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Abstract—This work deals with the on-line recognition of
hand-drawn graphical sketches with structure. We present a novel
approach, in which the search for a suitable interpretation of
the input is formulated as a combinatorial optimization task
– the max-sum problem. The recognition pipeline consists of
two main stages. First, groups of strokes possibly representing
symbols of a sketch (symbol candidates) are segmented and
relations between them are detected. Second, a combination of
symbol candidates best fitting the input is chosen by solving
the optimization problem. We focused on flowchart recognition.
Training and testing of our method was done on a freely available
benchmark database. We correctly segmented and recognized
82.7% of the symbols having 31.5% of the diagrams recognized
without any error. It indicates that our approach has promising
potential and can compete with the state-of-the-art methods.

I. INTRODUCTION

This work deals with the on-line recognition of hand-drawn
graphical sketches with structure. The topicality of such a
task is implied by the proliferation of tablets and tablet PCs
in recent years. To realize the recognition, two subproblems
have to be solved: how to detect elementary units and how to
expose hierarchical relationships over them. Here we benefit
from the idea of structural construction paradigm presented
by M.I. Schlesinger and V. Hlavac [1]. The segmentation
phase does not make final decisions, it only identifies which
groups of strokes can potentially form a symbol and in which
possible local relationships the candidates can participate. It
is up to the structural analysis to select the candidates that
really fit into the whole pattern. One frequent approach to
the structural analysis is to utilize a grammar. Several types
of 2D grammars were proposed or adopted, e.g., to express
the recursive character of mathematical formulas [2], [3], or
the structure of diagrams [4]. Non-grammar based methods
exploit a mixture of various statistical and discrete models and
algorithms [5], [6], [7].

We introduce a method, in which the search for a suitable
interpretation of the input is formulated as a combinatorial
optimization task – the max-sum problem [8]. This give us
a relatively large expressive power, at least when compared
to other models like the minimum spanning tree finding
presented in [5]. As a disadvantage, it may appear that a
general max-sum problem is NP-hard. However, we show that
solvers nowadays available are responsive enough on instances
whose size safely covers the number of symbol candidates we
generate for relatively large diagrams. It is even possible to use

Fig. 1. Example of a flowchart from the FC database.

solvers for integer linear programming (ILP) since the max-
sum problem can be easily transformed to it. We have verified
that our method has a very good potential on diagrams and
schemes. Flowchart diagrams were selected as the domain for
our experiments. This choice was partly influenced by the FC
database [9], which is freely available. There are documented
methods applied to this database, together with corresponding
results [9], [10], so we can compare the approaches. An exam-
ple of a flowchart is shown in Figure 1. There are six symbol
classes in the database: arrow, connection, data, decision, pro-
cess, terminator. As for the other works focused on flowcharts,
most of recently published methods put unnatural requirements
on the user [11], [12]. For example, a pre-defined order of
strokes or additional gestures are required. It is impossible
to make a comparison with these methods. Also, we have
been ignoring text so far. Nevertheless, it is straightforward
to extend the model to work with text. Although, it would
require to classify strokes into classes text and shapes. Recent
text/non-text classifiers give promising results [13], [14].

The order of sections follows the recognition pipeline.
Section II describes, how candidates for symbols are found.
Section III explains, how hypotheses on relations among enti-
ties are created. Section IV shows, how the structure detection
is formulated as a max-sum problem. Finally, the method is
experimentally evaluated and its advantages are discussed in
Section V.

II. SYMBOL CANDIDATES DETECTION

The system of symbol candidates detection was introduced
in our previous work [15]. Here we present briefly the basic



principles. The method is based on grouping neighboring
strokes. Only those groups of strokes that are temporally
and spatially compact are considered. Each admissible set of
strokes is classified by a multiclass SVM classifier based on
our own descriptor. The classifier provides three most probable
candidates along with their confidence, a real number from
〈0, 1〉. Overall, the method finds 91.9% of symbols on the test
dataset of the FC database while it generates 8.8 times more
symbol candidates than is the number of symbols in a diagram
in average.

