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Background: Physical activity recall instruments provide an inexpensive method of collecting physical activity 
patterns on a sample of individuals, but they are subject to systematic and random measurement error. Statistical 
models can be used to estimate measurement error in activity recalls and provide more accurate estimates of 
usual activity parameters for a population. Methods: We develop a measurement error model for a short-term 
activity recall that describes the relationship between the recall and an individual’s usual activity over a long 
period of time. The model includes terms for systematic and random measurement errors. To estimate model 
parameters, the design should include replicate observations of a concurrent activity recall and an objective 
monitor measurement on a subsample of respondents. Results: We illustrate the approach with preliminary 
data from the Iowa Physical Activity Measurement Study. In this dataset, recalls tend to overestimate actual 
activity, and measurement errors greatly increase the variance of recalls relative to the person-to-person varia-
tion in usual activity. Statistical adjustments are used to remove bias and extraneous variation in estimating the 
usual activity distribution. Conclusions: Modeling measurement error in recall data can be used to provide 
more accurate estimates of long-term activity behavior.
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Physical activity researchers are often interested in 
evaluating typical levels of physical activity behavior in 
populations. This information is needed for improved 
public health surveillance, for examining associations 
with health outcomes, and for evaluating effectiveness of 
behavioral interventions.1 These types of goals are best 
served by considering long-term or habitual activity pat-
terns for individuals.2 We refer to an individual’s long-run 
average activity level per unit of time (eg, day or week) 
as the individual’s usual activity, where “activity” may 
refer to total energy expenditure, time spent at particular 
MET-levels, or some other activity metric per unit of time.

Unfortunately, it is impractical to directly estimate 
the usual activity of an individual. To do so would require 
accurately measuring activity levels for an individual 
over a long period of time. As a result, most studies turn 
to simpler measures, such as physical activity recall 
questionnaires that ask a respondent to provide a list of 
the activities that s/he has engaged in, along with infor-
mation on the duration, frequency, and intensity of the 
physical activity. In some cases, the participant is asked 
to provide a global self-reported usual activity level over 

a long period of time. The appeal of self-reported usual 
activity levels is that they attempt to directly estimate 
the usual activity level for a person. However, research-
ers have noted the potential large error associated with 
such an approach.3 An alternative method is to ask about 
very recent activity (eg, yesterday’s activity) to reduce 
the burden and error associated with a long-term recall. 
The quality of the shorter recall is higher,4 but recalled 
activity over a short period of time is not a good measure 
of long-term behavior for a person.

In this paper, we discuss how statistical models can 
be used to describe the relationship between a short-term 
activity measurement and the target concept of an indi-
vidual’s usual activity. We show how models describe the 
effect of various sources of measurement error in recall 
data, including systematic bias and variation associ-
ated with nuisance factors and measurement error. The 
approach sets the stage for generating estimates from 
the recall data that are adjusted for these errors.  The 
resulting estimates offer more accurate descriptions of 
relationships between health outcomes and physical 
activity and of parameters such as the percentage of the 
population that fail to meet a physical activity threshold.

Researchers and policy makers in dietary assessment 
use a similar approach to estimate distributions of usual 
daily intake for nutrients and other food components. In 
the 1980s, Beaton and colleagues5 noted that the day-to-
day variation in short term dietary recall data swamps the 
person-to-person variation associated with usual intakes. 
Shortly thereafter, the National Academies issued a 
report recommending research into statistical methods to 
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adjust for nuisance effects in 24-hr dietary recall data.6 
In response to this call, the statistical methods were 
developed to estimate distributions of usual intakes for 
nutrients and foods.7–10 Instead of asking for self-reported 
long-run intakes (eg, via a food frequency question-
naire), surveys such as the National Health and Nutrition 
Examination Survey (NHANES) obtain data from a large 
sample of individuals about their dietary intake in the last 
24 hours. A smaller sample is asked to provide a second 
24-hr intake on another day. A statistical model is used to 
describe an individual’s 24-hr dietary recall in relation to 
the individual’s usual intake and the measurement error 
associated with a single day’s dietary recall. Data from 
the large sample of single 24-hr measurements plus the 
smaller sample of duplicate measurements are then used 
to estimate parameters in the model and ultimately the 
distribution of usual daily intakes for the food component. 
These methods are now used by the US to estimate the 
percent of population groups who have inadequate or 
excessive intakes.

An advantage in physical activity research is that 
more tools are available for modeling the errors in physi-
cal activity recall data than for dietary surveys. Doubly 
labeled water and calorimetry can be used to obtain 
accurate measures of energy expenditure,1 although these 
methods are too expensive and burdensome for most 
population studies. A promising alternative for energy 
expenditure and other behavioral metrics can be found 
in relatively inexpensive activity monitors. Objective 
activity measurements can be made via accelerometers, 
multisensor monitors and other devices, providing a 
reference measure for actual activity levels.1 While this 
doesn’t eliminate error, it allows error components to be 
modeled in more detail, particularly in describing the 
potential bias in self-reported data.

