
Modeling gene and genome duplications
in eukaryotes
Steven Maere*, Stefanie De Bodt*, Jeroen Raes, Tineke Casneuf, Marc Van Montagu, Martin Kuiper,
and Yves Van de Peer†

Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium

Contributed by Marc Van Montagu, February 9, 2005

Recent analysis of complete eukaryotic genome sequences has

revealed that gene duplication has been rampant. Moreover, next

to a continuous mode of gene duplication, in many eukaryotic

organisms the complete genome has been duplicated in their

evolutionary past. Such large-scale gene duplication events have

been associated with important evolutionary transitions or major

leaps in development and adaptive radiations of species. Here, we

present an evolutionary model that simulates the duplication

dynamics of genes, considering genome-wide duplication events

and a continuous mode of gene duplication. Modeling the evolu-

tion of the different functional categories of genes assesses the

importance of different duplication events for gene families in-

volved in specific functions or processes. By applying our model to

the Arabidopsis genome, for which there is compelling evidence

for three whole-genome duplications, we show that gene loss is

strikingly different for large-scale and small-scale duplication

events and highly biased toward certain functional classes. We

provide evidence that some categories of genes were almost

exclusively expanded through large-scale gene duplication events.

In particular, we show that the three whole-genome duplications

in Arabidopsis have been directly responsible for >90% of the

increase in transcription factors, signal transducers, and develop-

mental genes in the last 350 million years. Our evolutionary model

is widely applicable and can be used to evaluate different assump-

tions regarding small- or large-scale gene duplication events in

eukaryotic genomes.

Arabidopsis � functional categories � gene retention

Thirty-five years ago, Susumu Ohno (1) outlined the potential
role of gene duplication as the driving force behind the

evolution of increasingly complex organisms. Recent analysis of
complete eukaryotic genome sequences has revealed that gene
duplication has indeed been rampant (2–4). Furthermore, many
eukaryotic organisms had their whole genome duplicated, some-
times more than once (5, 6). In particular such large-scale gene
duplication events have been considered of major importance
for evolution and increase in biological complexity (1, 7–10).

Lynch and Conery (2) were among the first to investigate the
overall degree of gene duplication and gene loss in completely
sequenced genomes. When the number of duplicated pairs of
genes is plotted against their age, inferred from the number of
synonymous substitutions per synonymous site (KS), the resulting
age distributions exhibit a typical L shape, with many recently
duplicated genes and much fewer older duplicates. Based on
these age distributions, Lynch and Conery (2) suggested a
steady-state stochastic birth–death model for the dynamics of
duplicate populations, from which they inferred the overall rate
of gene duplication and gene loss. However, the gene birth and
death model proposed by Lynch and Conery (2) does not take
into account larger-scale gene duplication events, such as pa-
leopolyploidy events.

Here, we propose a generally applicable evolutionary model
that simulates the birth and death of genes based on observed
age distributions of duplicates, considering small-scale, contin-
uously occurring local duplication events (hereafter referred to

as 0R) and duplication events affecting the whole genome. In the
present study, this model is applied to the Arabidopsis genome.
There is compelling evidence based on the identification and
delineation of intergenomic homology and phylogenetics that
the Arabidopsis genome has been duplicated three times (events
hereafter referred to as 1R, 2R, and 3R) during the last �350
million years (11–14). Because Arabidopsis has undergone sev-
eral well documented rounds of genome duplication, it is an ideal
model system to study gene retention that occurs after ancient
polyploidy events versus small-scale gene duplication events.
Furthermore, by applying this computational model to different
functional categories of genes, we can assess the importance of
different gene duplication events for the evolution of specific
gene functions or biological processes and pathways.

The aims of our study were fivefold: (i) to develop an
evolutionary model that can take into account whole-genome
duplication events in addition to the continuous mode of dupli-
cation, (ii) to use this model to investigate whether there is a
difference in gene loss for genes created during small-scale
(continuous) or large-scale (global) duplication events, (iii) to
investigate whether duplicated genes indeed form a functionally
biased set in small-scale and large-scale gene duplication events,
(iv) to investigate whether gene decay and gene retention were
similar for the successive whole-genome duplication events in
Arabidopsis, and (v) to infer the number of Arabidopsis genes
before the gene and genome duplication events considered in the
present study.

Methods

Identification of Paralogs. An all-against-all protein sequence
similarity search was performed by using BLASTP (with an
E-value cutoff of e�10) (15). Sequences alignable over a length
of 150 amino acids with an identity score of 30% were defined
as paralogs, according to ref. 16. Gene families were built
through single-linkage clustering.

