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Abstract 

Suboptimal filters based on erroneous models of system dynamics as well as 
on a priori statistics are discussed in this report. Suboptimal estimates for both 

continuous and discrete cases are derived and the error bounds are established 

under certain conditions. Two examples are provided to demonstrate the 
application of the theory developed in this report. 
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Modeling Errors in Kalman Filters 

I. Introduction 

In recent years the Kalman filter (Refs. 1 and 2) has been 

extensively used in such applications as the tracking of 

missiles or planes and the determination of spacecraft 

orbits. One of the problems that arise in these applications 

is that a precise knowledge of the a priori statistics of 

initial conditions and of the noise model (process noise 

and observation noise) are often unavailable. However, a 

knowledge of these conditions, as well as those of system 

models, is essential for the design of optimal filters. 

For example, in the case of the orbit determination 

problem of spacecraft in deep space, observations are 

usually supplied in the form of doppler, counted doppler, 

or range data. These data are subject to oscillator in- 

stability, disturbances in the ionosphere, receiver noise, 

and quantization noise of the counter. These sources of 

interference constitute the observation noise. Addition- 

ally, the spacecraft is subject to various disturbances in 

the form of solar pressure, meteoroid impacts, and fuel 

leakage during transit to a planet (about 200 days for a 

typical n~ission to Mars). It  is a rather difficult task to 

determine the statistics of any one of these noise sources. 

In additio~l to the urlcertainty of the injection conditions 

of the spacecraft, the coordinates after the midcourse 

maneuver may enter into the filter design and influence 

the gain of the filter strongly during the initial period 

of estimation. 

Errors are inevitable in assigning a priori covariance 

matrices of large dinlensions because of the lack of 

sufficient experience or of the inabilit)~ to analyze complex 

correlations among parameters. Lack of precise ltnowledge 

of system n~odels is also a problenl that practicing engi- 

neers frequently encounter in designing filters. This is 

closely related to the problem of identification, which is 

a major topic in control theory and applications. 

The effect of incorrect a priori covariance snatrices has 

been analyzed by Soong (Ref. 3) for the discrete case 

using the least-squares method. This analysis has been 

extended by the author (Refs. 4 and 5) to sequential 

filters and an error bound has been established for the 

performa~lce of suboptimal filters. Heffes (Ref. 6) further 

extended this analysis to include the modeli~lg errors of 

covariaizces of proccss and data noise, and the error bound 

for this model has been investigated by Sawaragi and 

Katayan~a (Ref. 7). 
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For continuous systems, an analysis similar to that for 

the discrete case was performed based on the a priori 
statistics (Ref. 8). Then Griffin and Sage (Ref. 9) extended 
this analysis to smoothing problems, including system 

modeling errors (errors in process and observation mat- 
rices). A general analysis was developed by the author 

for the a priori statistics as well as system modeling errors 

for discrete systems (Ref. 10). 

This report presents a perspective of analyses on the sub- 

optimal filter performance based on the aforementioned 

reference works. Both contiiluous and discrete systems 

are discussed and an effort is made to find the upper and 

lower bounds on the error covariances of these suboptimal 
filters. It  is assumed that the systems are linear and the 

stochastic variables have gaussian distributions. 

II. Analysis for Continuous Systems 

The basic process is described by a first order differential 
equation in vector form: 

The observation is 

where 

x(t) = an n, vector of states with 

y(t) = an n, vector of observations 

to(t) = an n, vector of stochastic inputs to the 
process with 

G(t) is the Dirac delta function. 

n(t) = an n, vector of the observation noise with 

F(t), G(t), H(t): n,., X n,., n,, X n,,, n, X n,, matrices respec- 

tively. 