Currently, the use of measurement error models in 
physical activity literature is limited. Exceptions include 
work by Ferrari and colleagues11 and Spiegelman and 
colleagues.12 One barrier to adopting these methods is a 
lack of familiarity with how models are constructed and 
used in practice to answer public health questions. The 
goal of this paper is to provide a conceptual understand-
ing of how statistical models can express the error in an 
activity recall, and to provide insight into study designs 
that support estimation of parameters related to usual 
activity. Because this approach can be used for any type 
of activity metric, we are intentionally vague about the 
metric for activity for much of the discussion. However, 
we illustrate the approach by modeling total energy 
expenditure from a preliminary data set associated with 
a physical activity survey being conducted in Iowa.

We begin by describing classes of errors that occur 
when collecting data from a sample of respondents. We 
then construct a series of error models that account for 
errors that occur in an individual’s short-term activ-
ity recall as it relates to the individual’s usual activity. 
Designs that support estimation of error parameters 
and of usual activity distributions are discussed, which 
involve the use of a reference measure such as an activity 

monitor. Finally, we briefly illustrate these ideas with 
preliminary data on daily energy expenditure collected 
from adult women using a 24-hr activity recall and a 
multisensor activity monitor, and discuss the implications 
of this approach.

Modeling Errors

Classes of Errors in Survey Data

Survey methodology is a scientific field that develops 
methods for collecting information from human and other 
types of populations in a way that minimizes errors to 
the extent possible.13 A survey or study that follows this 
approach results in a data set that can be used to create 
statistically valid estimates to describe the population 
of interest. One of the basic tenets of the field is to rec-
ognize and account for errors that occur in the survey 
data collection process. The survey process for human 
populations involves selecting a random sample (often 
called a “probability sample”) of individuals or perhaps 
households, recruiting the randomly selected household 
or person in the household to participate in the study, 
obtaining specified measurements or answers to ques-
tions, editing and processing the data, and creating esti-
mates from the final data set. The major error types that 
result from this process include coverage error (when the 
list from which the random sample is selected does not 
include the entire population of interest, and the omitted 
part of the population behaves differently from the rest of 
the population), sampling error (due to the fact that our 
estimates are based on a sample of the population, rather 
than all of the population), nonresponse error (when ran-
domly selected persons or households don’t participate 
and the nonrespondents behave differently from the rest 
of the sample), specification error (when the question or 
measurement doesn’t directly measure on the concept of 
interest), measurement error (when the response provided 
or measurement taken is erroneous), and processing error 
(when the algorithms or procedures used to prepare the 
data for analyses contain errors).13

All of these types of errors occur in physical activ-
ity studies. We may, for example, fail to include more 
sedentary or less healthy individuals in our sampling 
list, which will result in biased estimates of health and 
activity behaviors (coverage error). Similarly, if nonre-
spondents are disproportionately inactive relative to the 
responding part of the sample, estimates will be biased 
(nonresponse bias). Sampling error is the main type of 
error discussed in statistics classes, and arises from the 
fact that we are making estimates for the population based 
on a random sample or subset of the population; that is, 
we do not expect the estimates to be exactly the same as 
the value we would get if we could observe all members 
of the population.

In this paper, we are primarily interested in errors 
that impact the measurement process. For example, the 
24-hr recall does not measure the usual long-run aver-
age activity for an individual. This would be a form of 
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specification error in studies where habitual activity is of 
interest. We also know that respondents tend to overesti-
mate good behavior and underestimate poor behavior,14,15 
inducing a form of measurement error. The recall process 
is also prone to errors of cognition and memory,3,16 par-
ticularly for routine and sedentary activities that are not 
encoded in memory as discrete events.17 Finally, even 
if there were no measurement error, data on time spent 
performing a specific activity is processed into a summary 
measure, such as total energy expenditure, MET–hrs, 
or time spent at a particular MET-level. This involves, 
for example, assigning a MET value to an activity via 
the Compendium of Physical Activity,18 which offers a 
single value for all respondents that engage in that activ-
ity (processing error). In our modeling discussions, we 
will focus primarily on specification and measurement 
error, since a different kind of study would be needed to 
evaluate processing error.

Developing a Model for Activity Recall 
Data

In the following 4 parts of this section, we develop a 
statistical model that represents the relationship between 
an activity recall and the true usual activity for an indi-
vidual. We focus specifically on modeling a 24-hr recall 
in relation to the usual daily activity for a person, although 
this approach can be applied to data from other forms of 
recall instruments. To motivate the model structure and 
notation, we build the model for a 24-hr recall sequen-
tially, starting with a model that relates a hypothetical 
“error-free” 24-hr activity recall to an individual’s usual 
daily activity. We extend this model to include systematic 
bias, and then introduce 2 types of random measurement 
errors in a 24-hr recall relative to the usual activity of a 
person. The implications of using a single 24-hr recall as 
a surrogate for usual daily activity are discussed before 
turning to study designs that will support estimation of 
this model.

A Simple Model for an Error-Free 24-hr 
Activity Recall

We start with an unrealistic model that assumes the 24-hr 
activity recall is error-free. In other words, the respondent 
always provides a perfect recall that equals the true activ-
ity level on that day. To relate the 24-hr recall to usual 
activity, we construct a model that recognizes that the true 
activity on a particular day is equal to the individual’s 
usual daily activity plus a deviation that reflects the dif-
ference between that day’s activity and the individual’s 
usual daily activity.

