the BA algorithm to generate two social

contact networks with N = 2000, m = 2, k = 2 and

N = 2000, m = 4, k = 2, respectively. Then we apply each

immunization method on these two networks. The results are

shown in Fig. 13 and Fig. 14 shows the performance of four

immunization strategies. It is observed that HS method is an

effective strategy that outperforms k-DS and DS although our

FIGURE 13. Performance of different immunization methods on

BA network with N = 2000, m = 2 and k = 2.

FIGURE 14. Performance of different immunization methods on

BA network with N = 2000, m = 4 and k = 2.
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CS immunizationmethod [36] achieves the best performance.

The effectiveness of the CS method benefits from grouping

high degree nodes for the immunization. Both HS and CS

demonstrate that a node with high degree has the significant

impact on the spread of epidemic disease and the epidemics

are more likely to outbreak on social contact networks with

higher average degree.

FIGURE 15. Performance of different immunization methods on

primary school-cumulative networks (PS).

We use real data set of the primary school-cumulative

networks (PS), a real social networks, to evaluate the perfor-

mance of these immunization strategies. As shown in Fig. 15,

both the CS and HS immunization methods can achieve the

better performance than DS and k-DS methods mentioned

above. The results are consistent with our studies on the BA

contact social network. They not only validate the accuracy of

our proposed models, but also further prove the significance

of the high degree nodes for the epidemic spreading.

VII. CONCLUSION

In this paper, we proposed novel ISIR epidemic models with

nonlinear forces of infection to characterize the epidemic

spread on social contact networks with the consideration

of the ‘‘crowding’’ or ‘‘protection effect’’. We employed a

stochastic model, q-influence model to simulate the propaga-

tion of epidemics on social contact networks. We examine the

effectiveness of our models for epidemics spreading on both

simulated and real social contact networks. The results on

both networks are consistent with each other. In addition, four

immunization strategies for epidemic control are evaluated

using our proposed models, which demonstrate the fact that

the epidemics are more likely to outbreak on social contact

networks with higher average degree.

Our ISIR model can be used to analyze the epidemic

dynamic, predict the spreading of epidemics, and optimize

the control strategies on social contact networks, i.e., the

Severe acute respiratory syndrome (SARS) in 2003 and the

flu pandemic (H1N1) in 2009. It helps the decision makers to

optimize the epidemic control strategies by estimating their

performance in simulations.

Our work has built up a foundation for potentially effective

epidemic control strategies based on real time collected social

contact networks. Though this work is targeted at the spread

of epidemics, the methods presented here could be applied

for other applications such as the spread of rumors or ideas

through social contact networks.
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