And E [ ] is an expected value operator on stochastic 

variables. Also it is assumed that the process noise to and 

observation noise n have no correlation to each other 

The optimal estimator x*(t) of x(t) which minimizes 
E [llr:~ - x1I23 having the observation y(t) from t = 0 to t 

is described by the following differential equation (see 
Ref. 2), 

dN*(t) 
-- 

dt  - F(t)r* (t) + K(t)[y(t) - II(t)x* (t)] (8) 

where 

K(t) = P(t) H' (t) R-l (t) (9) 

I t  is assumed that R(t) is positive definite for t > 0. The 

covariance matrix P(t) is defined by 

P(t) i\ - E {[r* (t) - x(t)] [x*(t) - r(t)]') ( 10) 

and it is obtained as a solution of a matrix Riccati equation 

-- dP(t) - F(t)P(t) + P(t)Ff (t) - P(t)Hf (t)R-l (t)H(t)P(t) 
dt 

+ G(t)Q(t)G' (t) (11) 

The initial conditions for Eqs. (8) and (11) are, respec- 

tively, 

Ill. Assumptions and Mathematical Derivations 

The optimal estimator described in the previous section 

is based on the correct information of initial conditions, 
noise covariances, as well as coefficient matrices. Suppose 

one designs the estimator based on incorrect information 
with respect to these quantities: 

(1) Incorrect P,(O) rather than the correct P(0) (a priori 
covariance of states). 

(2) Incorrect Q,(t) rather than the correct Q(t) (co- 
variance of the process noise). 
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(3) Incorrect Rc(t) rather than the correct R ( t )  (co- However, from Eqs. ( 1 )  and (14),  

variance of the observation noise). 

(4) Incorrect Fe( t )  rather than the correct F( t )  (process 
2; ( t)  - i" (t)  = [Fc( t )  - Kc(t)Hc( t )]  [x: (t) - x ( t ) ]  

matrix). + hF( t )x ( t )  - K,(t)hH(t)x(t)  

(5)  Incorrect G c ( t )  rather than the correct G ( t )  (co- + Kc(t)n( t )  - G ( t ) w ( t )  (20) 

efficient matrix of the process noise). 
where 

(6 )  Incorrect He( t )  rather than the correct H ( t )  (obser- 

vation matrix). 

The resultant estimator is no longer an optimal one, but AH(t)  = H,(t) - H ( t )  

becomes suboptimal. This suboptimal estimator is de- 
(22) 

noted x; ( t)  and is described by Also, ~ ( t )  is obtained from Eq. ( 1 ) :  

ax; (t) 
-- - - Fe(t)xt  ( t)  + Kc(t)[y( t )  - Hc(t)xz (t)I ~ ( t )  = U(t,O)x(O) + U(C,S)G(S)W(S) ds 

at I t  (23) 
(14) 

where U(t,s) is defined by 

where 

&(t) = Pc(t)H', ( t )R i l  (t) ( I 6 )  with 

and the calculated covariance Pe(t) is computed by the U (s,s) = I ,  
same Riccati equation as Eq. (ll) ,  but with the incorrect 

t > s > o  (25) 

model specified by elements 1-6 in the above listing: and I is an identity matrix. 

-- ape(" - Fc(t)Pc(t)  + Pc(t)F: ( t )  Furthermore, x; ( t)  is derived from Eq. (14) 
at 

- Pe(t)H', ( t )R i l  (t)Hc(t)Pc(t) 
x,* (t) = V c ( t ~ )  Kc(s)y(s) d - ~  Lt (26) 

+ Gc(t)Qc(t)G', (t) (17) 
where Ve(t ,s)  is defined by 

The actual covariance P,(t) is defined as the error 

covariance associated with the suboptimal estimator avc(t,s) 
Eq. (14),  hence 

-- 
at - - Ke(t)Hc(t)I Ve(t,s), t > s > O  

P,(t) & E { [ x z  (t) - x ( t ) ]  [x; ( t )  - ~ ( t ) ] ) '  

(18) 

This is the covariance to be expected in an estimator when 

insufficient design parameter data are available. The 
main objective of this secfion is to derive equations 
describing P,(t). For this purpose, it is easier to derive 
a differential equation governing the evolution of P,(t). 
Thus, differentiating P,(t) of Eq. ( I$ ) ,  and exchanging 
the order of the differentiating operator and the expected 
value operator yield 

P,(t) = E {[i.: ( t )  - i ( t ) ]  [~"(i) - x ( t ) ] ' )  

+ E { [:v,* (t)  - ~ ( t ) ]  [i: ( t)  - i ( t ) ] ' )  (19) 