We denote the 24-hr recall (R) for individual k on day 
j as Rkj, and the usual activity (U) for individual k as Uk. 
Recall that the usual activity is the average daily activity 
over a long time period, such as a year. For individual k, 
we expect that on some days, the activity level will be 
higher than the usual activity, while on other days, the 
individual will engage in less activity than her/his usual 

activity. We represent the deviation between the 24-hr 
activity recall for individual k on day j and individual k’s 
usual intake as Dkj. We can express these concepts in a 
statistical model for the 24-hr recall for individual k on 
day j as follows:

	 Rkj = Uk + Dkj.	 (1)

As we expand this model to include errors in recall data, 
it is useful to think of Uk + Dkj as the true activity level for 
individual k on day j. A key idea in this model formula-
tion is that the error-free 24-hr recall can be viewed as 
an unbiased, but “noisy” estimate of individual k’s usual 
activity. By noisy, we mean that the recall for any one 
day will be an unreliable (or imprecise) estimate of the 
individual’s usual activity.

While this model describes the relationship of a 
person’s recall to her/his usual activity, we also want the 
model to capture our assumptions about how the usual 
activity level varies across individuals in the population of 
interest. If we were able to obtain the usual activity value 
for each individual in the population, we could average 
them to calculate the mean usual activity for the popula-
tion, which we denote as μU. A population that is generally 
quite active will have a higher mean usual activity than 
a population whose members tend to be sedentary. Like-
wise, we describe the person-to-person variation in usual 
activity by the variance of usual activity in the popula-
tion, denoted by σU

2. A population where individuals 
have consistent physical activity behaviors (eg, athletes 
in training) has smaller usual activity variance than, say, 
the general population of adults in the US, who would 
vary widely in activity levels from person to person. 
Since our primary interest is in describing the patterns 
of usual activity in a population, the usual activity mean 
and the person-to-person variance are important model 
parameters that we will estimate. The notation we add to 
the model to describe the population mean and variance 
for the usual activity levels in a population is Uk ~ (μU, 
σU

2), which is read as “the usual activity for individuals 
in the population has a mean of μU and a variance of σU

2.”
The mean and variance of usual activity summarize 

2 features of the distribution of usual activity, namely, 
the central tendency for persons in the population (mean) 
and the variability from person to person in usual activ-
ity (variance). The usual activity distribution is a more 
complete description of the usual activity patterns in a 
population. The distribution is often described using a 
function, such as the normal distribution (a bell-shaped 
curve centered at the mean) or the lognormal distribution 
(skewed to the right, indicating that a relatively small 
proportion of individuals have higher usual activity 
levels than the rest of the population). Other summary 
parameters of the usual activity distribution include the 
median usual activity (half of the population has usual 
activity levels below the median and half above) and the 
percentage of individuals in the population whose activity 
level falls below a threshold of healthy behavior. One goal 
in measurement error modeling is to provide an estimate 
of the usual activity distribution so that any summary of 
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the distribution can be estimated, including the mean, 
variance, median, and percentiles.

Returning to model (1), we also need to describe the 
distribution of the deviation of day j’s activity from the 
usual activity for individual k, Dkj. Because usual activity 
is the long-run mean activity for individual k, we expect 
that on some days, the individual’s activity level will be 
higher than her/his usual activity, while on other days, the 
individual will engage in less activity than her/his usual 
activity. Thus, for model (1), we assume that the mean of 
the daily deviations (actual activity on a day minus usual 
activity) for an individual is 0. We also assume that the 
variance of the deviations is the same for all individu-
als in this paper (more complicated assumptions can be 
made). That is, the deviations in the daily activity level 
from an individual’s usual activity level are of the same 
magnitude as other individuals in the population. Using 
σD

2 to denote the variance of the deviations, we say that 
Dkj ~ (0, σD

2).
Finally, we consider distribution assumptions for the 

24-hr activity recalls. If we are willing to assume that 
the daily deviations are unrelated to usual activity (ie, 
statistically independent), then we can derive the mean 
and variance of the error-free 24-hr recall values for the 
model. Under these conditions, the 24-hr activity recalls 
have the same mean as the usual activity distribution, 
μU, and the variance of the 24-hr activity recalls is σU

2 
+ σD

2. These assumptions can be expressed as Rkj ~ (μU, 
σU

2 + σD
2).

Adding Systematic Measurement Error 
to the Model

Studies have shown that recall data may provide biased 
indicators of the individual’s true activity on a par-
ticular day.19,20 A linear model is a common method of 

expressing a systematic bias in a measurement. Under the 
assumptions of linear bias and no random measurement 
error, our model takes the form

	 Rkj = β0 + β1 (Uk + Dkj), 	 (2)

where β0 is the intercept and β1 is the slope for the linear 
bias, Uk ~ (μU, σU

2), Dkj ~ (0, σD
2), and Rkj ~ (β0 + β1μU, 

β1
2σU

2 + β1
2σD

2) assuming U and D are independent. 
The intercept parameter represents an overall bias in 
reported daily activity that is present regardless of the 
true activity for that day. The slope parameter indicates 
how bias changes in relation to the true activity for that 
day. Many bias patterns are represented by model (2). 
The simplest case is when no systematic bias is present, 
which occurs when the intercept is 0 and the slope is 1. 
Figure 1 illustrates other bias patterns including under-
reporting of small activity values and overreporting of 
large values, general overreporting of activity with more 
bias for larger levels of activity, and overreporting of 
small activity values and underreporting of large values.

