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We study evolution of dark matter substructures, especially how they lose mass and change density
profile after they fall in gravitational potential of larger host halos. We develop an analytical prescription
that models the subhalo mass evolution and calibrate it to results of N-body numerical simulations of
various scales from very small (Earth size) to large (galaxies to clusters) halos. We then combine the results
with halo accretion histories and calculate the subhalo mass function that is physically motivated down to
Earth-mass scales. Our results—valid for arbitrary host masses and redshifts—have reasonable agreement
with those of numerical simulations at resolved scales. Our analytical model also enables self-consistent
calculations of the boost factor of dark matter annihilation, which we find to increase from tens of percent at
the smallest (Earth) and intermediate (dwarfs) masses to a factor of several at galaxy size, and to become
as large as a factor of ∼10 for the largest halos (clusters) at small redshifts. Our analytical approach can
accommodate substructures in the subhalos (sub-subhalos) in a consistent framework, which we find to
give up to a factor of a few enhancements to the annihilation boost. The presence of the subhalos enhances
the intensity of the isotropic gamma-ray background by a factor of a few, and as the result, the measurement
by the Fermi Large Area Telescope excludes the annihilation cross section greater than ∼4 × 10−26 cm3 s−1

for dark matter masses up to ∼200 GeV.

DOI: 10.1103/PhysRevD.97.123002

I. INTRODUCTION

There is strong evidence for the existence of dark matter,
such as the distribution of matter in the Universe [1,2],
rotation curves of galaxies [3,4], and bullet clusters [5]. In
spite of the efforts to unveil the nature of the dark matter,
however, our knowledge about it is still limited. Many
models of particle dark matter have been proposed, and
among them, weakly interacting massive particles (WIMPs)
are one of the best studied in accordance with supersym-
metric extensions of the standard model [6]. If dark matter is
made of newparticles such asWIMPs,which have a small but
finite interaction with the standard model sector, we expect
them to be detected through the observations of gamma rays
from self-annihilation of dark matter particles [7].
Dark matter forms virialized objects—dark matter halos,

which give some hints about its nature. For example, they
encode information of scattering between dark matter
particles and the standard model particles in the early
Universe, through the minimum halo mass being predicted
to be 10−12–10−3 M⊙ for the supersymmetric neutralino
[8–11]. Halos grow larger and larger by merging with each
other and accreting smaller ones, leaving imprints of dark

matter properties in their hierarchical structures. Smaller
halos that are accreted onto larger (host) halos are referred to
as subhalos or substructures. Once subhalos are trapped by
their hosts, they lose their mass through a gravitational tidal
force while orbiting. With given properties of the host and
subhalos at their accretion, we can determine the tidal mass
loss of the subhalos and remaining structures after some
orbiting time. This procedure is studied through the analyti-
cal [12–14], semianalytical [15], and numerical [16–21]
approaches.
Subhalos remaining in their host are boosters for indirect

detection experiments of particle dark matter [22–27],
especially for gamma-ray telescopes such as the Fermi
Large Area Telescope (LAT). In order to discuss the
evolution of subhalo abundance, mass distribution, and
density profile, and to estimate the substructure boost,
analytical modeling is a powerful tool since they do not
suffer from resolution limits. We can cover a wide range of
magnitude in both the host-halo mass and the mass ratio of
the hosts to subhalos in the analytical calculations.
In this paper, we discuss properties of subhalos after tidal

stripping and, as one of the applications, the boost factor
for the gamma-ray signals from dark matter annihilation.
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This study updates calculations of the substructure boost by
Ref. [27] in various aspects. In order to access the proper-
ties of the subhalos after accretion, we follow an analytical
approach in Ref. [14], which considers the mass loss of the
subhalos due to the tidal stripping under the potential of
the host halos. This analytical model is physically moti-
vated although it has simplified some aspects of tidal
stripping. We include the host mass and redshift depend-
ence of the tidal stripping for the purpose of improving the
accuracy of the models. Then, we consistently take evo-
lutions of the host and subhalos into account in calculations
of their properties. After modeling of the tidal mass loss of
subhalos, we calculate the boost factors of the subhalos for
the gamma-ray signals from dark matter annihilation as
well as the mass function of subhalos.
The structure of this article is as follows. In Sec. II, we

explain the ways to derive the properties of subhalos after
tidal stripping fromquantities at the accretion time. InSec. III,
we derive the host mass and redshift dependence of the
subhalomass-loss rate. InSec. IV,we showapplications to the
observational signatures such as the subhalo mass function
and annihilationboost factor.We thendiscuss implications for
the isotropic gamma-ray background in Sec. V and summa-
rize our findings in Sec. VI. Throughout the paper, we adopt
cosmological parameters from Ref. [2] (Table 4, “TT+lowP
+lensing”), and use “ln” and “log” to represent natural and
10-base logarithmic functions, respectively.

II. DENSITY PROFILE OF SUBHALOS

Dark matter halos have evolved by merging and accre-
tion. After accretion onto their hosts, subhalos lose their
mass due to tidal stripping while they are orbiting in their
host’s gravitational potential. In this section, we show that
the properties of subhalos after tidal stripping can be
determined given the mass macc at accretion redshift zacc
for given host halos, on a statistical basis. Starting from
(macc, zacc), we can calculate the subhalo mass at a redshift
z0, denoted as m0, by integrating its mass-loss rate _m from
accretion redshift zacc to z0. We parametrize the mass-loss
rate as

_mðzÞ ¼ −A
mðzÞ
τdynðzÞ

�

mðzÞ
MðzÞ

�

ζ

; ð1Þ

where τdynðzÞ is the dynamical time scale [14]. The evolution
of the host mass MðzÞ is discussed in Ref. [28], and is also
summarized in Appendix A. Parameters A and ζ are taken to
be constants in Ref. [14], but in a more realistic case, both of
them should dependon the hostmassMðzÞ and the redshift z.
We derive the dependence following the analytical discus-
sion in Ref. [14] with several updates in the next section.
In this section, we show how density profiles of the

subhalos including a scale radius rs and a characteristic
density ρs evolve, associated with the evolution of the
subhalo mass from macc at zacc to m0 at z0. Throughout our

calculations, we adopt the Navarro-Frenk-White (NFW)
density profile [29] up to a truncation radius rt, and zero
beyond:

ρðrÞ ¼
�

ρsr
3
s=½rðrþ rsÞ2�; for r ≤ rt;