When Q(t)  and x z ( t )  are substituted into Eq. (19) to- 
gether with i(t) of Eq. ( 1 )  and its solution x ( t )  in Eq. (23), 

paying attention to the fact that w ( t )  and n ( t )  are uncor- 
related white noises, the following three differential 
equations were derived by GrifEth and Sage (see Ref. 8 ) :  
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-- dpx(t) - F(t)P,(t) + P,(t)F(t) + G(t)Q(t)Gt(t) 
dt  

(30) 

where A(t) and P,(t) are defined by 

h ( t )  6 E {x(t) [x,* (t) - ~( t ) ] ' }  (31) 

The initial conditions for Eqs. (2830) are given, re- 

spectively, by 

where P,(t), P,(t), and P(t) are the computed, the actual, 
and the optimal covariance matrices, respectively, will 

be derived. 

A. Theorem 1 Development 

Substitution of Eq. (36) into Eq. (39) yields the fol- 

lowing differential equation of E,,(t), with the aid of 
Eq. (17): 

+ K,(t)a R(t)K', (t) + G(t)aQ(t)G'(t) (42) 

where aR(t) and hQ(t) are the differences between the 

incorrect and the correct noise covariances, 

IV. Error Bounds of Suboptimal Filters 

(Continuous Case) 

When process matrices F,G and observation matrix H 

are known correctly, the results in Section I11 can be 
considerably simplified. Specifically, only the first differ- 

ential equation need be solved (see Ref. 7): 

with 

K,(t) = Pc(t) H'(t) R (t) (37) 

The differential equations associated with the error 

matrices E,,(t), E,,(t), and E,,(t) defined as 

Because Eq. (39) is a linear differential equation, an 
explicit analytic solution can be derived: 

As observed from Eq. (45), E,,(t) is a sun1 of real sym- 

metric matrices so that it is semipositive definite provided 

every term in the right-hand side of Eq. (45) is semi- 
positive definite. Because of the specific (symmetric) 

configuration of these terms, every one will be respectively 

semipositive definite if every matrix at the center of each 

respective term, nanlely E,,(O), aR(s), and AQ(s) for 
t 2 s 2 0, is semipositive definite. 

Based on the above discussion, the following theorem 

is derived (see Ref. 7). 
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Theorem 1 

The difference E,,(t) > 0, hence P,(t) > P,(t) for 
t >_ O i f  the folloi~ing condition, C-I, is satisfied. 

C-I: E,,(O) > 0, hQ(t) > 0, and hR(t)  > 0. 
Or equiualeiztly, 

PC(()) > P,(O), Q,(t) > Q(t), and R,(t) > R(t) for 
t > 0. 

The implication of the greater than or equal to symbol 

is that the difference matrix P,(t) - P,(t) is semipositive 
definite. Therefore, an upper bound for the variances of 

the suboptinla1 estimator x;:(t) can be set that is equal 
to the diagonal components of the calculated covariance 

matrix P,(t) when the condition C-I is satisfied. The lower 
bound of these variances is, of course, zero. Let pPii(t) 
and ~ , ~ i i ( t )  be the respective diagonal coinponents of 
P,(t) and P,(t); then 

Though the a priori statistics are not known exactly, the 
suboptimal estimator can be expected to behave properly 
within the specified range provided that the conservative 

condition C-I is satisfied. 

Though it is of less practical importance, the following 

corollary is derived from Eq. (45). 

Corollary 1 

The difference E,,(t) 5 0, hence P,(t) < P,(t) for 
t > 0 if the condition C-II is satisfied. 

C-11: E,,(O) 2 0, hQ(t)  5 0, and AR(t) < 0. 
Or eqtrioalently, 

Pc(0) I Po(O), Qd t )  l Q(t), and Rc(t) L R(t) for 
t > 0. 

B. Theorem 2 Development 

First, ~ , , ( t )  can be obtained as a difference between 

i , ( t )  and P(t) given by Eq. (36) and ( l l ) ,  respectively, 

When a similar discussion leading to Theorem 1 is 
applied to Eq. (47), it may be concluded that E,,(t) is 

always semipositive definite for all t 2 0 because R(t)  

is positive definite by assumption and E,,(O) is semi- 

positive definite as deduced from the definition of P(0). 