The systematic measurement error associated with 
model (2) results in a different distribution for the 24-hr 
activity recall Rkj than under model (1). The assumption 
of linear bias leads to a mean of the 24-hr recall distribu-
tion, β0 + β1μU, that is biased for the true usual activity 
mean, μU (unless β0 = 0 and β1 = 1). In addition, the bias 
influences the variation in 24-hr activity recalls, β1

2σU
2 

+ β1
2σD

2.

Adding Random Measurement Error 
to the Model

Here, we consider 2 forms of random measurement error, 
one expressed as person-to-person variation reporting 
biases and the other expressed as remaining measure-
ment error associated with the recall from a specific day.

Figure 1 — Examples of bias patterns when the systematic bias in a 24-hr physical activity recall (PAR) is a linear function of 
the true activity on that day, using energy expenditure (EE) as the activity metric. The dashed line represents the case where the 
24-hr recall accurately measures the true activity for that day, where the intercept is 0 and the slope is 1 in model (2). The solid line 
represents a linear bias in model (2) for the cases of (a) negative intercept and slope larger than 1, where lower activity levels are 
underreported and larger activity levels are overreported; (b) positive intercept and slope less than 1, where smaller activity levels 
are over reported and larger activity levels are underreported; and (c) positive intercept and slope equal to 1, where all activity levels 
are overreported by the same amount, regardless of usual activity level.
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Model (2) implies that each individual’s reporting 
bias is the same, which we know to be untrue. In fact, indi-
viduals vary in their misreporting tendencies. One person 
may be very aware of her/his activity level and offer a 
more accurate report relative to the general population 
bias from model (2). Another person may be susceptible 
to social desirability and overstate good behavior, such as 
time spent exercising. We use Sk to denote the deviation 
of an individual’s average reporting bias relative to the 
average bias for the population expressed in model (2). 
The person-to-person variation in subject-specific bias, 
Sk, is a form of random measurement error. Typically, we 
assume that this deviation has a mean of 0 and a variance 
σS

2, reflecting the random variation in recall bias from 
person to person. Adding a term to represent the pres-
ence of random subject-specific bias, the model becomes

	 Rkj = β0 + β1 (Uk + Dkj) + Sk.	 (3)

A second source of random error arises because, on any 
given day, reporting errors vary from a person’s average 
reporting bias as expressed in model (3). For example, 
a person may have poorer recall on a day when s/he 
is fatigued, and more accurate recall on a day when 
s/he is more alert. We represent this variation with 
another model term, Ekj, which represents the deviation 
between individual k’s 24-hr recall for day j, Rkj, from 
individual k’s average reporting bias as expressed in 
model (3). This term represents another form of random 

measurement error, which is assumed to have mean 0 
and variance σE

2.

Summary of Activity Recall Model

Combining all of these terms in an additive model for 
individual k’s 24-hr activity recall on day j, we have

	 Rkj = β0 + β1 (Uk + Dkj) + Sk + Ekj, 	 (4)

where β0 is the intercept and β1 is the slope for the linear 
bias, Uk ~ (μU, σU

2), Dkj ~ (0, σD
2), Sk ~ (0, σS

2), Ekj ~ (0, 
σE

2), and Rkj ~ (β0 + β1μU, β1
2σU

2 + β1
2σD

2 + σS
2 + σE

2), 
assuming that the random model terms are independent 
(more complex assumptions are possible). The model 
parameters and the random variables and their distribu-
tions are summarized in Table 1.

This model reflects the same linear bias in the mean 
as expressed in model (2), β0 + β1μU, indicating that the 
mean of the 24-hr recalls may provide a biased estimate 
of the usual activity mean, μU. With the presence of 
systematic and random measurement error, it is also 
clear that the variance of the 24-hr recall data, β1

2σU
2 + 

β1
2σD

2 + σS
2 + σE

2, has the potential to greatly exceed the 
between-person usual activity variance, σU

2, associated 
with the usual activity distribution for the population. If 
other types of recall instruments were used, model (4) 

Table 1  Summary of Parameters and Variables Used in Measurement Error Models for Activity Recalls 
(Model 4) and for Monitor-Based Activity Measurements (Model 5)

Parameter Interpretation
μU Mean of usual activity for population

β0 Intercept for population-level systematic bias in recall

β1 Slope for population-level systematic bias in recall

σU
2 Variance of usual activity for population (between-person variation)

σD
2 Variance of daily deviations in true activity relative to an individual’s usual activity (within-person variation)

σS
2 Variance of subject-specific bias (between-person variation in person-level systematic bias relative to population bias)

σE
2 Variance of measurement error for activity recall (after accounting for other model terms)

σF
2 Variance of measurement error for monitor-based activity measurement (after accounting for other model terms)

Variable Interpretation Mean Variance
Uk Usual activity for person k (unobserved mean daily activity 

level for person k over a long time period) μU σU
2

Rkj Self-reported activity recall on day j for person k β0 + β1μU β1
2σU

2 + β1
2σD

2 + σS
2 + σE

2

Mkj Monitor-based activity measurement on j for person k μU σU
2 + σD

2 + σF
2

Dkj Deviation in true activity on day j for person k relative 
to person k’s usual activity 0 σD

2

Sk Deviation from population-level bias for activity recall 
on day j for person k (subject-specific bias) 0 σS

2

Ekj Measurement error in activity recall for person k on day j 0 σE
2

Fkj Measurement error in monitor-based activity measurement for 
person k on day j 0 σF

2
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may take the same form, although the magnitude of vari-
ance and bias terms may be different.