0; for r > rt:
ð2Þ

First, we determine ρs and rs at the accretion redshift
zacc. As it was a field halo (i.e., a halo that is not in a
larger halo’s gravitational potential) when accreted, we first
determine the virial radius rvir;acc at zacc from the mass of
the subhalo at accretion macc,

macc ¼
4π

3
ΔcðzaÞρcðzaccÞr3vir;acc; ð3Þ

where Δc ¼ 18π2 þ 82d − 39d2, d ¼ Ωmð1þ zaccÞ3=
½Ωmð1þ zaccÞ3 þΩΛ� − 1 [30], and ρcðzaccÞ is the critical
density at zacc. The scale radius is determined by rs;acc ¼
rvir;acc=cvir;acc at zacc once a concentration parameter cvir;acc
is given. The concentration follows the log-normal distri-
bution, whose mean is obtained in, e.g., Ref. [31], which is
summarized in Appendix B. Note that Ref. [31] defines the
concentration as a function of halo masses measured in
M200, defined as an enclosed mass in a radius within
which the average density is 200 times the critical density.
The virial concentration parameter cvir;acc is obtained by
a conversion between different definitions of mass [32],
followed by cvir;acc ¼ c200;accrvir;acc=r200;acc. For the rms of
the log-normal distribution, we adopt σlog c ¼ 0.13 [33].
The characteristic density ρs;acc is then determined from

ρs;acc ¼
macc

4πr3s;accfðcvir;accÞ
; ð4Þ

where

fðcÞ ¼ lnð1þ cÞ − c

1þ c
: ð5Þ

The set of parameters ðrs;acc; ρs;accÞ is related to the
maximum circular velocity Vmax and radius rmax at which
the circular velocity reaches the maximum through

rs ¼
rmax

2.163
; ð6Þ

ρs ¼
4.625
4πG

�

Vmax

rs

�

2

: ð7Þ

Reference [34] derived the relation between the subhalo
properties before and after the tidal stripping by following
the evolution of Vmax and rmax. The relation between the
(Vmax, rmax) at accretion redshift zacc and those at
the arbitrarily chosen observation redshift z0, in terms of
the mass ratio after and before tidal stripping m0=macc, is
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Vmax;0

Vmax;acc
¼ 20.4ðm0=maccÞ0.3

ð1þm0=maccÞ0.4
; ð8Þ

rmax;0

rmax;acc
¼ 2−0.3ðm0=maccÞ0.4

ð1þm0=maccÞ−0.3
; ð9Þ

for the inner density profile proportional to r−1, as is the
case of the NFW. Then, we can determine rs;0 and ρs;0 at
z ¼ z0 through Vmax and rmax in Eqs. (6) and (7). Finally,
the truncation radius rt;0 is determined from m0, ρs;0, and
rs;0 by solving

m0 ¼ 4πρs;0r
3
s;0f

�

rt;0

rs;0

�

: ð10Þ

We remove the subhalos with rt;0=rs;0 < 0.77 from further
consideration, as it is usually assumed that the subhalos
satisfying this condition are completely disrupted [35].
(But see Ref. [21] for a claim otherwise.)
To summarize, following the prescription in this section

(and the mass-loss rate _m discussed in the next section), we
can determine the density profile of the subhalos after tidal
stripping at an arbitrary redshift z0 up to scatter of the
concentration-mass relation, given the mass and redshift of
accretion, macc and zacc. Combined with the distribution of
macc and zacc that is obtained with the extended Press-
Schechter formalism [36] (summarized in Appendix C),
we can compute the statistical average of subhalo quantities
of various interests. Among them, we discuss the subhalo
mass functions and annihilation boost factor in Sec. IV.

III. TIDAL STRIPPING

The subhalo mass-loss rate _m, as can be seen in Eq. (1),
should depend on both the redshift z and the host mass
MðzÞ, since the subhalo evolution is determined by the tidal
force of their host. Following Ref. [14], by assuming that
tidal stripping of the subhalos occurs in one complete
orbital period and there are no lags between the subhalo
accretion and the tidal stripping of those accreted, we
estimate the mass-loss rate of the accreted subhalos on a
certain host at any redshift in an analytical way. We also
show consistency of our results with those obtained by
numerical simulations.

A. Analytical model

The mass loss _mðzÞ of any subhalo is approximated as

_m ¼ m −mðrtÞ
Tr

; ð11Þ

where Tr, m, and mðrtÞ are the orbital period, the virial
mass of the subhalo just after accretion, and the mass
enclosed in the tidal truncation radius rt of the subhalo,
respectively. In order to determine the orbit of the subhalo,

we draw the orbit circularity η at infall and the radius of
the circular orbit Rc from distribution functions for each
parameter:

PðRcÞ ¼
�

5=2 ð0.6 ≤ Rc=Rvir ≤ 1.0Þ;
0 ðotherwiseÞ;

ð12Þ

PðηÞ ¼ C0ðM; zÞη1.05ð1 − ηÞC1ðM;zÞ; ð13Þ

where

C0 ¼ 3.38

�

1þ 0.567

�

M

M�ðzÞ

�

0.152
�

; ð14Þ

C1 ¼ 0.242

�

1þ 2.36

�

M

M�ðzÞ

�

0.107
�

; ð15Þ

log

�

M�ðzÞ
h−1 M⊙

�

¼ 12.42 − 1.56zþ 0.038z2: ð16Þ

We note that Eqs. (13)–(16) are calibrated with simulations
up to z ¼ 7 [37]. Pairs of η and Rc correspond to the pairs
of the angular momentum L and the total energy E of the
orbiting subhalo as follows:

E ¼ 1

2
V2
c þΦðRcÞ; ð17Þ

L ¼ ηRcVc; ð18Þ

where Vc ¼ ðGM=RcÞ1=2 is a velocity at the circular orbit.
The gravitational potential of the host Φ is

ΦðRÞ ¼ −V2
vir
ln½1þ chostvir R=Rvir�
fðchostvir ÞR=Rvir

; ð19Þ

with Vvir ¼ ðGM=RvirÞ1=2 and chostvir the host halo’s virial
velocity and virial concentration, respectively. Here, we
draw chostvir from the log-normal distribution as discussed in
the previous section.
Next, we determine the orbital period, Tr, and the

truncation radius of the subhalo, rt. They are derived from
the pericenter radius Rp and the apocenter radius Ra, which
are obtained by solving

