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APPENDIX A 

Proposition 1. An optimal solution to a given instance of the Food Distribution Model is as follows:  

Case 1: If ∑ ≥  and = ∅, i.e., the instance is partially equity constrained, then the optimal 

objective function value is: 

 ∗ = 0, (1)

and the individual distributions to the counties ∗  have multiple optimal solutions. 

Case 2: If ≠ ∅ and ∑ ≥ ≥ ∑ , i.e., the instance is capacity and equity constrained, then 

the optimal objective function value is: 

 ∗ = − . (2)

In an optimal solution, the bottleneck counties receive an amount of food equal to their capacity, 

 
∗ = . (3)

Food shipments to all remaining counties will have multiple optimal solutions. 

Case 3:  If ≠ ∅, ∑ ≥ , and ∑ > , i.e., the instance is supply and equity constrained, 

then the optimal objective function value is: 

 ∗ = 0. (4)

The individual distributions to the counties ∗  will have multiple optimal solutions.  

Proof of Proposition 1. The proof will consider each of the three cases separately. Let Δ = ∑ . 
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Case 1: In this case we have ≤  for all counties ∈ . This implies that − + ≤ 0 for all j, i.e., = ∅. Constraint (2) can be written as: 

− + Δ ≤ ∑ ≤ + Δ ∈ . (A1)

which, due to the nonnegativity of , (A1) can be rewritten as: 

0 ≤ ∑ ≤ + Δ ∈ . (A2)

Combining (A2) with the capacity constraint (4) yields 

0 ≤ ≤ min , + Δ ∈ , (A3)

where constraints (3) and (5) ensure that 

≤ . (A4)

We will prove that there always exists a feasible solution set ∗, ∈  such that ∑ ∗ = . 

For the given value of , let 

= min , Δ ∈ . (A5)

Let ≡ ∈ : = , (A6)

≡ ∈ : = Δ . (A7)

If, = ∅ and ≠ ∅, i.e., for all , = ; then ∑ =  and an optimal solution has been 

obtained. 
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Next, we show that the case when = ∅ and ≠ ∅ is not possible. This case would imply that for all 

, < . Summing over all , we get ∑ < , which is a contradiction since we assume that ≤ ∑ . 

The last case we consider is ≠ ∅ and ≠ ∅. For counties ∈ , define 

= Δ − ∈ . (A8)

The value  represents the extra amount of supply that must be allocated to some county ∈  with idle 

capacity in order to achieve ∑ = . The total idle capacity available must be greater than or equal to 

the total extra pounds of food to be shipped in order for this solution to hold, implying that 

∈ ≤ − Δ∈ , (A9)

where −  represents the idle capacity at county ∈ . 

Since we have ≤ ∑  by assumption, 

Δ∈ + Δ∈ ≤ ∈ + ∈ , (A10)

Δ∈ − ∈ ≤ ∈ − Δ∈ , (A11)

∈ ≤ ∈ − Δ∈ . (A12)

so inequality (A9) always holds. 

Therefore, by assigning this extra ∑ ∈  pounds of food among the counties in set  in an arbitrary 

manner, we can obtain an optimal solution with ∑ ∗ = . Furthermore, since there can be different 

assignments to the counties with idle capacity, there can be multiple optimal solutions to the Food 

Distribution Model for Case 1. An algorithm for generating these alternative allocations is given in Figure 

3 of the paper. 
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Case 2: For Case 2 we have at least one county ∈  such that > , and	 ≥ Δ. Hence, constraint (2), 

in combination with the capacity constraint (4), can be written as: 

max 0, − + 	 	 ≤ ≤ min , + Δ ∈ . (A13)

where constraints (3) and (5) ensure that 

≤ . (A14)

For feasibility, we must have 

− + ≤ ∈ , (A15)

	 ≤ − ∈ , (A16)

	 ≤ min ∈ − , (A17)

≤ . (A18)

Since this case satisfies the condition that ≥ Δ, we only need ∑ 	 ≤ . 
We will prove that there always exists a feasible solution set ∗, ∈  that satisfies ∑ ∗ = . 