Dating of Paralogous Gene Pairs. Synonymous substitutions do not
result in amino acid replacements and are, in general, not under
selection. Consequently, the rate of fixation of these substitu-
tions is expected to be relatively constant in different protein-
coding genes and, therefore, to reflect the overall mutation rate.
As a result, the fraction of synonymous substitutions per syn-
onymous site (KS) is used to estimate the time of duplication
between two sequences. All pairwise alignments of the paralo-
gous nucleotide sequences belonging to a gene family were made
by using CLUSTALW (17), with the corresponding protein se-
quences as alignment guides. Gaps and adjacent divergent
positions in the alignments were removed. KS estimates were
obtained with the CODEML program (18) of the PAML package
(19). Codon frequencies were calculated from the average
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nucleotide frequencies at the three codon positions (F3 � 4),
whereas a constant KN�KS (nonsynonymous substitutions per
nonsynonymous site over synonymous substitutions per synon-
ymous site, reflecting selection pressure) was assumed (codon
model 0) for every pairwise comparison. Calculations were
repeated five times to avoid incorrect KS estimations because of
suboptimal local maxima.

Building Age Distributions of Duplicated Genes in Arabidopsis. Only
gene pairs with a KS estimate of �5 were considered for further
evaluation. Large gene families were subdivided into subfamilies
for which KS values between genes did not exceed a value of 5.
It is assumed that a gene family of n members originates from
n � 1 retained single gene duplications, whereas the number of
possible pairwise comparisons (KS measurements) within a gene
family is [n(n � 1)]�2. To correct for the redundancy of KS values
when building the age distribution for duplicated genes, we use
an approach similar to that adopted by Blanc and Wolfe (20)
(Supporting Methods, which is published as supporting informa-
tion on the PNAS web site).

Functional Classification of the Paranome. The Gene Ontology
(GO) annotation for Arabidopsis thaliana was downloaded
from The Arabidopsis Information Resource (www.arabidop-
sis.org; version April 10, 2004) and remapped to the plant-
specific GO Slim ontology (www.geneontology.org) (21). A
few extra subdivisions were added to the GO Slim ‘‘structural
molecule activity’’ and ‘‘transporter activity’’ categories (see
Fig. 5, which is published as supporting information on the
PNAS web site). Genes mapped to a particular GO Slim
category were also explicitly included into all parental cate-
gories. Individual gene family KS distributions were only added
to a particular GO Slim category KS distribution if �20% of the
genes in the family were annotated to that category (Supporting
Methods, Figs. 5, 6, and 7, and Table 1, which are published as
supporting information on the PNAS web site). GO Slim
categories containing �50 retained duplicates (i.e., very sparse
distributions) were a priori discarded as candidates for further
modeling. After modeling, some other categories were re-
moved for interpretation and discussion because of low-
confidence parameter estimates (Supporting Methods and Ta-
ble 2, which is published as supporting information on the
PNAS web site).

Population Dynamics Model for Duplicate Genes in Arabidopsis. Our
model simulates the dynamics of a population of duplicated
genes, as ref lected by their KS age distribution, in 50 time steps,
each time step corresponding to an average KS interval of 0.1
(Fig. 1). The principal equations of the model are summarized
below.
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x�	1




Dtot�x� , t � 1� � G0�
Di�1, t� � � �

x�	1




Dtot�x� , t � 1� � G0� �� t , t i� i � 1, 2, or 3

Di�x, t� � Di�x � 1, t � 1��x��x � 1����i x � 1 i � 0, 1, 2, or 3

Dtot�x , t� � �
i

D i�x , t� [1]

In this set of equations, Di(x, t) stands for the number of retained
duplicates in the ith duplication mode (i 	 0 for the 0R, i 	 1,
2, and 3 for 1R, 2R, and 3R, respectively) having an age x
(measured in 0.1 synonymous substitutions per synonymous site

equivalents) at time step t in the simulation. Dtot(x, t) is the total
number of duplicates of age x at time step t, which is fed back to
time step t 
 1. G0 represents the number of ancestral genes at
KS 	 5 (see Supporting Methods for details). The first equation
describes the birth of duplicates in the continuous mode at a birth
rate of � duplicates per gene and per time step. Because the birth
rate can be assumed to be the same for all GO categories, � was
estimated once from the category with the highest resolution,
namely the whole-paranome category (see Results and Discus-
sion). The same birth rate was then used throughout all simu-
lations for all functional categories, reducing the number of
parameters that needed to be optimized by one. The second
equation models the discrete (hence the � function) large-scale
duplication events at time steps ti. The third equation models the
loss of duplicates from one time step to the next, with power-law
decay constants �i. The last equation ensures the coupling
between all duplication modes.