1

R2
þ 2½ΦðRÞ − E�

L2
¼ 0: ð20Þ

The orbital period Tr is then

Tr ¼ 2

Z

Ra

Rp

dR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½E −ΦðRÞ� − L2=R2
p : ð21Þ

The truncation radius rt is obtained by solving the equation
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rt ¼ Rp

2

6

4

mðrtÞ=Mð< RpÞ
2þ L2

RpGMð<RpÞ −
d lnM
d lnR

�

�

�

Rp

3

7

5

1
3

: ð22Þ

Assuming that ρs and rs hardly change as the result of one
complete orbit after the infall, we specify the mass profile
mðrÞ up to truncation radius rt, and hence are able to
compute the mass-loss rate _m with Eq. (11).
We made this simplified assumption of unchanged ρs and

rs in order to capture the most relevant physics of tidal mass
loss in our analytical modeling. According to Ref. [34],
however, ρs and rs do change in one orbit by ≲50%.
Although we have neglected this effect in the model of tidal
stripping, our results show good agreements with those of
N-body simulations as we show below. This is likely due to
the compensation of the changes of ρs and rs with those of
rt, and therefore, our simplification does not significantly
affect our estimates about the tidal mass loss of subhalos.

B. Numerical simulations

We have also calculated the tidal stripping of subhalos
using N-body simulations. To cover a wide range of halo
mass, we used five large cosmological N-body simulations.
Table I summarizes the details of these simulations. The
ν2GC-S, ν2GC-H2 [38], and Phi-1 simulations cover halos
with a large mass (∼1011 M⊙). The Phi-2 simulation is for
intermediate mass halos (∼107 M⊙). To analyze the small-
est scale (∼10−6 M⊙), the A_N8192L800 simulation is
used. The cosmological parameters of these simulations
are Ωm ¼ 0.31, λ0 ¼ 0.69, h ¼ 0.68, ns ¼ 0.96, and
σ8 ¼ 0.83, which are consistent with an observation of
the cosmic microwave background obtained by the Planck
satellite [2,39] and those adopted in the other sections of
the present paper. The matter power spectrum in the
A_N8192L800 simulation contained the cutoff imposed
by the free motion of dark matter particles with a mass of
100 GeV [9,26]. Further details of these simulations are
presented in Ref. [38] and Ishiyama et al. (in preparation).
All simulations were conducted by a massively parallel

TREEPM code, GREEM [41,42].1 Halos and subhalos were
identified by ROCKSTAR phase space halo and subhalo

finder [43]. Merger trees are constructed by consistent tree
codes [44]. The halo and subhalo catalogs and merger trees
of the ν2GC-S, ν2GC-H2, and Phi-1 simulations are
publicly available at http://hpc.imit.chiba-u.jp/ishiymtm/
db.html.

C. Comparison

We calculate the mass-loss rate of the subhalos for
various redshift z and the host mass Mhost (defined as
M200). First, we choose the subhalo mass at accretion macc
uniformly in a logarithmic scale between the smallest mass
10−6 M⊙ and the maximum mass 0.1MðzaccÞ. For each set
of macc and zacc (as well as z and Mhost), we calculate the
mass-loss rate _m following the prescription given in
Sec. III A, by taking a Monte Carlo approach, i.e., by
drawing the concentration of the host halos, subhalo
concentration, circularity η, and radius of the circular orbit
Rc of subhalos following the distributions of each of these
parameters.
In Fig. 1, we show results of our Monte Carlo simu-

lations. We find that for a large dynamic range of subhalo
mass m (over 19 orders of magnitude as shown in the
insets) down to very small masses such as 10−6 M⊙, a
single power-law function [Eq. (1)] gives a very good fit,
which confirms the physical origin of this relation, not just
being a simple phenomenological fit.
We compare the results of the Monte Carlo calculations to

those of the N-body simulations as described in Sec. III B,
which is also shown in Fig. 1 for m̄=Mhost ≳ 10−5 (m̄ is the
orbit-averaged mass of the subhalos), resolved in the
N-body simulations. At relatively small redshifts for both
Mhost ¼ 1013 M⊙ and 107 M⊙, we find very good agree-
ment between the two prescriptions. We also check the
applicability of the analytical approach by comparing the
results with those of N-body simulations of small-mass
hosts at higher redshift, z ¼ 32, for which the η distribution
at z ¼ 7 of Ref. [37] was adopted. Even at the very high
redshift and for the very small host mass of Mhost ¼
10−2 M⊙, we still find reasonable agreement within
differences of a factor of a few in _m between results
obtained by the Monte Carlo approaches and the N-body
simulations. Although we cannot test the validity of our
Monte Carlo approach for m̄=Mhost ≪ 10−5 in comparison
with the N-body simulations, these agreements that have

TABLE I. Details of five cosmological N-body simulations used in this study. Here, N, L, and mp are the total
number of particles, box size, and mass of a simulation particle, respectively.

Name N L Softening mp [M⊙] Reference

ν2GC-S 20483 411.8 Mpc 6.28 kpc 3.2 × 108 [38,40]
ν2GC-H2 20483 102.9 Mpc 1.57 kpc 5.1 × 106 [38,40]
Phi-1 20483 47.1 Mpc 706 pc 4.8 × 105 Ishiyama et al. (in prep)
Phi-2 20483 1.47 Mpc 11 pc 14.7 Ishiyama et al. (in prep)
A_N8192L800 81923 800.0 pc 2.0 × 10−4 pc 3.7 × 10−11 Ishiyama et al. (in prep)

1http://hpc.imit.chiba-u.jp/ishiymtm/greem/.
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been seen in Fig. 1 from very small to large hosts as well as
from very high to low redshifts give us confidence that our
analytical prescription captures physics of tidal stripping,
and hence can be applied even to the cases with an extremely
small mass ratio m̄=Mhost.
From each calculation of ðMhost; zÞ, we fitted the values

of A and ζ in Eq. (1). We then derived the dependence of A
and ζ on the host mass Mhost and z as

logA ¼
�

−0.0003 log

�

Mhost

M⊙

�

þ 0.02

�

z

þ 0.011 log

�

Mhost

M⊙

�

− 0.354; ð23Þ

ζ ¼
�

0.00012 log

�

Mhost

M⊙

�

− 0.0033

�

z

− 0.0011 log

�

Mhost

M⊙

�

þ 0.026: ð24Þ

We obtain the relations, Eqs. (23) and (24), from results
of the Monte Carlo simulations that cover the host mass
from Mhost ¼ 10−6 M⊙ to 1016 M⊙ and the redshift from
z ¼ 0 to 7.