For the given value of , let = min , ∈ . (A19)

Let ≡ ∈ : = , (A20)≡ ∈ : = . (A21)
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If, = ∅ and ≠ ∅, i.e., for all , = , then ∑ =  is obviously an optimal and feasible 

solution. 

Next, we show that the case when = ∅ and ≠ ∅ is not possible. This case would imply that for all 

, < . Summing over all , we get ∑ < ≤  due to the assumption of Case 2. This is a 

contradiction since we assume that ≤ ∑ . 

The last case we consider is ≠ ∅ and ≠ ∅. For counties ∈ , define = − ∈ . (A22)

The value  represents the extra amount of supply to be allocated to any county ∈  with idle capacity 

in order to achieve	∑ = . This  pounds of food can be allocated. The total idle capacity 

available should be greater than or equal to the total extra pounds of food to be shipped in order for this 

solution to hold. So, we must have: 

∈ ≤ ( − )∈ , (A23)

where −  represents the idle capacity at county ∈ . 

By using the main assumption of ≤ ∑  and the condition of this case that ≥ Δ, we get ∑ ≥ Δ. It follows that, 

∈ + ∈ ≤ ∈ + ∈ , (A24)

∈ − ∈ ≤ ∈ − ∈ , (A25)

∈ ≤ ∈ − ∈ . (A26)

So, inequality (A23) always holds. 

Therefore, by assigning this extra ∑ ∈  pounds of food to the counties in set  in an arbitrary 

manner, we can obtain the optimal solution of ∑ ∗ = . Furthermore, since there can be different 
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assignments to the counties with idle capacity, this shows that there can be multiple optimal solutions to 

the Food Distribution Model for Case 2. 

Proof for distribution to bottleneck counties: According to the definition of a bottleneck county given in 

Proposition 1, bottleneck counties are those with the minimum  ratio among the counties ∈ . 

Then, for ∈ , since we have shown that ∑ ∗ = , from Constraint (2), we have 

− + 	 	 ≤ ∗ ≤ min , + Δ ∈ , (A27)

 

 

− + Δ Δ− Δ ≤ ∗ ≤ min , + Δ Δ− Δ 							 ∈ , (A28)

 ≤ ∗ ≤ ∈ . (A29)

It follows that 

 
∗ = ∈ . (A30)

Case 3: Case 3 considers the situation where there exists at least one county ∈  such that > , and < Δ. The proof for this case follows from a combination of the proofs for Cases 1 and 2. We can 

apply the equations (A13)-(A18) exactly to this case. However, due to the condition of < Δ that this 

case satisfies, we only need ∑ 	 ≤ . The remaining argument follows along the lines of Case 1 as 

given in (A5)-(A12). 
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APPENDIX B 

Proof of Proposition 2. Let Δ = ∑ . If we associate dual variables  with the constraints (18) and 

 with constraint (19), then the dual of the Capacity Allocation Model can be written as 

 min ∈ +  (B1)

 ( − Δ)∈ ≥ 1 (B2)

 − + ≥ 0 ∈  (B3)

 ≥ 0 ∈ ∪ {0} (B4)

From (B3), we see that  

 ≤ / ∈  (B5)

and thus from (B2), we have 

  
( − Δ)

∈ ≥ ( − Δ)∈ ≥ 1. (B6)

From (B6), we have 

 ≥ ∑ ( − Δ)∈ > 0 (B7)

and therefore by the complementary slackness theorem (Bertsimas & Tsitsiklis, 1997) constraint (19) 

must be satisfied at strict equality. ∎ 
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APPENDIX C 

Proof of Proposition 3. Let Δ = ∑ . Direct inspection of the Capacity Allocation Algorithm suggests 

that the solution obtained from the Capacity Allocation Algorithm is optimal. Here, we will use the 

solution obtained from the algorithm and prove that it is optimal. By the operation of the Capacity 