A. Strokes Grouping

All possible sets of strokes, which fulfil the following
conditions, are created: (1) the strokes are spatially close, (2)
the set does not contain more than five strokes, (3) the set
consists of two parts at most, where each of them was drawn
consecutively. Two strokes are spatially close if the distance
between their two closest points is smaller than the threshold
distThreshold = α·Dmed, where Dmed is the median of val-
ues determined as lengths of diagonals over bounding boxes
of all single strokes present in a diagram. The constant α has
been empirically chosen to be 0.35. The requirements and α
are derived from the data in the FC database, see Figure 2.
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Fig. 2. The result of experiments over FC database to obtain an optimal
value of the α coefficient. The graph shows the accuracy which improves as
α grows (I.) and the growth of the number of symbol candidates (II.) at the
same time. The choice of α is thus a tradeoff.

B. Classification

Each group of strokes generated in the previous step is
classified by a multiclass SVM. The classifier uses our own
descriptor of dimension 90. It is based on histograms of
distances between points, angles between line segments given
by neighboring points, and compositions (combinations of
basic stroke elements). The classifier was learned on groups of
strokes generated on annotated diagrams of the training dataset.
Groups of strokes representing nothing (having no match in the
annotated database) were used as negative examples and a new
special class was created. Therefore, the classifier can reject a
symbol candidate by classifying it as an instance of this class.
We also fitted a logistic regression on the classifier response
to obtain the posterior probability that a symbol candidate
belongs to the recognized class.

III. MODELING RELATIONS

To interpret the structure of a diagram, it is necessary to
examine relations between entities. This extends the infor-
mation which is utilized by the method to make decisions.
Links between entities represented by arrows are the most
characteristic feature of flowcharts. Our model of relations is
based on connection points of particular entities.

A. Connection Points

We define four connection points (top, right, bottom, left)
for each non-arrow entity and two connection points (head,
tail) for each arrow entity. See Figure 3. These points identify
where arrows can be connected to other entities. We propose
three algorithms for computation of connection points where
the usage depends on entity type.

Fig. 3. Examples of connection points of an arrow, a decision, a terminator,
and a data entity.

1) Arrow Entities: The strokes are split into the head and
the shaft of the arrow. All possible splits, where the number
of head strokes is not higher than four, are considered. The
best split is chosen according to the scoring function, which
is based on four requirements: (1) the bounding box of the
head should not differ a lot from a square, (2) the distance
between the center-point of the head bounding box and the
closest end-point of the shaft should be small, (3) the curvature
of the head strokes should be high, (4) the bounding boxes of
the head and the shaft should not overlap. The direction of the
head is determined according to the line segment given by the
two shaft points closest to the head. The connection points of
the arrow are determined for the best split. The point where
the arrow is coming from (tail) is defined as the end-point of
the shaft which has the greatest distance to the head. The point
where the arrow is heading to (head) is defined as the one of
the middle points of the bounding box edges, depending on
the head direction.

2) Decision Entities: The left and the right connection
points are defined as the points with the smallest distance
on x-axis to the left and the right edge of the bounding
box, respectively. The top and the bottom points are defined
analogously, considering the distance on y-axis.

3) Other Entities: We cast four rays from the bounding
box center to four directions (top, right, bottom, left). The
connection points are defined as the intersections of the rays
with either a stroke or an edge of the bounding box.

B. Relations Between Candidates

We define three types of relations between entity can-
didates: (1) conflict – two candidates share one or more
strokes, (2) overlap – two non-arrow candidates has overlap-
ping bounding boxes, (3) arrow connection - relations between
an arrow and a non-arrow candidates. All possible pairs of



candidates are examined to find all relations. Potential conflicts
are detected first. In the case there is no conflict, a relation of
type (2) or (3) is detected depending on the types of both
candidates. Let us note there is no relation defined between
two arrows. This type of relation is not necessary, because
overlapping arrows are suppressed later by the model.