IV. RESULTS

By combining the tidal mass loss rate (Sec. III) with the
analytical prescription for computing density profiles after
tidal stripping as well as the subhalo accretion onto
evolving hosts (Sec. II), we are able to calculate quantities
of interest related to the subhalos. They are the subhalo
mass function and the annihilation boost factor, discussed
below in Secs. IVA and IV B, respectively.
We first fix the reshift of interest z0 and the host mass at

that redshift, M0. For each set of (M0, z0), we uniformly
sample macc in logarithmic space between 10−6 M⊙ and
0.1M0, and zacc between z0 þ 0.1 and 10. Each combina-
tion is characterized by a subscript i, (lnmacc;i, zacc;i).
Its weight wi is chosen to be proportional to the subhalo
accretion rate from the extended Press-Schechter formalism
(Appendix C):

wi ∝

�

d2Nsh

d lnmaccdzacc

�

i

: ð25Þ

This weight is normalized such that
X

i

wi ¼ Nsh;total; ð26Þ

where Nsh;total represents the total number of subhalos ever
accreted on the given host by the time z ¼ z0. It is obtained
by numerically integratingd2Nsh=ðd lnmaccdzaccÞ [Eq. (C1)]
over lnmacc and zacc. This way, we essentially approximate
the integral of the distribution of lnmacc and zacc as

Z

d lnmacc

Z

dzacc
d2Nsh

d lnmaccdzacc
→

X

i

wi: ð27Þ

FIG. 1. Mass-loss rate of subhalos as a function of orbit-
averaged subhalo mass m̄ in units of the host mass Mhost for
Mhost ¼ 1013 M⊙ and z ¼ 0 (top), Mhost ¼ 107 M⊙ and z ¼ 5

(middle), and Mhost ¼ 10−2 M⊙ and z ¼ 32 (bottom). Cyan
points show the Monte Carlo simulation results. Blue squares
with error bars show the results obtained by N-body simulations.
Thick error bars correspond to the 50% of the simulated halos
around the median, while thin ones correspond to the 90%. We
also show the results of the Monte Carlo simulations of a wider
mass range in inserted panels, which also include the fitting
results with Eq. (1), as overwritten solid lines on the Monte Carlo
points.
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A. Mass function of subhalos

As discussed in Sec. III A, the subhalo mass at z0 after
tidal stripping,m0;i, is calculated by integrating Eq. (1) over
cosmic time from that corresponding to z ¼ zacc;i to z ¼ z0.
The parameters A and ζ are taken from Eqs. (23) and (24),
respectively. For each i, we obtain the subhalo concen-
trations at accretion following the log-normal distribution
Pðcvir;accjmacc;i; zacc;iÞ as discussed in Sec. II and calculate
the scale radius rs;i and characteristic density ρs;i at redshift
zacc;i, as functions of cvir;acc. Those quantities after tidal
stripping are then obtained from those before the stripping
combined with the stripped mass m0;i, as in Sec. II. If the
truncation radius, rt;i, is found smaller than 0.77rs;i at
z ¼ z0 after the tidal stripping, we exclude the subhalo from
calculation of the mass function as it is regarded as
completely disrupted.
The subhalo mass function is then constructed as the

distribution of m0;i properly weighted by wi with the
condition of tidal disruption as follows:

dNsh

dm
¼

X

i

wiδðm −m0;iÞ

×
Z

dcvir;accPðcvir;accjmacc;i; zacc;iÞ

× Θ½rt;iðz0jcvir;accÞ − 0.77rs;iðz0jcvir;accÞ�; ð28Þ

where δðxÞ and ΘðxÞ are the Dirac delta function and
Heaviside step function, respectively.
The subhalo mass function has been studied most

commonly through N-body simulations in the literature.
We show m2dNsh=dm obtained by the numerical simu-
lations and by our analytical model [Eq. (28)] in Fig. 2. In
the top panel of Fig. 2, we compare the subhalo mass
function for host massesMhost ¼ 1.8 × 1012 M⊙ and 5.9 ×
1014 M⊙ at z ¼ 0 with the functions fitting to the results of
Refs. [20,45], respectively. In both cases, the simulations
and analytical models show reasonable agreement, while
our model predicts fewer subhalos. We also show the
results of ν2GC-S, ν2GC-H2, and Phi-1 simulations, all of
which show better agreement with our analytical results. In
the middle panel of Fig. 2, we compare the mass function
at z ¼ 2 and z ¼ 4 with the results of Ref. [46] as well as
ν2GC-H2, for the host that has the mass of Mhost ¼
1013 M⊙ at z ¼ 0. This again shows very good agreement
between the two approaches, where the subhalos are
resolved in the numerical simulations. Our model can also
be applied to cases of even smaller hosts. In the bottom
panel of Fig. 2, we compare the subhalo mass function for
Mhost ¼ 106 M⊙ and 107 M⊙ at z ¼ 5 with the results of
the Phi-2 simulations. Down to the resolution limit of the
simulations that are around 500–1000 M⊙, both the cal-
culations agree well. Hence, the subhalo mass functions
from our analytical model are well calibrated to the results

FIG. 2. Mass function of subhalos and comparison with the
results of numerical simulations. Top: Comparison at z ¼ 0. Thick
(blue) lines correspond to the case ofMhost ¼ 1.8 × 1012 M⊙while
thin (red) lines correspond to 5.9 × 1014 M⊙. Solid lines show the
mass function obtained in our analytical modelings and dashed
lines show those obtained by the N-body simulations in Table I.
Fitting functions in Ref. [20] for Mhost ¼ 1.8 × 1012 M⊙ and in
Ref. [45] for 5.9 × 1014 M⊙ are also shown for comparison.
Middle: Cases of Mhost ¼ 2.3 × 1012 M⊙ at z ¼ 2 (solid, blue
line) and Mhost ¼ 4.7 × 1011 M⊙ at z ¼ 4 (thin, red line) in
comparison again with the simulations in Table I and Ref. [46].
Bottom: Comparison at z ¼ 5 for the cases of Mhost ¼ 106 M⊙