Allocation Algorithm, if we terminate the algorithm with  bottleneck counties, the algorithm must 

terminate at iteration . All bottleneck counties have MCD ratios of at least . Since the algorithm 

terminated at iteration , there was not sufficient capacity to perform the next iteration, so the optimal 

number of bottleneck counties is 

 = argmax1 ≤ ≤ | | ( − Δ)− Δ − ≤  (25)

In order to show how equation (25) is obtained, let  denote the total additional capacity to be allocated 

to county  as a result of the Capacity Allocation Algorithm where ≤ . Then, to reach iteration > 1, 

we need 

 
+− Δ = − Δ <  (C1)

 = ( − Δ)− Δ − <  (C2)

This implies that the total additional capacity needed to reach iteration  is: 

 = ( − Δ)− Δ −  (C3)

and should satisfy 

 = ( − Δ)− Δ − ≤ . (C4)

The equation (25) follows directly. The summation in (25) is taken to be zero when ξ = 1, from which it 

follows that we stop at iteration = 1. 
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The solution ∗, ∗; 	 ∈ , as given in Proposition 3 is feasible for the Capacity Allocation Model. 

Let , ∈ ,  represent the corresponding dual solution. The vectors ∗, ∗; 	 ∈  and , ∈ ,  are optimal solutions for the two respective problems if and only if, by the 

Complementary Slackness Theorem (Bertsimas & Tsitsiklis, 1997), , ∈ ,  is a feasible dual 

solution and they satisfy the following: 

 ∗ − Δ − ∗ − = 0 ∈  (C5)

 ∗∈ − 1 = 0 (C6)

 ( − Δ) − 1∈ = 0 (C7)

 − + ∗ = 0 ∈  (C8)

Since by Proposition 2, Constraint (19) is satisfied at equality in an optimal solution, we obtain no 

additional information from (C6). 

Assume that the number of bottleneck counties obtained from (25) is . From (C5), using the proposed 

optimal solution in Proposition 3, for ≤ , 

 ∗ − ∗Δ − ∗ − = ∗ − ∗Δ − ∗ − Δ − − = 0. (C9)

From Equations (B4) and (C5), 

 ≥ 0 1 ≤ ≤ . (C10)

For + 1 ≤ ≤ , from Equation (C5) and using the proposed optimal solution in Proposition 3, 

 

∗ − ∗Δ − ∗ − = + ∑∑ ( − Δ) − Δ + ∑∑ ( − Δ) −
= + ∑ − Δ + ∑ − ∑ ( − Δ)∑ ( − Δ)  

(C11)
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Based on the termination condition of the Capacity Allocation Algorithm, if < | |, then we have 

 
| || | − Δ > ⋯ > − Δ > + ∑∑ ( − Δ) = ; (C12) 

and therefore we have, 

 − Δ > + ∑∑ ( − Δ) + 1 ≤ ≤ | |. (C13) 

It follows that 

 + − Δ + − ( − Δ) < 0 + 1 ≤ ≤ | |. (C14)

Since this is the numerator of equation (C11), from (C5), it follows that 

 = 0 + 1 ≤ ≤ | |. (C15)

If = | |, equations (C11) – (C15) are not needed. 

We can assume that > 0 because it represents the minimum MCF ratio after capacity allocation. Then, 

from (C7), we have 

 ( − Δ)∈ = 1. (C16)

Using (C15), we can rewrite (C16) as 

 ( − Δ) = 1. (C17)

By using the proposed solution, without loss of generality, we can assume that ≥  for ≤ , where  

is a small positive number. Then, from (C6), it follows that 

 − + = 0 ≤  (C18)

 = ≤  (C19)
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By inserting (C19) into (C17),  

 ( − Δ) = ( − Δ) = 1 (C20)

 = ∑ ( − Δ). (C21)

By inserting (C21) into (C19), we get 

 = 1∑ ( − Δ) ≤ . (C22)

This result is also intuitively meaningful;  is the marginal benefit of increasing  by one unit. If we 

examine the structure of ∗ in Equation (26), we can see that if  for ≤  is increased by one unit, ∗, 

which is the optimal objective function value, increases by ∑ ( )	 . This solution, , ∈ ,		 0, as given by equations (C14), (C20) and (C21) is also feasible for the dual problem since it satisfies 

constraints (B2)-(B4). 