Each relation gets a score which we denote s1, s2, and s3
for relations of type (1), (2), and (3), respectively. Values of
the score are defined as follows:

s1 = −∞, (1)

s2 = −SA∩B/min(SA, SB), (2)

where A and B are bounding boxes of the first and the second
entity and SA, SB , and SA∩B are surfaces of bounding boxes
A, B, and their intersection, respectively.

s3 = exp

(
ln(0.5)

distThreshold
· d
)
, (3)

where d is the distance between the two closest connection
points of both entities and distThreshold = α ·Dmed is a
distance threshold when s3 = 0.5. The threshold is the same
as in Section II-A. Let us note that first two types of relations
are negative (meaning we would like to prevent them from
occurring), while only the third one is positive.

IV. PROBLEM FORMULATION

So far, we have described how to obtain the symbol
candidates and the relations between them, both assigned with
a score expressing their confidence or support of the relations.
The goal is to choose a combination of symbol candidates,
giving the highest score when the involved particular scores
are summed. This is an optimization task formulated here as
an instance of the max-sum problem.

A. Max-Sum Formulation of the Basic Model

The pairwise max-sum labeling problem [8] (also known
as the weighted constraints satisfaction problem) is defined as
maximizing a sum of unary and binary functions (potentials)
of discrete variables, i.e. as computing

max
k∈KV

[∑
u∈V

gu(ku) +
∑

{u,v}∈E

guv(ku, kv)
]
, (4)

where an undirected graph G = (V,E), a finite set K, and
numbers gu(ku), guv(ku, kv) ∈ R ∪ {−∞} are given. We
maximize over assignments of labels from K to nodes of
G. Each node u and edge {u, v} is then evaluated by the
cost given by functions gu and guv . In general, the max-sum
problem has many applications, such as computing the MAP
configuration of a Markov random field.

In our model, each symbol candidate and each positive
relation defines a single node of the graph G. An edge
is defined for each pair of interacting nodes (two symbol
candidates in a negative relation, a symbol candidate and its
positive relation, two positive relations of the same symbol
candidate). Two labels are used, K = {0, 1} where 0 means
the candidate is not a part of the solution and 1 means it
is. The numbers gu(ku), guv(ku, kv) are set to express the
score of symbol candidates and relations and to model natural

restrictions as follows: gu(0) = 0 and gu(1) = s for each
symbol candidate or positive relation u with the confidence
(score) s. Further, for all pairs of objects (u, v) ∈ E

1) guv(1, 1) = −∞ if there is a conflict between objects
u and v

2) guv(0, 1) = −∞ if u is a symbol candidate and v is
its positive relation (requiring the existence of u)

3) guv(1, 1) = −∞ if u and v are both positive relations
of the same arrow using the same connection point
(arrow can come from or head to one point at most)

4) guv(1, 1) = s if u and v are two non-arrow symbol
candidates with overlapping bounding boxes where s
is given by (2)

5) guv(k, `) = 0 in all other cases

A good commensurability of confidences and scores in the
model is confirmed by our experiments. Note that we also
tested a set up of the unary and binary potentials based on
logarithms of confidences and scores, however, it did not lead
to better results.

B. Adding Additional Constraints

A natural requirement for a completed flowchart is to have
fully connected arrows (i.e., they do not come from or head to
nowhere). We have found it good to include this into the model
to increase the overall recognition accuracy. This is done by
adding one auxiliary node for each arrow in the graph G. Such
a node v represents the fact that the related arrow u is not fully
connected. We set gv(0) = gv(1) = 0 and

1) guv(1, 0) = guv(1, 1) = −2M where M is a suitable
(large) constant, 0�M �∞

2) gvw(0, 1) = M for each positive relation w of the
arrow u

When an arrow node has the label 1, there is −2M penalty no
matter what is the label of its corresponding auxiliary node.
The only way how to neutralize this penalty is to fully connect
the arrow (i.e., there will be two positive relations of the arrow,
each contributing M ). Notice that there can not be more than
two positive relations for one arrow, because each arrow has
only two connection points, hence two positive relations using
the same connection point of an arrow are necessarily in a
conflict (resulting in −∞ penalty). All the constructs applied
in the model are illustrated by an example in Figure 4.