Implications of Using Recall Data 
to Estimate the Distribution of Usual 
Activity for a Population

In public health problems that focus on long-term activ-
ity behaviors, we are primarily interested in parameters 
associated with the usual activity distribution.1 Model 
(4) makes clear that the distribution of raw recall data 
does not accurately represent the distribution of long-run 
average activity for individuals. In particular, without 
adjusting for systematic bias, the distribution of recalls 
has the potential to be shifted to the right or left of the 
true usual activity distribution, and thus is likely to yield 
an inaccurate estimate of the mean usual activity for a 
population. Further, because of systematic and random 
sources of error in recall data, the variation in activity 
recalls can greatly exceed that of the true usual activity 
distribution. This has many practical consequences. For 
example, estimates of the percentage of the population 
that fails to meet a specific usual activity threshold will 
likely be biased. In addition, regressing health out-
comes on covariates that include activity recall data as a 
covariate will yield biased estimates of the relationship 
between physical activity and the health outcome.11,12 If 
the activity recall is the only covariate in the regression 
model, the relationship between the health outcome and 
activity (expressed by a slope) will be understated and 
may be declared insignificant when in fact there is a 
relationship between the health outcome and true usual 
activity. If additional explanatory variables are present in 
the regression model, the relationship between activity 
and the health outcome could be over- or understated.

These implications underscore the need to use mea-
surement error models in analyzing recall data so that 
parameters associated with usual activity are accurately 
estimated. In the remainder of this section, we discuss 
study design considerations and an approach for estimat-
ing the parameters of our measurement error model (4).

Study Design Considerations

Many studies record only 1 activity recall per individual, 
but a single recall per subject does not support estima-
tion of error properties. To estimate the distribution of 
usual activity or adjustment factors for health outcome 
regressions, we need to consider other study designs 
that gather more information on the error properties of 
the recall measure. Spiegelman and colleagues21 outline 
a number of designs and possible models for estimating 
measurement model parameters. For illustration, we will 
focus on a design that addresses 2 important features of 
model (4).

First, we want to separate person-to-person variation 
in activity levels from day-to-day variation in activity 
levels for a person. Day-to-day variation is a nuisance 
factor when considering long-run behaviors such as 

usual activity. Because we are primarily interested in the 
person-to-person variation in usual activity, it is important 
to remove the daily variation in activity levels. To estimate 
within-person sources of (daily) variation, we need to 
obtain 2 or more 24-hr recalls on at least a subsample 
of study respondents. NHANES uses this approach in 
dietary intake estimation by randomly selecting a sample 
from NHANES respondents to participate in a second 
24-hr dietary recall. The extra recall allows analysts to 
estimate the within-person variation in daily intakes.

The design must also facilitate estimation of sys-
tematic measurement error in the recall relative to true 
activity during the same time period. This requires a 
second type of measurement that provides an unbiased 
observation of activity during the recall time period. 
The most accurate measures of energy expenditure (eg, 
doubly-labeled water, calorimetry) are costly and burden-
some, and do not provide data on other metrics, such as 
activity behaviors. However, activity monitors offer a 
lower cost method of gathering objective data on energy 
expenditure or on other facets of physical activity for 
which no other biomarker exists, such time spent sitting or 
in moderate to vigorous activity. The most useful devices 
will be sufficiently accurate to provide approximately 
unbiased measurements on an individual for the activ-
ity metric that is being studied. A multisensor monitor 
such as a Sensewear Pro armband provides a reasonable 
option because it avoids some of the biases inherent in 
accelerometers worn on the hip for activity measures.22 
Because the device does not provide a perfect measure 
of the true activity during the time period it is worn, the 
objective measure represents a “reference” measure rather 
than a gold standard. We will present a model below 
that assumes device measurements are unbiased for the 
activity metric being studied and are subject to random 
measurement error. Having concurrent replicate measures 
of the recall and the objective measurement allows us to 
estimate true daily variation in activity as distinct from 
within-person measurement error.