The equations (Eq. 1) are recursively evaluated 50 times in the
course of a single simulation. The resulting distribution Dtot(x,
50) is the simulated present-day age distribution of the duplicate
population for a given choice of parameters �i, which are the
parameters to be optimized. However, Dtot(x, 50) is an age
distribution featuring discrete large-scale duplication peaks as
opposed to the relatively wide peaks observed in the KS distri-
butions. The modeled age distribution of retained duplicates
Dtot(x, 50) is converted to a KS distribution by Poisson distrib-
uting the duplicate count of each age bin (see Supporting
Methods). The net effect is a broadening of discrete peaks in the
modeled age spectra, increasing with age, as observed in the
initially obtained KS distributions (Fig. 1). The modeled KS

distribution is calculated from the modeled age-distribution as
follows:

D��x, �� � �
�	1




D tot�� , 50� ��xe���x!, [2]

where x is the KS bin, � is the age bin, Dtot(�, 50) is the modeled
age-distribution after 50 time steps and D�(x, �) is the corre-
sponding model KS distribution after Poisson smoothing, with
decay parameters � 	 (�0, �1, �2, �3). The model parameters �i

are optimized to give the best possible fit of D�(x, �) to the
observed KS distribution. A classic Monte Carlo Simulated
Annealing optimization strategy was used with an exponential
temperature decay (22, 23) (see Supporting Methods and Fig. 8,
which is published as supporting information on the PNAS web
site). The parameters �i were optimized 10 times for each
functional category to monitor the convergence of the parameter

Fig. 1. Age distribution of the Arabidopsis paranome based on KS values. 1R,

2R, and 3R refer to the three genome-wide duplication events that have

occurred in Arabidopsis or its predecessors (12, 13).
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estimates. Confidence intervals for the parameters �i were
calculated based on the covariance matrix for the best fit (see
Supporting Methods and Table 2). GO Slim categories with more
than two low-confidence parameter estimates were discarded
in all further analyses (colored gray in Figs. 5 and 6; see also
Table 2).

Results and Discussion

The age distribution of all duplicated genes of Arabidopsis,
including all 3,472 gene families (see Table 1), clearly shows two
peaks or waves (Fig. 1), of which the youngest can be attributed
to the youngest duplication event (12–14), whereas the second
wave corresponds to the two older genome duplications (12, 13)
that have become almost indistinguishable (see below). In
previous studies, the second wave had been missing mainly either
because large multigene families had been excluded from the
analyses (2) or because only small KS values had been considered
(20). As shown earlier, many of the genes in these waves lie in
so-called paralogons, i.e., intragenomic homologous segments
(12–14). However, many duplicates that originated from large-
scale duplication events are found outside those paralogons,
particularly for the older genome duplication events, because of
gene translocation events. These duplicates were largely ignored
in previous studies (24, 25) because they cannot be distinguished
from duplicates generated in the continuous mode. In our model,
this problem is circumvented by simulating, rather than enumer-
ating, the number of duplicates generated in each duplication
mode, regardless of whether they belong to paralogons.

The Functional Landscape of the Arabidopsis Paranome. To investi-
gate the relative impact of small-scale and large-scale gene
duplications on different functional categories of genes in Ara-
bidopsis, we subdivided the global KS distribution according to
the GO Slim ontology (21). Based on the current status of the
GO annotations and on the robustness of the age distributions
for different thresholds (see Supporting Methods and Fig. 7), we
chose to add individual gene families to a particular GO Slim
category distribution if �20% of the genes in the family were
assigned to that category. Despite using a 20% threshold for
individual gene families, the minimum overall percentage of
genes in a GO Slim class distribution that are annotated accord-
ingly in GO is 58% (for the ‘‘carbohydrate binding’’ category)
(Table 1). We do recognize the risk of assigning gene families to
a particular GO Slim function or process that are only partially
involved in that function or process. Although we found no direct
evidence of such cases, the KS distribution for, e.g., the ‘‘response
to abiotic stimulus’’ category should be considered as the KS

distribution for gene families that during their history have been
important in the evolution of the response to abiotic stimulus
rather than the distribution for duplicate genes involved in the
response to abiotic stimulus sensu stricto. The size of the gene
families, the total number of genes ascribed to a functional
category based on these gene families, the proportion of those
genes directly annotated by GO to that functional category, and
the number of retained duplicates and the estimated number of
ancestral genes for that functional category can be found in
Table 1.

Modeling Gene and Genome Duplications. To quantify the differ-
ences in KS distribution between the GO categories, a population
dynamics model was developed that is able to accurately repro-
duce the observed KS distributions and characterize them in
terms of only a few parameters. The model itself is described in
detail in Methods, but the principal assumptions and potential
shortcomings of our model will be considered here. Because the
calibration of time since duplication versus KS is controversial
[see, for example, Lynch and Conery (2) and Koch et al. (26), who
propose quite different rates of synonymous substitutions in