Theorem 2 

The difference E,,(t) > 0, hence P,(t) > P(t) fo~. 
t > 0. 

This result is expected because P(t) is the nlininluln 

variance by definition. 

C. Theorem 3 Development 

Similarly, the differential equation for Eco(t) is derived 

by subtracting ~ ( t )  of Eq. (11) from k,(t) of Eq. (17) 

+ R(t))-lH(t)P(t) for AR > 0 (48) 

I t  is clear from Eq. (48) that EcO(t) is semipositive definite 

if condition C-I is satisfied. When AR = 0 the same con- 
clusion can be proved by taking a limit AR+ 0. 

Theorem 3 

The diference E,, > 0, hence P,(t) > P(t) for t > 0 
if C-I is satisfied. 

V. Analysis for Discrete Systems 

The technique utilized in Section IV is applied to 

discrete systenls and similar results are derived. Syn~bols 

are defined in the same manner as in the continuous 
systems, and similar assumptions are made concerning 

modeling errors and noise statistics. 

The process and observation equations are respec- 

tively, 

The optimal estimate x*(k + 1) with the information 

Y ( k )  = [y(O),y(l);.  . ,y(k)] is given by (see Ref. 1) 
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where 

K(k)  = @(k)P(k )H ' (k ) [H(k )P(k )Hf (k )  + R(k)]- l  

(52) 

x*(O) = 0 (53) 

The covariance matrix P(k)  is defined by 

P(k)  5 E { [ x * ( k )  - x (k ) ]  [x*(k) - r ( k ) ] ' )  (54) 

and it is governed by the following nonlinear difference 

equation: 

P(k + 1 )  = [ @ ( k )  - K ( k ) H ( k ) ] P ( k ) [ @ ( k )  - K(k)H(k)] '  

+ K(k)R(k)K(k) '  + G ( k ) Q ( k ) G f ( k )  (55) 

with 

P(0) = E [x(0)xf(O)] (56) 

When the incorrect models that are the counterparts 

in a discrete system of those described in items (1-6) in 

Section 111 are used, the resultant suboptimal estimator 

r,X ( k )  is computed by 

x z ( k  + 1 )  = @,(k)xz ( k )  + Kc(lc)[y(k) - H,(k)x:(k)] 

(57) 

with 

Kc(k) = @c(k)Pr(k)H',(k) [Hc(k)Pc(k)H',(k) + Rc(k)I-' 

(58) 

xZ(0)  = 0 (59) 

The calculated covariance Pc(k) is 

Pc(k + 1 )  = [@e(k) - Kc(k)Hc(k)lPc(k)[@c(k) -Kc(k)Hc(k)l' 

+ Kc(k)Rc(k)Kf(k)  + Gc(k)Qc(k)GF ( k )  (60) 

The actual covariance associated with this suboptimal 

estimator x,Y ( k )  is defined as 

Pa(k) 2 E {[x ,* (k )  - x(k)l  [x,*(k) - x(k)l ' )  (61)  

The recurrence equations describing P,(k) are derived 

sin~ilarly to the continuous case (Ref. l o ) ,  

Pz(k + 1 )  = @(k)P,(k)@'(k) + G ( k ) Q ( k ) G f ( k )  (64) 

where A ( k )  and P,(k) are defined by 

h ( k )  E { x ( k ) [ x z ( k )  - ~ ( k ) ] ' )  (65)  

P , (k )  2 E [ x ( k ) x f ( k ) ]  (66) 

The initial conditioris for the recurrence equations [Eqs. 

(62-64)] are respectively given by 

P,(O) = P(0) (67) 

6 

VI. Error Bounds sf Subczpfimal Filters 

(Discrete Case) 

When the process matrices @(k) ,  G ( k )  and the obser- 

vation matrix N ( k )  are perfectly known, only the first 

recurrence equation, Eq. (6 ) ,  needs to be solved in order 

to find P,(k) (see Refs. 4-6, and 9 ) :  



A. Theorem 4 Development matrix form can be derived: 

The difference matrix Ec,(k + 1) between P,(k + 1) 
and PC(k + 1) of Eqs. (60) and (78) respectively becomes 

where 

Following the same discussion used in the continuous 

case (Section IV) as well as the induction, the following 
theorem can be derived for discrete systems. 