(solid, blue lines) and 107 M⊙ (thin, red lines) with the Phi-2
simulations. Note that some of the lines corresponding to our
N-body simulations extend toward large masses, because halos of
various masses around a given geometric mean have been stacked
in order to derive the mass functions.
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of the numerical simulations at high masses, and since it is
physically motivated, the behavior at the low-mass end
down to very small masses can also be regarded as reliable.
In Fig. 3, we show the slope of the subhalo mass function

−α ¼ d lnðdNsh=dmÞ
d lnm

ð29Þ

(i.e., dNsh=dm ∝ m−α) for the same models as in Fig. 2.
We find that the slope lies in a range between −2 and −1.8

for a large range of m except for lower and higher edges
where the mass function features cutoffs. This is consistent
with one of the findings from the numerical simulations,
again confirming validity of our analytical model.
Figure 4 shows the mass fraction of the host mass that is

contained in the form of the subhalos:

fsh ¼
1

Mhost

Z

0.1Mhost

10−6 M⊙

dmm
dNsh

dm
: ð30Þ

At z ¼ 0, this fraction is smaller than the ∼10% level up to
cluster-size halos. We also find that fsh is larger for higher
redshifts, as the effect of the tidal mass loss is suppressed
compared with the case of z ¼ 0. In Fig. 4, we also show
the results of N-body simulations by Ref. [46] for the
subhalo mass fraction between 1.73 × 1010h−1 M⊙ and
0.1Mhost, which is in good agreement with our analytical
result for the same quantity.

B. Subhalo boost

1. Case of smooth subhalos

The gamma-ray luminosity from dark matter annihila-
tion in the smooth NFW component of the host halo with
mass M and redshift z is obtained as

LhostðMÞ ∝
Z

dcvirPðcvirjM; zÞρ2sr3s
�

1 −
1

ð1þ cvirÞ3
�

;

ð31Þ

where PðcvirjM; zÞ is again the log-normal distribution of
the host’s concentration parameter given M and z, and the
scale radius rs and the characteristic density ρs are both

FIG. 3. The slope of the subhalo mass function −α ¼
d lnðdNsh=dmÞ=d lnm as a function of m. The slope was
averaged over mass bins of width Δ logm ¼ 1.

FIG. 4. Mass fraction of the host halo in the form of subhalos,
fsh as a function of Mhost, for z ¼ 0, 1, 2, 3, and 4. Blue squares
represent the subhalo mass fractions in Ref. [46], which are
derived using subhalos with masses between 1.73 × 1010h−1 M⊙

and 0.1Mhost. The solid thin line shows the corresponding
subhalo mass fraction in our calculation.
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dependent on cvir as well as on M and z. The constant of
proportionality of this relation includes particle physics
parameters such as the mass and annihilation cross section
of dark matter particles, but since here we are interested in
the ratio of the luminosities between the subhalos and the
host, their dependence cancels out.
Subhalo boost factor quantifies the contribution of all the

subhalos to the total annihilation yields compared with the
contribution from the host. It is defined as

BshðMÞ ¼ Ltotal
sh ðMÞ

LhostðMÞ ; ð32Þ

such that the total luminosity from the halo is given as
Ltotal ¼ ð1þ BshÞLhost. The luminosity from a single sub-
halo i characterized with its accretion mass macc;i and
redshift zacc;i, as well as its virial concentration cvir;acc, is

Lsh;i ∝ ρ2s;ir
3
s;i

�

1 −
1

ð1þ rt;i=rs;iÞ3
�

; ð33Þ

where rs;i, rt;i, and ρs;i are the scale radius, truncation
radius, and characteristic density of the subhalo i after it
experienced the tidal mass loss, and hence they are
functions of macc;i, zacc;i, and cvir;acc as well as the
mass of the host M and redshift z (Sec. II). The total
subhalo luminosity Ltotal

sh ðMÞ is then obtained as the sum
of Lsh;i with weight wi and averaged over cvir;acc with
its distribution:

Ltotal
sh ðMÞ ¼

X

i

wi

Z

dcvir;accPðcvir;accjmacc;i; zacc;iÞ

× Lsh;iðzjcvir;accÞ
× Θ½rt;iðzjcvir;accÞ − 0.77rs;iðzjcvir;accÞ�: ð34Þ

2. Presence of sub-subhalos

The discussions above, especially Eq. (33), are based on
the assumption that the density profile of subhalos is given
by a smooth NFW function. Subhalos, however, contain
their own subhalos: i.e., sub-subhalos, which again contain
sub-sub-subhalos, and so on. This is because the subhalos,
before accreting onto their host, were formed by mergers
and accretion of even smaller halos. In the following, we
refer to them as subn-subhalos; the discussion above
corresponds to the case of n ¼ 0, where subhalos do not
include sub-subhalos.
We include the effect of subn-subhalos iteratively. In the

case of n ≥ 1, when a subhalo i accretes at zacc;i with a mass

macc;i, we give it a sub-subhalo boost Bðn−1Þ
sh ðmacc;i; zacc;iÞ

obtained from the previous iteration; for n ¼ 1, it is
Eq. (32) evaluated at macc;i and zacc;i. After the subhalo
experience the mass loss, its sub-subhalos as well as the
smooth component are stripped away up to the tidal radius

rt;i. Since the sub-subhalo distribution (that the gamma-ray
brightness profile from the sub-subhalos follows) is flatter
than the brightness profile of the subhalo’s smooth com-
ponent that is proportional to the NFW profile squared,
the sub-subhalo boost decreases. In order to quantify this
effect, we assume that the sub-subhalos are distributed as
nsshðrÞ ∝ ðr2 þ r2sÞ−3=2 (see, e.g., Ref. [47] and references
therein), and further assuming that rs and ρs hardly change
after mass loss, the total sub-subhalo luminosity enclosed
within r is

Lssh;ið< rÞ ∝ ln

"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

r

rs;i

�

2

s

þ r

rs;i

#

−
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ r2s;i

q :

ð35Þ

On the other hand, the enclosed luminosity from the
smooth NFW component is

Lsh;ið< rÞ ∝ 1 −

�

1þ r

rs;i

�

−3

: ð36Þ

The sub-subhalo boost for the subhalo i at redshift z after
the nth iteration is therefore estimated as