dicots], all calculations were performed based on KS time
equivalents without explicit conversion to real time (Supporting
Methods). Throughout the manuscript, time since duplication is
therefore expressed in KS time equivalents. The simulation starts
at time step 1 (5.0 KS time equivalents ago) from a number of
ancestral genes G0 (Supporting Methods and Table 1) and evolves
this ancestral genome to the present-day size by gene duplication
and gene loss, thereby creating a simulated KS distribution. Four
distinct modes of gene duplication are included, namely a
continuous mode of small-scale gene duplication (0R) and three
large-scale duplication modes (1R, 2R, and 3R). We assume that
small-scale duplications in the continuous mode occur at a
constant birth rate � (see Supporting Methods). Local f luctua-
tions of the birth rate � with time are averaged out over longer
time periods. Systematic deviations from a constant birth rate
(e.g., systematic increase of birth rate with time) or prolonged
time periods with a significantly altered birth rate would be
reflected by the inability of our model to reproduce the observed
KS distribution. In our case, it proved to be unnecessary to make
more elaborate assumptions (Occam’s razor). The average birth
rate � of new duplicates was estimated to be 0.03 per gene and
per 0.1 KS time equivalent based on optimization of the model
fit to the whole paranome KS distribution for several values of �

(Fig. 9, which is published as supporting information on the
PNAS web site). Our estimate is about twice as high as the one
proposed by Lynch and Conery (27).

On top of the continuous duplication mode, we have modeled
three whole-genome duplications occurring at time steps ti 	 20,
31, and 44 in the simulation (respectively 3.1, 2.0, and 0.7 KS time
equivalents ago). These values correspond to the three previ-
ously described large-scale duplication events in the evolutionary
past of Arabidopsis (12, 13). The ages of the whole-genome
duplications were estimated through simulations of the dupli-
cation history of the whole paranome for different age values.
These ages were subsequently used throughout the simulations
for all GO Slim categories. A model based on only two large-
scale duplications, assuming that 1R did not take place, gave
considerably worse fits (Fig. 2 A and B), again providing
evidence that three large-scale duplications have, indeed, oc-
curred in the evolutionary past of Arabidopsis. The model is able
to compensate in part for the lack of genes created by 1R by
increasing the retention of duplicates in the continuous mode
(lower decay parameters �0), especially for GO categories with
moderate to low retention after 1R, such as the ‘‘whole para-
nome’’ category. However, categories with a high retention
subsequent to 1R, such as ‘‘development,’’ show pronounced bias
in the residuals. We also assumed that the three large-scale
duplication events were complete genome duplications. Al-
though for the youngest event there is substantial evidence that
at least 80% of the genome was duplicated (12–14), it is very
difficult to assess whether the older large-scale duplication
events were also genome-wide. The validity of our assumption
can, at least to some extent, be examined by modeling alternative
assumptions. For example, if we assume that the second large-
scale event (2R) only affected half of the genome, the effects
thereof will propagate to later time points (smaller KS), by means
of the coupling of all duplication modes. More specifically, the
continuous mode of duplication will then have acted on consid-
erably less genetic material right after 2R, resulting in the
inability of the model to reproduce the duplicate count observed
in the actual KS distribution between KS 	 1.0 and 2.0, after 2R
(Fig. 2C). This effect is more pronounced for GO categories with
a low decay rate (or high retention) in the continuous mode. The
2R peak itself (KS � 2.0) is still fitted reasonably well by lowering
the 2R decay parameter �2.

The duplicates created during the whole-genome duplication
events and the continuous mode of duplication are lost with
mode-specific time-dependent decay rates �i�t (i 	 1 for 1R, i 	
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2 for 2R, and i 	 3 for 3R) and �0�t (0R), respectively. A decay
rate �i�t leads to a decay of the power-law form: Di(t) 	 Di(0)t��i,
where Di(t) represents the number of duplicates in the ith
duplication mode after a time t. Compared to an exponential
decay with a constant decay rate �i, as suggested by Lynch and
Conery (2), a power-law decay exhibits a flattened tail. We
observed that an exponential decay model could not adequately
reproduce the observed KS distributions, in particular for high KS

values (Fig. 2D). Also, decay parameters �i obtained with the
exponential model steadily increase with the decreasing age of
the duplication mode (�1 � �2 � �3 � �0), which cannot be
biologically motivated. Indeed, a constant decay rate is unreal-
istic from a biological viewpoint. If duplicates have been retained
for a longer time, it is more probable that they confer added
value or fitness to the organism, which reduces their chance of
being lost (28). In other words, the decay rate should asymptot-
ically tend to zero for increasing time since duplication. This
scheme allows for rapid initial gene loss that gradually evolves
toward a preferential retention of older duplicates under selec-
tive constraints.