Theorem 4 

The difference Ec,(lc) 2 0, hence P,(k) > P,(k) for 
k 2 0 if tlw following condition, C-111, is satisfied. 

C-111: Ee,(0) > 0, aQ(k) 2 0 and hR(k)  2 0. 
Or equivalently, 

Pc(0) 2 Pa(O), Qc(k) 2 Q(k) a d  Rc(k) 2 R(k) 
fork 2 0. 

The counterpart of Corollary 1 is also derived which 

yields the Iower bound of P,(k). 

Corollary 2 

The diference Ecc(k) I 0, hence Pe(k) 5 Pa@) i f  
condition. C-ZV is satisfied. 

C-IV: Ec,(0) 2 0, hQ(1c) < 0 and hR(k)  5 0 for k 2 0. 
Or equivalentlrj, 

Pc(0) IP(O), Qc(k) I Q(k) and RcVO I R(k) 
for k < 0. 

where 

The following relation is useful in the above derivation: 

The following theorem is derived from Eq. (75). 

Theorem 5 

The difference Ea0(k) 2 0, hence P,(k) 2 P(k) for 
k 2 0. 

This is the logical conclusion because P(k) is the opti- 

mum covariance by definition. 

C. Theorem 6 Development 

For the third difference matrix Eeo(k) the following 
relation is derived: 

Eco(k + 1) = E@(k) - Kc(k)H(k)lE,o(k) [@(k)  - KC(k)H(k)l f  

+ [Kc(k) - K(k)lS(k)EKc(k) - K(k)l f  

+ K,(~c)AR(~)K' ,  ( k )  + ~ ( k ) a ~ ( k ) ~ ' ( k )  

(79) 

and Theorem 6 is obtained. 

In the case of the other two differences, 

results similar to the continuous case can be proved. 

I%. Theorem 5 Development 

First, Eqs, (55) and (70) are substituted into Eq. (73) 

and after certain nlanipulation of matrices the follo\ving 

Theorem 6 

The difference Eco(k) 2 0, hence Pc(k) 2 P(k) for 
k > 0, if condition C-ZZZ is satisfied. 

VII. Examples 

Two examples are presented to demonstrate the theo- 
retical analysis. The first example is concerned with the 

modeling errors in the a priori statistics and the second 

example is concerned with the system modeling errors. 
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A. Example 1 : Analysis of the Effect of A Priori Statistics and the observation equation is 

Consider a spacecraft cruising with a constant speed 
y( t )  = x2(t)  + n ( t )  

along a straight line and the information is supplied by 

range data that are contaminated by white noise having ~ h ~ ~ ~ f ~ ~ ~ ,  
a spectral density a,. and zero mean. Let x, and x2 be 

deviations in speed and position of the spacecraft from 

the standard trajectory, respectively. The process equa- 

tion then becomes 

The a priori covariance is chosen to be 

Then the covariance P(t)  of the optimal estimator is derived from Eq. ( l l ) ,  

where 

Suppose that the incorrect model actually used in the design of the suboptimal estimator is given by 

and 

@,, = @, + aR 

Then the diagonal components of Ec,(t) are computed by Eq. (36) 

ecnu(t) = e O,, ( t )  + e ( t )  

where 
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Also, 

where 

In Fig. 1, the optimal variance p,,(t) and actual vari- 
ance p,,,(t) of position of the spacecraft are depicted 

with pcl,(0) as the variable parameter. [The values for 

pll(0), pz2(0), and a, are set at 1.0 m2/s', lo4 m" and 
1.0 ItmVs, respectively, in Figs. 1-5.1 The optimal vari- 

ance pZ2(t) is computed based on the true model. The 
suboptimal filter is designed such that 

Figure 1 also indicates that the variance of the subopti- 

mal filter is quite sensitive to variation of pC1,(O) (i.e., the 

incorrect initial speed variance). Case (a) expresses an 
excessively large a priori uncertainty of speed [pCl1(0) 

= 10pll(0)]. Conversely, case (e) expresses the a priori 
value taken as less than the true value [pcll(0) = pll(0)/2]. 
For both cases significant overshoots of the variance are 

observed. This is because the  gain Kc(t) was ill- 

optimal filter is not as sensitive to the initial uncertainty 

of position as it is to that of speed. However, case (d) 

reveals a degraded perfolmance of the filter when a 

smaller value is picked up for the positional uncertainty 

than the true value [pc,,(0) = p2,(0)/10]. 