B
ðnÞ
ssh;iðzÞ ¼ B

ðn−1Þ
sh ðmacc;i; zacc;iÞ

×
Lssh;ið< rt;iÞ=Lssh;ið< rvir;iÞ
Lsh;ið< rt;iÞ=Lsh;ið< rvir;iÞ

; ð37Þ

where rvir;i is the virial radius of the subhalo i at accretion.
We finally obtain the subhalo boost factor after the

nth iteration (that takes up to subn−1-subhalos into

account), BðnÞ
sh ðM; zÞ, by combining Eqs. (31)–(34), but

also by multiplying Lsh;i in Eq. (33) with 1þ B
ðnÞ
ssh;iðz0Þ

[Eq. (37)]. In this calculation, we consider the subhalos
accreted after z ¼ 10, which assures that we can follow the
mass loss of the subhalos contributing to the boost factor at
z < 5. Figure 5 shows the boost factor Bsh as a function of
host massMhost (defined asM200) for several redshifts, after
the fourth iteration that takes up to sub3-subhalos into
account. For z ¼ 0, the subhalo boost increases gradually
with the mass of the hosts and reaches to about a factor of
10 for cluster-size halos. The boost for high redshifts is still
significant, being on the order of one, for a wide range of
host masses.
In Fig. 6, we investigate the effect of higher-

order substructure: subn-subhalos. Including no sub-
substructure (n ¼ 0) would underestimate the boost by
about a factor of a few for massive host halos such as
galaxies and clusters. We find that the boost saturates after
the third iteration, after which further enhancement is of
the several percent level.
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V. DISCUSSION

A. Comparison with earlier work

The current work updated an analytical model of
Ref. [27], by (i) implementing the scatter distribution in
the concentration-mass relation for both the host and
subhalos, (ii) calibrating the subhalo mass-loss rate down
to extremely small mass ratio m=M using the Monte Carlo
simulations of the tidal stripping, (iii) extending the
calculations of the boost factor as well as the subhalo
mass function beyond z ¼ 0, and (iv) including sub-
subhalos and beyond. They are all essential ingredients
to improve the accuracy of the subhalo modeling, and
hence the current work is regarded as a direct update of
Ref. [27]. As the quantitative outcome, we find that the
subhalo boost without a contribution from sub-subhalos
(n ¼ 0) is consistent with the result of Ref. [27]. Our result
including up to sub3-subhalos further enhances the boost

by a factor of 2–3 for large halos, and extends the
calculation down to 10−4 M⊙.
The effect of tidal stripping on the annihilation boost has

also been studied in Refs. [48,49] by using different
approaches, but they both have reached a similar conclu-
sion to that of Ref. [27]. In particular, Ref. [49] relied
directly on N-body simulations to claim that subhalos are
more concentrated than field halos of equal mass, and
hence, the annihilation boost is larger than previous
estimates by, e.g., Ref. [50]. One of the great advantages
of directly using the results from N-body simulations is its
accuracy when the discussion concerns the resolved

regime. However, each simulation is computationally
demanding, and thus, it is not easy to generalize the
discussion to wider ranges of host masses and redshifts.
In fact, in order to compute the subhalo boost factor as a
function of the host mass, Ref. [49] had to combine the
subhalo concentration-mass relation with the subhalo mass
function, for the latter of which a few phonomenological
fitting functions calibrated with other simulations were
adopted. Hence, the boost factor as its outcome shows a
very large range of uncertainties depending on what model
of the mass function one adopts. In our analytical approach,
on the other hand, we are able to perform physics-based
computations of the subhalo boost factor and mass function
in a self-consistent manner, for very wide ranges of masses
and redshifts.
References [51,52] developed an analytical model

assuming self-similarity of the substructures, computed
the probability distribution function of the dark matter
density that has a power-law tail, and calibrated it with
numerical simulations of the Galactic halo. The annihila-
tion boost factor within the volume of the virial radius of
∼200 kpc was found to be ∼10, which is slightly larger
than our result. This, however, agrees with our result based
on a different model of the concentration-mass relation
(see Sec. V C).
Reference [53] modeled dark matter subhalos in a

Milky Way–like halo at z ¼ 0 by including the effect of
the disk shocking as well as the tidal stripping. Our result
of the annihilation boost factor is consistent with that of
Ref. [53] after integrating over the entire volume of the halo
and assuming the subhalo mass function of ∝ m−1.9. Our
discussion in Sec. III can be expanded to accommodate the
spatial distribution of subhalos, but doing so and comparing
the result with that of Ref. [53] would include proper
modeling of the baryonic component, which is beyond the
scope of the present work.

B. A case without tidal disruption

Reference [21] recently pointed out that the tidal dis-
ruption for the subhalos with rt < 0.77rs might be a
numerical artifact, and many more subhalos even with
much smaller truncation radius rt could survive against the
tidal disruption. In this paper, we do not argue for or against

FIG. 5. Boost factor Bsh ¼ Ltotal
sh =Lhost as a function of the host

mass Mhost (defined as M200) between 10−3 M⊙ and 1016 M⊙ at
observation redshifts z ¼ 0, 1, 2, 3, and 4. The calculations
include up to sub3-subhalos.

FIG. 6. Subhalo boost factor at z ¼ 0 including subn-subhalos;
i.e., the nth sub-substructure.
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the claim of Ref. [21], but simply study the implication
of the claim as an optimistic example. To this end, we
repeated the boost calculations without implementing the
constraint rt > 0.77rs; i.e., all the subhalos survive no
matter how much mass they lose due to the tidal stripping.
We find that the obtained boost factor hardly changes at
any redshift.

C. Dependence on the concentration-mass relation

In our calculations of the boost factor, we adopted the
mass-concentration relation in Ref. [31] as the canonical
model. Their derivation is based on the analysis with
N-body simulations. Reference [54] proposed a different
concentration-mass relation based on analytical consider-
ations, which expect higher concentration especially
around z ¼ 0. In order to compare the dependence of
the boost factor on the different concentration-mass rela-
tions, we also calculated the boost factor adopting the
relation in Ref. [54]. In Fig. 7, we show that the boost factor
enhances by more than a factor of a few if we adopt the
concentration-mass relation of Ref. [54] instead of that of
Ref. [31]. The obtained boost factor directly reflects the
difference of the concentrations at around z ¼ 0. We do not
discuss the feasibility of these concentrations since that is
beyond the scope of this paper. Our results show that a
deeper understanding of the concentration-mass relation is
necessary to obtain the boost factor corresponding to the
actual situations.
In Ref. [55], there are some discussions about the mass-

concentration relation and the primordial curvature pertur-
bations in the early Universe. If the primordial power
spectrum has a feature that gives rise to ultracompact
minihalos, it may boost dark matter annihilation even
more significantly by changing density profiles and the
concentration-mass relation. Although evaluating the sub-
halo boost for these specific models is beyond the scope of

our work, we note that such a significant boost predicted by
Refs. [55,56] may already be constrained very strongly
using the existing gamma-ray data.