Small-Scale Versus Large-Scale Duplications and Biased Retention of

Duplicates. Gene decay rates were estimated by the model
through fitting of the age distributions drawn for the different
functional categories (Figs. 5 and 6). Fig. 3 shows examples of the
four different decay parameters, namely those for 0R, 1R, 2R,
and 3R, for some specific GO classes, such as transcription,
development, and secondary metabolism. A table with the decay
parameters for other functional categories and for confidence
values for these parameters can be found in Table 2. A clustered
color representation of gene decay is shown in Fig. 4 for all GO
classes that could be modeled adequately (evaluated based on
confidence intervals; see Table 2).

One of the most striking observations is that, for many
functional categories, gene decay rates differ considerably for
genes created during large-scale (1R, 2R, or 3R) and small-scale
(0R) duplication events. As a matter of fact, for a majority of GO
Slim categories, an almost opposite picture is obtained for genes
created during whole-genome or small-scale duplication events.
Probably most prominently, gene decay is low for genes involved
in kinase activity, transcription, protein binding and modifica-

Fig. 2. Optimal fits and parameters �i (Upper) and residual errors (Lower) for the ‘‘whole paranome’’ and ‘‘development’’ GO categories, simulated under

various model assumptions. (Upper) The green curves show the observed KS distributions, and the blue curves represent the simulated KS distributions. (Lower)

The residual error is defined as the difference between the observed and the simulated distributions. Biased residual errors, meaning that they are consistently

positive or negative for prolonged KS intervals, hint at unrealistic model assumptions. (A) Model fits under the assumption that there were three whole-genome

duplications and that gene decay follows a power law. The residual errors show very little bias. (B) Model fits under the assumption that 1R did not occur. (C)

Model fits under the assumption that 2R was partial and involved only 50% of the genome. (D) Model fits under the assumption that the number of retained

duplicates decays exponentially.
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tion, and signal transduction pathways when created in large-
scale gene duplication events, whereas gene decay is very high for
such genes when created by individual, small-scale duplication
events (Fig. 4). Accordingly, Blanc and Wolfe (24), considering
only the most recent polyploidy event in Arabidopsis, also
observed a high retention of genes with regulatory functions,
such as transcription factors, kinases, phosphatases, and calcium-
binding proteins. Seoighe and Gehring (25) also found that genes
involved in transcription regulation and signal transduction had
a significantly higher survivability after genome duplication than
other functional categories. Rapid loss of these duplicated genes
after small-scale gene duplication events may be explained by the
fact that regulatory genes involved in signal transduction and
transcription tend to show a high dosage effect in multicellular
eukaryotes (29). That transcription factors and kinases are often
active as protein complexes and need to be present in stoichio-
metric quantities for their correct functioning is congruent with
their high retention rate after whole-genome duplication events
in contrast to small-scale duplication events (30, 31). On the
other hand, genes belonging to other functional categories show
a markedly different behavior and are retained in excess after
large-scale and small-scale duplication events. Examples are
genes involved in secondary metabolism and response to biotic

stimulus. Because plants are sessile organisms, secondary me-
tabolite pathways and genes governing the response to biotic
stimulus have been crucial to develop survival strategies against
herbivores, insects, snails, and plant pathogens (32). The low
decay rate of these genes in small- and large-scale duplication
modes (Fig. 4) furthers the evidence that secondary metabolites
represent important adaptive traits that are heavily selected for
during evolution to protect plants against a wide variety of
enemies imposing a constant need for adaptation. Genes in-

Fig. 3. Observed (blue line) versus simulated (green and yellow surface

areas) KS distributions for some GO classes discussed in the text. The param-

eters in the upper right corners of each graph specify the simulated decay rates

for the continuous mode of gene duplication (�0) and for the whole-genome

duplications 1R (�1), 2R (�2), and 3R (�3) and their confidence intervals (Table

2). The colored areas show the simulated fraction of retained duplicates

created by each duplication mode as a function of KS. Similar graphs for other

functional classes can be found in Fig. 10, which is published as supporting

information on the PNAS web site.

Fig. 4. Clustered color representation of the decay parameters for all

duplication modes and GO Slim categories. Light blue corresponds to high

gene decay or low retention, and bright yellow corresponds to low decay or

high gene retention. The numerical values and confidence intervals of the

decay parameters can be found in the supporting information. The decay

parameter of 0.70 (black) was chosen to match the continuous-mode decay for

the whole paranome. P denotes the Biological Process categories, and F

denotes the Molecular Function categories.
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volved in conserved biological processes are generally little
retained (Fig. 4). Examples are DNA metabolism genes (which
includes DNA repair, DNA replication, and DNA recombina-
tion), ribosomal genes (except for 3R), nucleases, RNA binding
genes, and (to a lesser extent) cell cycle genes and protein and
macromolecule biosynthesis genes. Our model also shows that
gene decay is not the same for different whole-genome dupli-
cation events, although the general trends are similar. For
instance, gene decay occurring after the youngest duplication
event (3R) seems to be higher (Fig. 4, blue coloring in the whole
paranome row at column 3R) and less biased toward functional
class (Fig. 4, less deviation from the mean reflected by an overall
darker coloring in column 3R) than for 1R and 2R. In particular,
genes encoding transcriptional regulators and genes involved in
development are better retained after the second genome du-
plication event than after the other duplication events. This
finding seems to be congruent with what is known about the rise
and early diversification of the angiosperms, but this result will
be discussed elsewhere.