In Fig. 4, the incorrect information arc of the power 

spectral density of the observation noise is employed as 

a parameter. The suboptimal filter behaves very poorly 

for arc which is either very large [case (a); a,, = 10 a,] 

or very small [case (d) a,., = ar/2] compared to the 

true a,. 

Figure 5 is one example of variances of speed of the 

spacecraft, corresponding to case (e) of Fig. 1. 

B. Example 2: Sensitivity Analysis of Noise 

Correlation Time 

conditioned for both extreme cases. In other words, 
sufficient weights had not been assigned to the informa- 

l .  Modeling error of data noise. A spacecraft is 

tion during the initial period so that the station did not assumed that is moving radially away from a fixed point 

track the spacecraft in a proper manner. Case (e) espe- and is tracked by doppler methods. These doppler data 

cially demonstrates how the estimator can behave poorly are contaminated an exponentially correlated data 

when an optimistic selection is made on the a priori noise. It is also assumed that the spacecraft is subject 

covariance. In Fig. 2, the calculated variances pCl1(t) to a small, random, white-noise acceleration. 

used in Fig. 1 case (e) are plotted for the same param- 

eters used in Fig. 1. As a direct application of the results derived for the 

discrete case (Section V), the effect of modeling errors 

The variance of initial position pm,(0) is changed as a on an exponentially correlated data noise and on process 

parameter in Fig. 3. It can be observed that the sub- noise are studied. 
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P22 (') 

pa22 

(a) pcl I (0) = 10.0 m2h2 

. . . . . . . . . . . . (b) pcll (0) = 5.0 rn2h2 

--- (c) PC I , (0) = 2 .o rn2h2 

- -- (d) pcll (0) = I .O m2h2 

(e) P ~ , ,  (0) = 0.5 rn2/ 

TIME t, r 

Fig. 1. Actual and optimal variances of position of a 

spacecraft with range data for various initial suboptimal 

speed variances 

Let the speed of the spacecraft be x, and the data 

noise be x,. Then the basic system equations are 

where to and v are independent white noise with vari- 

ances q and r, respectively. The term b is related to the 

correlation time 7 by 

Fig. 2. Computed variance of position of a spacecraft 

with range data for various initial suboptimal speed 

variances 

7 

6 

where T is a discrete period. In this analysis, the steady- 

state solutions (as k -+ co) are considered, mainly because 

simple analytic solutions can be obtained for this case. 

Also, this line of analysis is justifiable when the tracking 

period is much longer than the noise correlation time. 

I 
pa22 (C )  

( a )  pcll (0) = 10.0 m2/s2 

............ (b)pcll (0)= 5 .0m2L2  

--- ( c )  PC,, (0) = 2.0 m 2 L 2  

-- (d) pcl I (0) = 1 .0 ,'A2 
(o)= 0.5 m2,L2 

Pc22 (0) = 2 . 0 ~  1 0 ~ ~ ~  

'rc = 4.0 km2/s 

The elements pij of the optimal covariance of Eq. (55) 
are computed. 
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0.51 I I 
0 200 400 600 

TlME t, s 

Fig. 3. Actual and optimal variances of position of a 

spacecraft with range data for various initial suboptimal 

position variances 

0.51 I I I 
0 200 400 600 

TlME t, s 

Fig. 4. Actual and optimal variances of position of a 

spacecraft with range data for various suboptimal noise 

spectral densities 

When a different noise nlodel b, (where b, = e - T / T c )  and 

r ,  is employed, the covariance pCij is computed by the 

above equations with b, and r, in the place of b and 1. 

respectively. The filter is designed which becomes inev- 

itably suboptimal. The variances pCij associated with this 

suboptimal filter are conlputed as solutions of three sets 

of recurrence equations (Eqs. 62-64). Again only the 

steady state solutions are considered. 