D. Contribution to the isotropic gamma-ray

background

One of the advantages of our analytical model of the
subhalo boost is the capability of calculating the isotropic
gamma-ray background (IGRB) from dark matter annihi-
lation, since we can compute boost factors for various host
masses and the wide range of redshifts, self-consistently.
The intensity of IGRB was most recently measured with
Fermi-LAT [57], which was then used to constrain the dark
matter annihilation cross section (e.g., [58]).
We followed the “halo model” approach of Ref. [47] to

compute the IGRB contribution from dark matter annihi-
lation, but by applying the results of the annihilation boost
factor from our analytical model (Fig. 5) as well as by
including scatter of the concentration-mass relation.
Figure 8 shows the IGRB intensity from dark matter
annihilation in the case of the canonical annihilation cross
section for the thermal freeze-out scenario, hσvi ≃ 2 ×
10−26 cm3 s−1 [59], dark matter mass of mχ ¼ 100 GeV,
and bb̄ final state of the annihilation (χχ → bb̄). Our boost
model enhances the IGRB intensity by a factor of a few
compared with the case of no subhalo boost. Note that a
contribution from the Galactic subhalos (e.g., [60]) is not
included, and hence our estimate is conservative.
We then performed a simple analysis of the Fermi-LAT

IGRB data [58]. We included two components: (1) dark
matter annihilation of a given mass mχ and assuming bb̄
final states, and (2) an “astrophysical” power-law compo-
nent with a cutoff, for which we adopt the best-fit

FIG. 7. The same as Fig. 5, but for the concentration-mass
relation in Ref. [54].

FIG. 8. Contribution to the IGRB intensity measured by
Fermi-LAT from dark matter annihilation for hσvi ¼
2.2 × 10−26 cm3 s−1, mχ ¼ 100 GeV, and bb̄ final state. The
solid (dotted) curve shows the case of the subhalo boost (no
boost).
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spectral shape, IastroðEÞ ∝ E−2.32 expð−E=279 GeVÞ [58].
By adopting normalizations of these components as two
free parameters for the fit, we performed a χ2 analysis in
order to obtain the upper limits on hσvi. For the IGRB data,
we adopt those for a foreground model “A” in Ref. [58], but
treat statistical and systematic uncertainties as independent
errors. Figure 9 shows the upper limits on hσvi at 95% con-
fidence level (Δχ2 ¼ 2.71) using our canonical boost model
as well as the case of no boost. Our updated boost model
improves the limits by a factor of a few nearly independently
of dark matter mass (see also, e.g., Refs. [61,62] for earlier
results). This enhancement is calculated consistently as our
formalism automatically computes all the subhalo properties
at once including the mass function and the boost factor.
We also compare our limits with the latest results of the joint
likelihood analysis of 41 dwarf spheroidal galaxies [63],
which set the benchmark as the most robust constraints on
dark matter annihilation.
Although some improvements of the limit obtained from

the observations of dwarf spheroidal galaxies also can be
expected, we conservatively neglect this contribution
according to the discussion in Ref. [27]. We find that
the IGRB limits with our boost model are competitive to the
dwarf bounds for darkmattermasses at∼200 GeV.Note that
more accurate limits should include uncertainties coming
from modeling of the astrophysical contributions. Further
consideration is needed in order to obtain correct values,
which is slated for future works. (See also Ref. [64] for a
detailed discussion on various sources of uncertainties.)
The small-scale angular power spectrum of the IGRB has

also been measured with Fermi-LAT [65], which provides
yet another avenue to constrain dark matter annihilation

[47,66] as well as high-energy astrophysical sources [67,68].
It is also pointed out that taking cross-correlations with local
gravitational tracers such as galaxy catalogs is a promising
way along the same line [69–71]. Since these anisotropy

constraints are more sensitive to the dark matter distribution
at smaller redshifts and in larger hosts, the effect of the
subhalo boost is expected to be evenmore important than for
the IGRB intensity. A dedicated investigation is beyond the
scope of this work and hence is reserved as a subject for a
future paper. We also note that our updated boost model will
impact the result of the stacking analysis of nearby galaxy
groups [72], which relied on the boost model of Ref. [27].

VI. CONCLUSIONS

We can access the substructure of dark matter halos
which is beyond the resolutions of the numerical simu-
lations by taking an analytical approach on the modeling of
the tidal mass loss of the subhalos. We analytically modeled
the mass loss of subhalos under the gravitational potential
of their hosts, following the evolution of both the host
and the subhalos in a self-consistent way. In order to take
distributions of the concentrations of the hosts, orbits,
and concentrations of subhalos into account, we conducted
Monte Carlo simulations. We find that the mass loss of
the subhalos is well described with Eq. (1) down to the
scale of m=Mhost ∼Oð10−19Þ, and it agrees well with the
results of N-body simulations.
Combining the derived relation about the subhalo mass

loss with analytical models for mass and redshift distribu-
tions of accreting subhalos, we calculated the subhalo mass
functions and the boost factor for dark matter annihilation.
We showed that mass functions of subhalos derived in our
analytical modeling are consistent with those obtained in
N-body simulations down to their resolution limits. From
our model of the subhalo boost of dark matter annihilation,
we expect enhancement in the gamma-ray signals by up to
a factor of ∼10 because of the remaining substructures
in larger halos, predicting promising opportunities for
detecting particle dark matter in future gamma-ray obser-
vations. Including substructures in the subhalos will give an
important contribution to the annihilation boost up to a
factor of a few.
The results of our calculations are consistent with both

earlier analytical and numerical approaches, but are appli-
cable to much wider (and arbitrary) range of host masses
and redshifts, and hence can be used to predict gamma-ray
flux from dark matter annihilation in various halos at any
redshifts. As an example, we computed the contribution to
the isotropic gamma-ray background from our boost
model. We find that the presence of subhalos (and their
substructures) enhance the gamma-ray intensity by a factor
of a few, and hence the limits on the annihilation cross
section improves by the same factor, excluding the region
of hσvi ≳ 4 × 10−26 cm3 s−1 for dark matter masses smaller
than ∼200 GeV.