Finally, when estimating the distribution of usual 
activity, the design should involve selecting a random 
(ie, probability) sample of participants from the target 
population to the degree possible. When random sampling 
is used, estimates can be credibly generalized to the larger 
population. Probability (or random) sampling involves 
knowing the probability (or likelihood) of including each 
member in the sample. Most researchers are familiar with 
simple random samples for which each member of the 
population has an equal chance of being included. How-
ever, many alternative designs exist that more effectively 
address operational constraints and estimation goals 
than simple random samples. For example, an “unequal 
probability” sample design may oversample minority 
groups by setting a higher inclusion probability in areas 
with higher minority populations. Survey weights are 
used to ensure that the data from the oversampled (and 
undersampled) areas are “weighted” to represent their 
true proportion in the population. See Lohr23 for more 
details on random sampling and weighting.
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A Model for the Reference Measure

In developing a model for the reference measure, in our 
case for the 24-hr recall, we denote the 24-hr reference 
measurement for individual k for day j as Mkj, where both 
the 24-hr recall and the reference measurement are taken 
on the same day j for the same individual. The reference 
measure is assumed to be unbiased for the target activity 
measure, in contrast to the self-report model (4). Thus, 
no intercept and slope are needed in the model for mea-
sured activity during the 24-hr period, Mkj. In addition, 
the measurement is not subject to individual biases in 
self-reporting, so the subjective random error term Sk is 
also not needed. However, we do need a term for random 
measurement error in the device, Fkj, which represents 
the deviation of individual k’s reference measurement 
from the true activity on day j. The resulting model for 
the reference measure can be written as

	 Mkj = (Uk + Dkj) + Fkj , 	 (5)

where Uk ~ (μU, σU
2), Dkj ~ (0, σD

2), Fkj ~ (0, σF
2), and Mkj 

~ (μU, σU
2 + σD

2 + σF
2).  Because the reference measure 

has fewer sources of error (no population bias or random 
variation in subject-specific bias), model (5) has a simpler 
form than model (4) for the 24-hr recall. The reference 
measure’s variance, σU

2 + σD
2 + σF

2, is still larger than 
the usual activity variance, σU

2, but smaller than the 24-hr 
recall variance. The parameters and variables for model 
(5) are summarized in Table 1.

Estimation Approach

Given data from the type of design we have outlined 
above, a number of estimation approaches can be applied. 
Most involve assuming a distribution for the observed 
activity recall and reference measurements, and for the 
unobserved usual activity. As with dietary intake data, 
physical activity data in heterogeneous populations 
are likely to be right skewed. Some methods begin by 
transforming the data to normality to simplify the model 
and estimation approach.7 After transforming the data to 
normality, the additive models (4) and (5) are assumed to 
have normal errors, which implies that the transformed 
usual activity distribution is normal. Further assump-
tions are needed regarding the correlations among error 
terms for the 2 models. Many approaches are possible,12 
and a detailed discussion of these estimators is beyond 
the scope of this paper. For the purposes of illustration, 
we develop an example using a method of moments 
approach developed by Beyler and colleagues24 for energy 
expenditure that assumes the original energy expenditure 
measurements are lognormally distributed. In the exam-
ple below, the log-scale error variances are considered 
independent.   The individual usual activity distribution 
is expressed in the original data units by applying a back-
transformation, which accounts for the bias that arises in 
nonlinear back-transformations of means.

Example
The Physical Activity Measurement Survey is a survey 
conducted in 4 Iowa counties over the course of 8 quar-
ters (3-month waves). The goal of the survey is to collect 
simultaneous 24-hr physical activity recall and objective 
activity monitor data on a sample of approximately 1200 
adults to support research in measurement error modeling 
approaches for usual physical activity distributions. Each 
quarter, a probability sample of households is selected, 
and an adult aged 21 to 70 is randomly selected from each 
household to participate in the study. The study partici-
pant is asked to wear a Sensewear Pro Minifly armband 
(Bodymedia Inc., Pittsburgh, PA) from before midnight 
of a randomly selected target day until after midnight 
on the subsequent day. On the day after wearing the 
armband, a telephone interviewer obtains a 24-hr recall 
from the respondent using an instrument modeled after a 
computerized 24-hr protocol developed by Matthews and 
colleagues25 and validated by Calabro and colleagues.26 
Roughly 10 days later, the protocol is repeated and a 
second concurrent armband and recall is collected for a 
24-hr period. Recall data on activities are processed using 
a reduced set of MET values from the Compendium of 
Physical Activity,16 which was adapted for use in the 
survey setting. MET-values and corresponding durations 
for each activity are translated to total energy expenditure 
(EE) by assuming 1 MET = 0.0175 kcal/kg/min. Monitor 
data are also converted to total energy expenditure using 
proprietary algorithms developed by the manufacturer. 
Recent validation studies conducted with doubly-labeled 
water demonstrated validity of Sensewear monitors for 
estimating free-living energy expenditure.27

Preliminary data on 171 women from the first sample 
wave are used to illustrate the measurement error model-
ing framework, using results from Beyler.24 Exploratory 
plots of the average of the 2 recalls per person and the 
average of the 2 monitor values for each person suggest 
that the models we posit for the recall and monitor data 
are reasonable for women in this sample. Consistent with 
our hypothesized models, the EE distribution for 24-hr 
recalls differs from that of the monitor (Figure 2). Most 
recall values exceed the corresponding monitor values, 
and the median for recall data (thick horizontal line in 
box plot) is higher than for the monitor data. Because 
the recall data appear to overstate EE relative to moni-
tor data for most participants, systematic bias terms are 
needed. In addition, the variability in the recall data are 
higher than in the monitor data, as indicated by the larger 
spread in the recall relative to the monitor data (Figure 
2). This suggests that the variance for recall data, which 
includes the impacts of systematic measurement error, 
person-to-person variation in reporting bias, and random 
measurement error, is larger than the variance for monitor 
data, which is subject only to the random measurement 
error associated with the objective device. It is also 
clear that the data are skewed to the right, and analyses 
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Figure 2 — The relationship between the average of 2 24-hr physical activity recall (24PAR) values and the average of 2 monitor-
based EE values for individuals, as expressed by (a) a boxplot depicting the distribution of individual recall and monitor means and 
(b) a plot of the individual recall means vs. the monitor means.

indicated that a natural log transformation of both the 
monitor and the recall data result in approximately normal 
distributions.