The impact of small- and large-scale duplications on the
expansion of specific functional categories of genes becomes
even clearer when we consider the actual numbers of genes
retained subsequent to 0R, 1R, 2R and 3R. Based on integration
of the mode-specific KS distributions (Fig. 3, colored areas), we
estimate that the three genome duplication events are directly
responsible for �90% of all transcription factors in higher plants
created in the last �350 million years (roughly corresponding to
KS 	 5.0) (Table 3, which is published as supporting information
on the PNAS web site). Similarly, we estimate that 1R, 2R, and
3R taken together account for 92% of all developmental genes
and 99% of the kinases and genes involved in signal transduction
created since the time corresponding with a KS value of 5.0. For
most categories related to metabolism, stress response, or cell
death, the percentage of large-scale gene duplicates ranges from
50% to 70%, reflecting the fact that these categories show
relatively higher gene retention after small-scale gene duplica-
tion events.

From the simulation results, we can also infer the number of
genes that was initially created in each mode. We estimate that
17,193 duplicates were created by 1R, of which 771 (or 4.4%)
duplicates have been retained; 20,316 duplicates were created by
2R, of which 2,765 (13.6%) were retained; and 24,351 duplicates
were created by 3R, of which 3,947 (16.2%) duplicates have
survived. In contrast, 0R created 33,182 duplicates in the last

350–400 million years (12, 13) and is responsible for 5,266
(15.8%) retained duplicates (see Table 3). It is clear from these
numbers that, although a considerable number of genes has been
retained after gene duplication, gene loss is by far the most likely
fate of duplicate genes. Overall, the three genome duplications
in Arabidopsis have been directly responsible for �59% of the
total number of duplicates that have been retained during the
last �350 million years, which means that more than half of
the Arabidopsis genome expansion, from �14,800 genes in the
ancestral genome at time point KS 	 5.0 (G0 for the whole
paranome in Table 1) to �27,500 genes now (from GO; Table
1), is directly caused by genome duplications. Still, �40% of the
genome expansion is caused by gradual accumulation of small-
scale gene duplicates.

In conclusion, we have developed an evolutionary model that
simulates the population dynamics of duplicate genes created by
small- and large-scale duplication events based on their age
distribution in a genome. One of the main advantages of our
modeling approach is that it provides a means to study gene
retention occurring after genome duplications without the need
to attribute every gene to a particular duplication event. Apply-
ing our model to the Arabidopsis genome shows that much of the
genetic material in extant plants, i.e., �60%, has been created by
ancient genome duplication events. More importantly, it seems
that a major fraction of that material could have been retained
only because it was created through large-scale gene duplication
events (Figs. 3 and 4). In particular, transcription factors, signal
transducers, and developmental genes have been retained sub-
sequent to large-scale gene duplication events, in particular, to
the second genome duplication (2R), whereas the contribution
of small-scale gene duplications to the increase of regulatory and
developmental genes has been very limited. Because the diver-
gence of regulatory genes is being considered necessary to bring
about phenotypic variation and increase in biological complex-
ity, it is tempting to conclude that such large-scale gene dupli-
cation events have indeed been of major importance for evolu-
tion in general, as suggested in refs. 1, 7, 9, 10, and 33.
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Supporting Methods 

 

Correction for redundant KS values 

A gene family of n members originates from n-1 retained single gene duplications, whereas the 

number of possible pairwise comparisons (KS measurements) within a gene family is n(n-1)/2. 

To correct for the redundancy of KS values when building the age distribution for duplicated 

genes, we constructed tentative phylogenetic trees for each gene family with an average linkage 

clustering algorithm using KS as a distance measure, similar to the approach adopted by Blanc 

and Wolfe (1). Starting from each gene as a separate cluster, the two clusters with the lowest 

mean inter-cluster KS value (i.e. the mean of all observed KS values (edges) between two 

clusters) were iteratively merged. The splits in the resulting average linkage tree represent the n-

1 retained duplication events. For each split, the m KS measurements between the two merged 

gene clusters were added to the KS distribution with a weight 1/m. In other words, all KS 

estimates for a particular duplication event were added to the KS distribution, while the total 

weight of a single duplication event sums up to one.  