C. Solving the Optimization Task

The max-sum is a very general NP-hard optimization prob-
lem. Some special forms as submodular max-sum problems
can be solved in a polynomial time [8]. Unfortunately, this
is not our case. However, the size of graphs we generate is
not so big (397 nodes and 3 223 edges in average). Therefore,
general solvers are able to solve them fast (see Section V). We
tested the max-sum solver Toulbar2 [16]. Its disadvantage is
that it supports only non-negative integer costs. Therefore, we
formulated the max-sum problem as the integer linear program
and solved it using CPLEX library [17]. The conversion is
done using the linear programming relaxation of the problem:



max
µ

[∑
k∈K

∑
u∈V

µu(k)gu(k)+
∑

k,`∈K

∑
{u,v}∈E

µuv(k,`)guv(k,`)
]

(5)

s.t.
∑
k∈K

µu(k) = 1, ∀u ∈ V,∑
`∈K

µuv(k, `) = µu(k), ∀{u, v} ∈ E ∧ ∀k ∈ K,

µuv(k, `) = µvu(k, `), ∀{u, v} ∈ E ∧ ∀k, ` ∈ K,
µ ≥ 0.

If components of µ are restricted to integral values only (i.e.,
they are 0 or 1), we obtain the desired ILP whose optimal value
equals the optimal value of (4). The label ku ∈ K chosen in
a node u ∈ V is the only label satisfying µu(k) = 1.

The ILP formulation give us a possibility to put more
constraints (expressed as linear inequalities) to the model,
e.g., each diagram must begin and end with a connector or
a terminator symbol, i.e., all other non-arrow symbols must
have at least one arrow coming in and coming out. However,
we decided not to model such a restriction, because we want
to be able to recognize unfinished sub-diagrams as well.
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(a) A simple example of a flowchart consisting of four strokes and three
symbols. The symbol detector found four symbol candidates, which are listed
with their ids, sets of related strokes and confidences. Detected positive
relations are listed with ids of the symbol candidates participating in the
relation.
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(b) The max-sum model corresponding to the example above. Rectangular
nodes represent symbol candidates while ellipse nodes represent positive
relations. Inside each node, both possibilities for labeling the node are
represented (white circle – the label 1, black circle – the label 0). Each circle
k in a node u is assigned by the value gu(k). An edge connecting a label
k in a node u and a label ` in a node v is assigned by the value guv(k, `).
Edges with zero costs are not visualized.

Fig. 4. The flowchart (a) recognition modeled as a max-sum problem (b).

V. EXPERIMENTS

We present results of experiments we performed on the
test dataset, a part of the FC database. The set contains 127
samples consisting of 14.7 symbols and 37.2 strokes in aver-
age. We introduce a methodology used to match recognition
results with the annotated diagrams. Correct rate and time
performance of the recognition are given and the achieved
accuracy is compared to the results reported by Lemaitre et
al. [10].

A. Correct Rate and Methodology of its Measurement

The FC database provides annotations only for symbols,
there is no information about relations. Users drew symbols by
multiple strokes sometimes. Those redundant strokes are made
to correct or beautify symbols. Therefore, it might happen that
although a symbol is recognized correctly it does not comprise
of exactly the same strokes as the annotated counterpart in the
database (some redundant strokes are missing). We applied
the following criterion to compare output of our recognizer
with the annotated diagrams. We tried to match each annotated
symbol with one of the recognized symbols. Two symbols
match if they are of the same type and their bounding boxes
overlap of 80%. The error rate is expressed as the number of
unmatched annotated symbols.
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Fig. 5. The histogram lists the counts of diagrams by the number of missing
symbols.