The related portions of P, and A matrixes are (a,, = 

standard deviation of data noise) 

1 
,121 = - - 

D(h) 
bk,,~: [ b ~ b  - (1 - b')] 

1 
= ~ ( h )  [I - b(1 - kc,)] [ b ~ b  - (1 - b')] a;L 

(108) 

where 

D(x) = (1 - b) (1 - bb,) + b(k,, + kc, - bb,) 

(109) 

TlME t, s 

Fig. 5. Computed, actual, and optimal variances of 

speed of a spacecraft with range data 

Also, the computed filter gains lc,, and kc, are given by 

with 
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By the use of these elements of the P,, and A matrices, 

p,ij are derived from Eq. (62) which are given in the 

form of the following three linear equations: 

where 

Solving these linear equations provides the desired p , i j .  

The standard deviations of the estimate of speed with 

the suboptimal filter are plotted in Figs. 6(a) and 7(a) 

against 7, and u,,,, respectively. The standard deviation of 

data noise is v,, = 1 mm/s and that of acceleration noise 

is u,, = 5.771 X 10-%n~/sand  T is taken as 1 min. The 

nominal correlation time of data noise is 7 = 30 s. In both 

4 6  10' 2 4 6  12 2 4  6 lo3 2 

ASSUMED CORRELATION TlME OF DATA NOISE, r 

1 0 '  2 4 6 10' 2 4 6 lo3 2 4 6 lo4 2 4 6 lo5 
ASSUMED CORRELATION TlME OF PROCESS NOISE, s 

Fig. 6 .  Actual and ccimjiilted vorianies of suboptimal filters far a s s u m e d  correlation !!me of data rpoise 
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where 10 and n are independent white noise with power 
spectral densities q and r, respectively. Also, 

-STANDARD DEVIATION OF ACTUAL ESTIMATE E 0.2 - 
"9 
w --COMPUTED STANDARD DEVIATION pcll ( ) 

0 I I I l l  I I .  
0. 

"9 10-I 2 4 6 lo0 2 4 6 10' 
Y 
w 
z ASSUMED STANDARD DEVIATION OF DATA NOISE, mm/s 

Fig. 7. Actual and computed variances of suboptimal 

filters for assumed standard deviation of process noise 

cases the observed speed estimate is rather insensitive in 
magnitude of noise. They become minimum and equal to 
the optimal values when T ,  = T and cr,,, = cr,,. 

2. Modeling error of process noise. The effect of 

modeling errors of process noise is analyzed in this sub- 
section for the same rectiIinear motion of the spacecraft. 
It is assumed that the spacecraft is subject to an exponen- 
tially correlated acceleration noise x, and its speed x1 is 

estimated by the doppler data y that are contaminated 
by the white data noise n. An analytical solution of the 
problem in discrete form as closed-form solutions, are not 
readily available. Therefore, solution in continuous form 

is attempted. The basic equations for the continuous case, 

described in Eqs. ( 2 8 3 0 ) ,  are employed in the subsequent 
analysis. The process and observation equations are 

The steady-state solutions of the optimal variances pij 

are computed as 

When an erroneous model PC(= 1/~, )  and q, is employed, 
the suboptimal filter is designed with p, and q,  in place of 
p and q, respectively, in the above equations. The related 

solutions of A and P, matrices are computed as: 

where 

Ap = PC - B (129)  

D(A) = (p  + kc,) (P  f P C )  + kc2 (132)  

Finally, the variance paij  associated with the suboptimal 
filter are derived as solutions of the following three linear 

equations: 

2kclpall - 2pa12 = rk% (133) 

kc,,pall + (pc + kc1)palz - pa22 = rkc,kc2 - ~ 2 l ~ p  

(134)  

2kczpalz + 2Pcpa22 = rkE2 - 2X22AP (135) 
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With the use of almost equivalent values for standard 

deviations of process and data noise to those of the 

preceding case (v,, = I mm/s with 1 min count time, 

ale = cn~/s" and the process noise correlation time 

7 = 1000 s), the square root of p,,, is plotted against 7, 

and v,,, in Figs. 6(b) and 7(b), respectively. These num- 

bers are typical for solar-electrically thrusted space 

vehicles (Ref. 11). The estimate of speed is considerably 

sensitive to the correlation time of process noise 

as well as to its magnitude v,,,. 