Because age is a factor in EE, Beyler24 explored 
whether measurement error parameters vary with age 
by dividing the preliminary sample into 4 equal-sized 
groups with age spans of 23–42, 43–52, 53–59, and 60–70 

years. We stress that age group estimates are based on 
sample sizes too small to provide meaningful estimates 
of activity patterns, and that these results are presented 
simply to demonstrate the utility of estimating error 
characteristics and adjusting for them to more accurately 
estimate the usual activity distribution. Figure 3 presents 
the linear bias model for log-transformed 24-hr recalled 

Figure 3 — Estimated bias in average daily EE from 24 to hr physical activity recalls (24PAR) in relation to average daily monitor-
based EE for (a) 23- to 42-year-old women (group 1) and (b) 60- to 70-year-old women (group 4). Line with log-dashes is fitted linear 
bias; line with short dashes is a reference line with an intercept of 0 and slope of 1 (no difference in monitor and recall measurements).
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EE relative to 24-hr monitor EE for the youngest and 
oldest age groups. The fitted bias line (line with long 
dashes) for both age groups suggested that self-reported 
data overstate actual EE as estimated by the monitor (line 
with short dashes). These early data also suggest that the 
pattern of bias may vary with age. According to the fitted 
lines, as EE increases, younger adults overstate recalled 
EE more severely (intercept positive, slope larger than 1 
at 1.22, with standard error 0.12), while for older adults, 
bias in recalled EE recall declines with increasing EE 
(intercept positive, slope smaller than 1 at 0.73, with 
standard error 0.08).

Estimated variance components did not vary with 
age for this small data set. The day-to-day variation in 
actual activity for a person is only about one-quarter the 
magnitude of person-to-person variation in usual daily 
EE (Table 2). This is markedly different from dietary 
intake data where day-to-day variation in nutrient intake 
for a person tends to swamp person-to-person variation in 
usual nutrient intakes, which was the original motivation 
for constructing measurement error models for dietary 
intake data.

Turning to the variance components for the moni-
tor, the estimated measurement error variance for the 
24-hr monitor means was slightly larger than the true 
day-to-day variation in the EE for these women. Using 
the expression for the variance of monitor values under 
model (5), the estimated variance of a 24-hr monitor 
EE measurement is about 1.5 times the estimated usual 
activity variance (Table 2). Thus, while we expect the 
monitor EE values to have the same mean as the true 
usual daily EE (due to the unbiasedness assumption), 
the estimated variation in the monitor-based EE values is 
clearly larger than the person-to-person variation in usual 
EE. Even though monitor measurements are prone to less 
error than the 24-hr recall, the 24-hr monitor values for 
EE will still overestimate the between-person variation 
of usual activity, which would affect estimates such as 

the percent of the population whose activity falls below 
a threshold level.

For recall data, the major contributor to measure-
ment error variance is the variance associated with the 
subject-specific bias, which by itself was roughly the 
same magnitude as the estimated person-to-person varia-
tion in usual EE. The random within-person measurement 
error variance for recalls was slightly larger than for the 
monitor data. The estimated variance of the 24-hr recall 
EE for age group 1 (23- to 42-year-olds), which includes 
effects of systematic and random errors that are not pres-
ent in the monitor EE variance, was over 3 times larger 
than the estimated usual activity variance; for age group 
4 (60- to 70-year-olds), the recall variance was about 
twice as large as the variance for usual EE (Table 2). This 
is a large amount of extra variation in the data relative 
to the usual activity variance, and further underscores 
the problems associated with using recall data without 
adjustment in making inferences related to long-term 
activity behaviors.

The effects of measurement error variance and bias 
for age group 1 are presented in Figure 4, which depicts 
the estimated distribution for 24-hr recalled EE, monitor-
based EE, and the usual daily EE distribution. Note that 
overstated EE values associated with 24-hr recalls shifts 
the 24-hr recall EE distribution to the right of the usual 
daily EE distribution. In addition, the large amount of 
extra variation due to measurement error in recall data 
are exhibited in the vastly larger spread of the recall 
distribution relative to the usual daily EE distribution. 
The monitor distribution also has extra variation due 
to measurement error, but far less than that of the 24-hr 
recall EE distribution.