 

Assignment of gene families to GO Slim category KS distributions 

In order to investigate the relative impact of small-scale and large-scale gene duplications on 

different functional categories of genes in Arabidopsis, we subdivided the global KS distribution 

according to the Gene Ontology (GO) annotation, which provides a standardized and 

hierarchical vocabulary to describe the function of genes (2). Individual gene families were 

included in one or more KS distributions depending on their GO Slim annotation. In this GO Slim 

ontology, categories close to the leaves of the GO hierarchy are mapped onto the more general 

parental categories. As such, these GO Slim categories generally contain enough duplicated 

genes to construct reliable KS distributions and to model their duplication history. A visual 
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representation of the KS distributions for the various functional classes mapped onto the GO 

Slim hierarchy can be found in Figs. 5 and 6. 

 To assign a given gene family to a certain GO Slim class, a threshold was used that is 

expressed as a percentage of genes in the family assigned to that class. Using no threshold, 

meaning that a gene family is included in the KS distribution of a GO Slim class as soon as one 

gene is assigned to that class, would be unacceptable because of the high false-positive rate in 

the GO annotations. Although the GO annotation for Arabidopsis genes has recently been 

improved considerably (3), it still contains errors (false positives) while for many genes the 

annotation is missing or incomplete (false negatives). On the other hand, a high threshold would 

discard too many families with incomplete annotations, leading to sparser distributions and lower 

sensitivity. A threshold of 40%, for example, would already require two genes in a family of three 

to have the same annotation, a number that is hard to reach given the current status of GO 

annotation and knowledge about gene function in Arabidopsis, especially for Biological Process 

categories. To decide which gene families to assign to which GO classes, we compared three 

thresholds, namely 10%, 20%, and 30% (Fig. 7). As can be observed, GO Molecular Function 

categories tend to be relatively indifferent to threshold changes (Fig. 7C), reflecting the fact that 

most genes in a family are, often electronically, annotated to the same Molecular Function. The 

same holds true for general Biological Process categories, such as metabolism (Fig. 7A). For 

more specific Biological Process categories, such as development, the distribution degrades 

more quickly when the threshold is raised, although the shape of the distribution, which is our 

main concern, is largely preserved (Fig. 7B).   

 

Estimation of the number of ancestral genes G0  

For each GO Slim class, the number of ancestral genes G0 existing at time point KS = 5 was 

estimated as follows. Each gene family (i.e. subfamily where KS measurements between genes 

do not exceed 5) in the GO Slim category KS distribution is the progeny of a single ancestor 
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gene that existed at KS = 5, which sets the ancestor count at the number of gene families 

included in the GO Slim distribution. To this number, we added the number of singletons (i.e. 

genes that did not retain any duplicates after KS = 5) annotated to the GO Slim class to get the 

final estimate of G0.  

 

Age versus KS distributions 

An issue that needs consideration is the difference between age distributions and KS 

distributions. The distribution that is initially simulated in our population dynamics model is an 

age distribution, featuring discrete large-scale duplication peaks as opposed to the smooth 

peaks, widening with time, observed in the KS distributions. In order to fit our model to the 

observations, the simulated age distribution needs to be converted to a KS distribution, which 

implies that we have to consider the processes that cause the growing uncertainty in KS as a 

function of age. The basic process responsible for peak broadening in KS spectra is the process 

of synonymous substitution, used to infer KS values from sequence data. A given site has a 

particular probability per unit of time of undergoing a synonymous substitution (4, 5). For 

example, in an ensemble of sequence pairs with say L completely unrestricted synonymous 

sites, the number of synonymous substitutions after any given length of time λ (measured in KS 

time equivalents, see below) will be Poisson-distributed with mean λL and standard deviation 

Lλ . Consequently, the corresponding KS distribution will be a scaled Poisson distribution with 

mean λ and standard deviation Lλ . As the peak width varies with the length of the 

sequences, the distribution of KS values for a set of sequence pairs of varying length will be a 

superposition of several such scaled Poisson distributions. Furthermore, factors that impose 

selective constraints on synonymous sites increase the basic peak width by lowering the 

‘effective number’ L of synonymous sites (6). E.g., sites which are only twofold degenerate are 

effectively counted as one-third of a synonymous site in the calculation of KS values (6). Other 
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important factors influencing the effective number of synonymous sites include, but are not 

limited to, codon bias and RNA secondary structure constraints. Peak widening is also 

enhanced by errors in KS measurement and correction for multiple substitutions. It is virtually 

impossible to take into account the influence of all these factors in detail. Instead, we found that, 

phenomenologically, the KS distribution of sequence pairs of age λ (measured in KS time 

equivalents) can be approximated by a scaled Poisson distribution with mean λ and standard 

deviation 10λ , suggesting that the number of effective synonymous sites in an average 

Arabidopsis gene is only of the order of 10 (neglecting the effect of measurement errors). Please 

note that when λ is measured in 0.1 KS time equivalent units instead of KS time equivalents 

(which boils down to multiplying the above values for mean and standard deviation by 10 and 

substituting 10λ by λ), the scaled Poisson distribution reduces to a Poisson distribution with 

mean λ and standard deviation λ , as in Eq. 2 in the article. 