VIII. Conclusions 

The algorithms for evaluating the effect of errors due to 

modeling errors in the Kalman filter have been presented 

in this report for both continuous and discrete systems. 

The error bound of the Kalman filter has been studied 

when the incorrect a priori statistics of the initial condi- 

tions and system dynamic nlodels as well as those of the 

noise models are employed. The conservative design 

criterion expressed in Theorems 1 and 4 (Sections IV 

and VI) guarantees that the suboptimal filter satisfying 

it remains within the specified range over the estimation 

period. Also, the formulas of Eqs. (28-30) for continuous 

systems and for those of Eqs. (62-64) for discrete systems 

supply the necessary information to evaluate the effect of 

errors qualitatively for parametric studies. Such parame- 

tric investigations are important to discover to what extent 

conservative assignment of a priori statistics and noise 

models can be made. Large covariances of initial co- 

ordinates and noise tend to increase the covariance of 

estimates and eventually to slow down its convergence. 

This degrades the sensitivity of the filter. 

The first example of Section VII demonstrates the im- 

portance of preflight parametric studies when estimations 

are to be made in a short interval. An optimistic selection 

of the a priori statistics [smaller values of P,(O), Q,, and 

R, than true values] is especially dangerous because it 

prevents the estimator from having a proper gain K ( t )  
during the initial period of estimation [case (e) of Fig. 1, 

case (d) of Fig. 3, and case (d) of Fig. 41. I t  has been 

observed, however, that an excessively conservative choice 

may be harmful as well because it frequently results in 

a large offset of suboptimal covariances from the optimal 

ones at the end of the estimation period [case (a) of Figs. 1, 

3, and 41. 

The second example is given to study the influence of 

noise correlation time on the suboptimal filter perfor- 

mance. This is an important problem in space missions 

because it is often difficult to obtain the exact values of 

correlation time for stochastic variables such as fluctua- 

tions of solar pressure or of the low-thrust engine power. 

Therefore it is essential to carry out a sensitivity study 

of the filter. 
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Nomenclature 

expected value operator on stochastic variables P(t) covariailce nlatrix of optimal estimator 

= P,(t) - P(t) : difference between actual and P,(t) actual covaria~lce nlatrix of suboptinla1 estimator 

true covariance matrix P,(t) computed covariance matrix ~, 

= P, (t) - P,{(t) : difference between actual and 
P, (0) assunled a priori statistics 

colnvuted covariance matrix 
A 

Q(t) covariance nlatrix of process noise 
= P,(t) - P(t) : difference between computed 

and true covariance matrices Qc(t) assunled covariance matrix of process noise 

transpose of F hQ(t) =Q,.(t) - Q(t) : difference between assulned 

n.,. X I?.,,. process matrix 
and true covariance nlatrix of 

vrocess noise 
assumed process matrix 

R(t) covariallce lnatrix of data noise 
= F,(t) - F(t) : difference between assunled 

and true process nlatrix R,(t) assumed covariance matrix of data noise 

12,. X 12," coefficient nlatrix of process noise hR(t) = R,(t) - R(t) : difference between assunled 

and true covariance matrix of 
assumed coefficient matrix of process noise data noise 

n .  X n, observation matrix 
t ~ ( t )  n,, vector of process noise 

assumed observation nlatrix 
2 time derivative of x 

= H,(t) - H(t) : difference between assumed 
x(t) n,. vector of parameters to be estinlated 

and true observation matrix 
x*(t) optimal estinlator 

identity nlatrix 

gain of optimal estimator 
xz(t) suboptimal estimator 

computed gain 
y(t) 12, vector of observation 

n, vector of observation noise S(t) Dirac delta function 
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