FIG. 9. Upper limits on the dark matter annihilation cross
section at 95% confidence level as a function of dark matter mass
for bb̄ final state. Solid and dashed curves are for the canonical
boost model and without the subhalo boost, respectively.
For comparison, the results of the latest joint-likelihood analysis
of 41 dwarfs [63] are shown as a dotted curve.
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APPENDIX A: MASS EVOLUTION OF

HOST HALOS

In order to calculate the evolution of subhalos, we first
specify how the hosts that are not in an even larger halo evolve.
The authors of Ref. [28] derive the relations about the mass
accretion history of the halos MðzjM0; z ¼ 0Þ, i.e., the mass
of the halo at redshift z, whose mass is M0 at z ¼ 0,

MðzjM0; z ¼ 0Þ ¼ M0ð1þ zÞα expðβzÞ; ðA1Þ
with

β ¼ −gðM0Þ; ðA2Þ

α ¼
�

1.686
ffiffiffiffiffiffiffiffi

2=π
p

D2ðz ¼ 0Þ
dD

dz

�

�

�

�

z¼0

þ 1

�

gðM0Þ; ðA3Þ

gðM0Þ ¼ ½SðM0=qÞ − SðM0Þ�−1=2; ðA4Þ
q ¼ 4.137z̃−0.9476f ; ðA5Þ

z̃f ¼ −0.0064ðlogM0Þ2 þ 0.0237ðlogM0Þ þ 1.8837;

ðA6Þ
whereDðzÞ and SðMÞ≡ σ2ðMÞ are the growth function and
the variance of the matter distribution at mass scale M and
z ¼ 0, respectively. We adopt fitting functions of both DðzÞ
and σðMÞ from Ref. [73]. Equation (A1) is generalized to
determine the mass of halos MðzjMðziÞ; ziÞ at redshift z,
whose mass was MðziÞ at redshift zi [31],
MðzjMðziÞ; ziÞ ¼ MðziÞð1þ z − ziÞα expðβðz − ziÞÞ;

ðA7Þ
with replacing M0 with MðziÞ in Eqs. (A2), (A3), and (A4).
These relations enable us to follow back the evolutions of the
hosts starting from any redshift adopting the generalized
equations.

APPENDIX B: CONCENTRATION-MASS

RELATION OF THE FIELD HALOS

We here summarize the concentration-mass relation
c200ðM200Þ for the field halos based on Ref. [31], which

is adopted throughout this paper. We take the fitted values
corresponding to the Planck cosomlogy.
For z ≤ 4

log c200 ¼ αþ β log

�

M200

M⊙

��

1þ γlog2
�

M200

M⊙

��

; ðB1Þ

where

α ¼ 1.7543 − 0.2766ð1þ zÞ þ 0.02039ð1þ zÞ2; ðB2Þ

β¼ 0.2753þ0.00351ð1þ zÞ−0.3038ð1þ zÞ0.0269; ðB3Þ

γ ¼ −0.01537þ 0.02102ð1þ zÞ−0.1475; ðB4Þ
and for z > 4,

log c200 ¼ αþ β log

�

M200

M⊙

�

; ðB5Þ

where

α ¼ 1.3081 − 0.1078ð1þ zÞ þ 0.00398ð1þ zÞ2; ðB6Þ

β ¼ 0.0223 − 0.0944ð1þ zÞ−0.3907: ðB7Þ

APPENDIX C: SUBHALO ACCRETION RATE

With the understanding of the growth history of certain
hosts, we know the distributions of the mass and redshift of
the accreting subhalos on that host. The authors of Ref. [36]
studied the mass accretion history and obtained the dis-
tribution d2Nsh=ðd lnmaccdzaccÞ: the number of subhalos
accreted onto the host per unit logarithmic mass range
around lnmacc and per unit redshift range around accretion
redshift zacc,

d2Nsh

d lnmaccdzacc
¼ F ðsacc; δaccjS0; δ0; M̄accÞ

dsacc

dmacc

dM̄acc

dzacc
;

ðC1Þ

where following the convention of Ref. [36], sacc and δacc
are used to parametrize the mass and redshift, respectively,
since they are defined as sacc ≡ σ2ðmacc; z ¼ 0Þ and δacc ¼
δcðzaccÞ ¼ 1.686=DðzaccÞ [73]. Similarly, for the host, we
adopt S0 ¼ σ2ðM0; z ¼ 0Þ and δ0 ¼ δscðz0Þ to characterize
the mass M0 and redshift z0 as a boundary condition.
The mass of the host Macc at the accretion redshift zacc
(that eventually evolves toM0 at z0) follows the probability
distribution PðMaccjS0; δ0Þ, for which we adopt a log-
normal distribution with a logarithmic mean M̄acc ¼
MðzaccjM0; z0Þ [Eq. (A7)] and a logarithmic dispersion

σlogMacc
¼ 0.12 − 0.15 log

�

Macc

M0

�

: ðC2Þ

The definition of the function F in Eq. (C1) is
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F ðsacc; δaccjS0; δ0; M̄accÞ

¼
Z

Φðsacc:δaccjS0; δ0;MaccÞPðMaccjS0; δ0ÞdMacc;

ðC3Þ

Φðsacc; δaccjS0; δ0;MaccÞ

¼
�
Z

∞

SðmmaxÞ
Fðsacc; δaccjS0; δ0;MaccÞdsacc

�

−1

×

�

Fðsacc; δaccjS0; δ0;MaccÞ; ðmacc ≤ mmaxÞ;
0; ðotherwiseÞ;

ðC4Þ

Fðsacc; δaccjS0; δ0;MaccÞ

¼ 1
ffiffiffiffiffiffi

2π
p δacc − δM

ðsacc − SMÞ3=2
exp

�

−
ðδacc − δMÞ2
2ðsacc − SMÞ

�

; ðC5Þ

where mmax ¼ min½Macc;M0=2� and Mmax ¼ min½Macc þ
mmax;M0� are introduced such that the mass hierarchy of
the host mass before and after subhalo accretions is assured,
SM ¼ σ2MðMmaxÞ and δM is defined as δscðzÞ at a redshift
at which M ¼ Mmax. The equations above determine the
distributions of accreting subhalos d2Nsh=ðd lnmaccdzaccÞ
for arbitrary hosts.
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