Finally, calculating the dual objective function value, 

 = ∈ + = ∑∑ ( − Δ) + ∑ ( − Δ) = ∗ =  (C22)

Hence, by the Strong Duality Theorem (Bertsimas and Tsitsiklis, 1997), the proposed solution is optimal. ∎ 
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APPENDIX D 

Analysis of different equity measures: We examine how the solutions proposed by our Food Distribution 

Model perform in terms of four alternative measures of inequity discussed by Marsh and Schilling (1994). 

First, we make the following definitions in accordance with Marsh and Schilling (1994):   

 = ∑ − ∑  (D1) 

 = ∑
 (D2) 

As described in Section 3, through equations 2.a and 2.b, the inequity measure used in the Food 

Distribution Model is equivalent to constraining max , which is the first inequity measure discussed by 

Marsh and Schilling (1994), to be below a certain limit. By doing this, we enforce that this inequity 

measure remains below an equity deviation limit, . We will compare our results from the Food 

Distribution Model to four alternative inequity measures. The measures we will use are: 1) Variance, 

∑ ; 2) Average absolute deviation from , 
∑ ; 3) The range, max − min ; and 4) 

Maximum absolute deviation from ,  max − . We have scaled some of the measures from Marsh 

and Schilling (1994) to normalize the inequity measures so that they all take values between zero and one. 

Since these are all measures of inequity, smaller values indicate a better equity level. 

In terms of the experimental design, we use the same approach as explained in the previous 

section for uncertainty in capacities. We will again use the equity deviation limits, = 0, 0.002,	and 0.004 since we would like to select  values corresponding to capacity and equity constrained instances. 

We then use the obtained optimal solutions for each instance and calculate the inequity levels for each of 

the four measures considered. The average inequity levels from the 1000 instances for Beta2 distribution 

are summarized in Table D1 where the values in parentheses show the corresponding standard deviations. 
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The remaining distributions are not shown here since this distribution has the highest level of variance 

and skewness among the considered distributions and hence exhibits the widest variability.  

Table D1. Analysis of different inequity measures from Marsh and Schilling (1994) for Beta2 

distribution. 

Mean (S.D.) 

Equity Deviation Limit, K 

0 0.002 0.004 

Inequity 

Measures 

 

∑ −
 

0.00000 

(0.00000) 

0.00000 

(0.00000) 

0.00000 

(0.00000) ∑ −
 

0.00000 

(0.00000) 

0.00008 

(0.00009) 

0.00031 

(0.00019) 

max − min  
0.00000 

(0.00000) 

0.00073 

(0.00075) 

0.00242 

(0.00133) 

max −  
0.00000 

(0.00000) 

0.00068 

(0.00070) 

0.00225 

(0.00122) 

 

The inequity measure used in the Food Distribution Model limits all  values to stay below a certain 

limit and hence, forces a certain equity level on each county. The perfect equity case, = 0 requires that = 0 for all . Hence, all the other measures are also equal to zero indicating that our solutions are 

optimal for each inequity measure considered for = 0. When > 0, each  is required to be below , 

and hence  is also required to be less than . This causes all the measures containing the −  term 

to achieve low levels. The measure that behaves the worst is the range, max − min , but that 

measure is also constrained to be lower than the original measure since min > 0. The results show that 

the measure we use in our paper is a very strong equity measure and enforces a certain level of equity at 

each of the locations considered. This causes the resulting policies to behave well under different 

commonly used equity measures.  
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