Overall, 31.5% of the diagrams were correctly recognized
and about one half is recognized with one missing symbol at
most. More details can be found in Figure 5. The accuracy of
the first part of the pipeline was 88.7%. It means that there
were 11.3% of the annotated symbols missing in the set of
symbol candidates. After performing the optimization of the
max-sum model, there were 17.3% of the annotated symbols
missing. A bigger responsibility for errors in the recognition
has the detection of symbol candidates. Therefore, we claim
that the proposed max-sum model is a suitable tool for the
diagram structure recognition.

Lemaitre et al. [10] developed a grammar based recognition
method. They expressed its accuracy as the rate of correctly
segmented and recognized symbols over the whole test dataset.
Although the authors admit it is not the best way, they consider
a symbol to be correctly recognized if the result consists of
the very same strokes as the annotation. When we apply their
stricter metric, our accuracy is 74.3%, which is still higher than
72.4% reported by the cited authors. We have to admit that
their system deals with the text, which we are ignoring so far,



however, as we have already mentioned in the introduction, the
text can be identified by embedding a text/non-text classifier.

B. Performance

We implemented the method in C# and tested it on a
standard tablet PC Lenovo X61 (Intel Core 2 Duo 1.6 GHz,
2 GB RAM) and a desktop PC (Intel Core 2 Quad Q9550
2.83 GHz, 8 GB RAM) with 64-bit Windows 7 operating
system both. CPLEX library [17] was used to solve the max-
sum problem expressed as ILP in all experiments. Table I
shows the results of time measurement (depending on the
number of strokes).

minimal maximal average median
optimization 0.2 / 0.2 31.5 / 10.1 4.0 / 1.8 3.3 / 1.6

whole recognition 0.6 / 0.4 65.7 / 31.8 6.9 / 3.3 4.8 / 2.4

TABLE I. RUNNING TIME IN SECONDS.

The values confirm that the optimization is solved relatively
fast. The time needed to recognize the whole diagram in the
worst case can seem high. The impression improves if we
express the average time per stroke, it is 0.167 / 0.080 seconds
for the whole recognition and 0.101 / 0.046 seconds for the
optimization. Moreover, the user spends even higher amount
of time drawing the diagram, thus some time-consuming
computations (especially features extraction) can be performed
while the user is drawing. Since it was not our primary goal to
make the recognition of symbol candidates as fast as possible,
we think that after some tuning the time of this phase will be
further reduced.

VI. CONCLUSIONS

We presented a novel method for the flowchart diagrams
recognition consisting of two phases. Several mutually con-
flicting symbol candidates are detected by the first phase.
Then, the best interpretation of the input is selected out of
the candidates by solving the formed max-sum problem. We
showed the method has a good potential. Despite that a large
number of candidates is generated, the optimization performs
well and causes less recognition errors than the detection of
candidates and relations. This allows to concentrate on a better
classification that will throw out a less number of ground truth
symbols.

The experiments we performed on the freely available
FC database confirm the statements given above. Our current
implementation is not worse than the grammar based method
presented by Lemaitre et al. The achieved accuracy already
allows to develop an application recognizing (and beautifying)
hand-draw flowcharts with a user’s assistance. When the sys-
tem makes an error the user selects the unrecognized symbol
or relation and makes a correction. Since the frequency of
errors is not high, the user will not be delayed by correcting
too much. The successful usage of ILP solver gives additional
possibilities for modeling structural relations. It is not neces-
sary to be limited by the expressive power of the max-sum
problem, we can go further and model additional features by
linear inequalities of an integer linear program. This could
help to represent more complex relationships exhibited for
example by mathematical formulas. We think this fact would
motivate other researchers to explore the method deeply on
various domains.
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