If we were to estimate the fraction of the population 
whose EE values fell below a threshold, or even the mean 
of the usual EE distribution using the 24-hr recall data, 
we risk making biased estimates. For example, if we 
wanted to estimate the percentage of 23- to 43-year-old 

Table 2  Estimates of Variance Components for Log 24-hr EE, Based on Preliminary Iowa Physical 
Activity Survey Data From 23- to 70-Year-Old Women (for Illustration Purposes Only)

100 x Estimate (Standard Error)

Source of variation Recall Monitor
Usual EE (σU

2) 2.16  (0.25) 2.16  (0.25)

Daily deviation from usual EE (σD
2) 0.50  (0.09) 0.50  (0.09)

Subject-specific bias (σS
2) 2.11  (0.30)

Recall measurement error (σE
2) 0.66  (0.12)

Monitor measurement error  (σF
2) 0.50  (0.11)

Variance of log 24-hr EE for 23- to 42-yr-old women (group 1)a 6.73 3.15

Variance of log 24-hr EE for 60- to 70-yr-old women (group 4)b 4.17 3.15

a Variance for log 24-hr recall, (β1, age group)2σU
2 + (β1, age group)2σD

2 + σS
2 + σE

2, assumes common variance components for all age groups and separate 
bias parameters for each age group.
b Variance for log 24-hr monitor measurement, σU

2 + σD
2 + σF

2, assumes common variance components for all age groups.
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women whose usual EE values were below 1750 kcals, 
we would get a much larger estimate if we used 24-hr 
recall data without adjusting for measurement error than 
if we were to apply measurement error adjustments in 
estimating the usual activity distribution.

Conclusions
It is difficult to estimate patterns of long-run behavior 
of populations. We present an approach that involves 
making reasonably accurate measurements on short-
term behaviors and using statistical models that express 
the relationship between the short-term and long-term 
behavior. In constructing this approach, we draw from 
principles for minimizing error in scientific inferences. 
These principles rely on preventative measures that avoid 
error to the extent possible (eg, collecting data that are 
closely related to the concept of interest, as well as using 
protocols or questions to obtain data that are as accurate 
and precise as possible) and adjustment methods that 
reduce the impact of measurement error in the estimates 
(eg, measurement error models and associated estimation 
procedures).

For public health objectives that involve physical 
activity, it is nearly impossible to get an accurate mea-
sure of an individual’s usual activity. Fortunately, as with 
dietary assessment, a practical alternative is to collect 
reasonably accurate data on very recent behaviors via, 
eg, a 24-hr recall. The recall is conceptually related to the 
parameter of interest, usual activity over a long period of 
time. This relationship can be made explicit via a statisti-
cal model that expresses the relatively accurate measure 
(24-hr recall) as a function of the unobserved target 
measure (usual activity) and the hypothesized errors in 
the reasonably accurate 24-hr recall (potential bias, extra 
variation). The model includes parameters that express 
the goals of the analysis. In our example, the goals were to 
estimate the error structure of activity recalls and monitor 
measurements and to estimate parameters of the usual 
intake distribution. In other applications, the goal may be 
to estimate parameters for predicting each respondent’s 
usual activity level for use as a covariate in regression of 
health outcomes on activity measures. Alternatively, the 
model parameters may be used to estimate an attenuation 
coefficient for the regression parameter of the short-term 
activity measure in a regression model.

Figure 4 — Estimated distributions of average daily EE for 24-hr physical activity recalls (24PAR) (line with short dashes), monitor-
based EE (line with long dashes), and usual EE (solid line).
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The design of the study will depend on the analysis 
goals. Similarly, the model assumptions and estimation 
procedures will depend on the design and on the param-
eters of interest in the investigation. Although a full dis-
cussion of the options is beyond the scope of this paper, 
we have provided an example of how this process would 
work if credible estimates of usual activity behaviors in 
a population were of interest, along with estimates of 
measurement error effects. The model expresses a 24-hr 
recall as a function of bias and nuisance sources of varia-
tion plus the underlying mean and variance of the usual 
activity distribution. Typical study designs that rely on a 
single recall per participant are inadequate for estimating 
the measurement error model parameters. More intensive 
study is required of at least a subset of individuals to 
collect data on the potential error in recalls via an objec-
tive reference measurement (eg, activity monitor) and 
on nuisance factors such as daily variation in activity 
levels for a person. Surveys such as NHANES routinely 
incorporate this type of protocol for dietary assessment 
to facilitate more accurate estimation of usual dietary 
intake distributions. A design that involves replicate 
concurrent measures of the 24-hr recall and objective 
reference measure on a portion of the sample will provide 
the basis for estimating the distribution of usual activity, 
as well as regression calibration or prediction of usual 
activity covariates. We also note that scientifically valid 
inferences should be based on probability samples drawn 
from a population, rather than convenience samples of 
available subjects.

While through our example we have focused on 
24-hr EE, this approach is more broadly applicable. The 
recall instrument could be a 7-day recall that is less inten-
sive (but potentially subject to more error) than the pro-
cedure used in the Iowa Physical Activity Measurement 
Survey. In addition, other physical activity metrics can be 
used, although some may require different distributional 
assumptions. For example, when considering time spent 
in moderate-to-vigorous activity (MVPA), a sample of 
adults may yield a significant number of 0 values that sug-
gest a mixture of 2 populations: those who do not engage 
in MVPA and thus always have 0 minutes of MVPA, and 
those who do engage in MVPA and thus have either 0 or 
positive values for MVPA. A similar approach is taken 
for distributions of food intakes for components such as 
fish.8 We plan to use data from our Iowa Physical Activ-
ity Measurement Survey to explore these methods for a 
range of activity metrics, including EE, MET-hrs, and 
time spent in various types of behaviors.
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