Another issue is the calibration of KS versus time. Because the calibration of time since 

duplication versus KS is controversial (see for example Lynch and Conery (7) and Koch et al. (8) 

who propose quite different rates of synonymous substitutions in dicots), we deliberately chose 

to perform all calculations based on ‘KS time equivalents’ without explicit conversion to real time. 

A KS time equivalent is defined as the time needed to produce an average KS difference of 1. 

Working with KS time equivalents also solves some other issues related to modeling duplication 

dynamics. For instance, rates such as the birth rate of duplicates in the continuous mode or the 

synonymous substitution rate cannot be assumed constant over physical time at an evolutionary 

time scale (9). They depend for example on the generation time of the Arabidopsis ancestors in 

the course of evolution. However, when measuring in KS time equivalents, the effect of 

generation time on the birth rate of new duplicates is largely cancelled out, because the relation 

of KS time equivalents to physical time depends on the generation time in the same fashion. Of 

course, this does not validate our constant birth rate assumption entirely, because other factors 
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(e.g. effective population size) could influence the birth rate of new duplicates and the rate of 

synonymous substitution in different ways. Systematic deviations from a constant birth rate (e.g. 

systematic increase of birth rate with KS based time) or prolonged time periods with a 

significantly altered birth rate would be reflected in the inability of our model to reproduce the 

observed KS distribution. In our case, it proved to be unnecessary to make more elaborate 

assumptions (Occam's razor). 

 

Simulation and Optimization strategy 

Our model dynamically simulates the KS distribution of duplicated genes for a given functional 

category in 50 time steps, each time step corresponding to an average KS interval of 0.1. This 

sampling rate gives us sufficiently high resolution with respect to the features that we want to 

model while keeping the computational cost minimal.  Next to the continuous duplication mode 

(0R), three whole-genome duplications were modeled at time-steps ti = 20, 31, and 44 in the 

simulation (respectively 3.1, 2.0, and 0.7 KS time equivalents ago). The ages of the whole-

genome duplications were estimated through simulations of the duplication history of the whole 

paranome for different age values. The resulting estimates were subsequently used throughout 

the simulations for all GO Slim categories although they were allowed to deviate slightly (±1 time 

step) during the course of a simulation. In other words, we used a tolerance of ±1 time step on 

the age of the whole-genome duplications. This improved the ability of our model to fit the large-

scale duplication peaks for different classes as well as the performance of our optimization 

procedure (better convergence towards global minimum, improved ability to overcome local 

minima).  

A classic Monte Carlo Simulated Annealing optimization strategy was used with 

exponential temperature decay. Starting from an initial (random) guess for the parameters α, 
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random steps are taken in parameter space. In practice, a step size of 0.05 was employed. A 

step is accepted if 

 

)exp()1(rand 2 kTχ∆−< ,        [1] 

 

with rand(1) a random number drawn uniformly from the interval [0,1], ∆χ2 the change in 

optimization potential and kT the simulated annealing parameter (temperature), which gradually 

decreases over four orders of magnitude (from kT = 10 to kT = 0.001) during the course of the 

optimization, according to the exponential scheme kTi = 0.995 kTi-1. 

The optimization potential is defined by the reduced χ2 (goodness-of-fit) statistic 
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where α = (α0,α1,α2,α3) is the vector of parameter estimates, x the KS bin, F(x) the observed Ks 

distribution, D’(x,α) the simulated KS distribution with parameters α, and σ(x) the standard 

deviation for bin x. The resulting χ2 values are divided by a normalization factor (46) defined by 

the number of error degrees of freedom (50) minus the number of free parameters in the model 

(4 α’s). Good fits should have reduced χ2 values in the order of magnitude of 1. The standard 

deviations σ(x) were estimated by constructing a cubic smoothing spline S(x) to the observed Ks 

distribution F(x), with a smoothing parameter of 0.3 (csaps function in MATLAB Spline Toolbox). 

σ(x) is then approximated by )(xS  (Fig. 8).  The parameters iα  were optimized 10 times for 

each functional category in order to monitor the convergence of the parameter estimates.  
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Parameter confidence intervals 

In order to calculate confidence intervals for the parameters αi, we first calculated the 

covariance matrix for the best fit (simulation with the lowest χ2 and parameters α’): 

 

[C] = [A]-1          [3] 
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 Approximate confidence intervals for the parameters αi can then be calculated as 

 

iii C2

νχδα ∆±= ,         [5] 

 

where δαi represents the 68% confidence interval for αi , Cii is the ith diagonal element of the 

covariance matrix, and ∆χ2
ν is the 68th percentile of the χ2 distribution with ν degrees of 

freedom. Because we calculate the confidence intervals in each parameter separately, ν = 1 and 

∆χ2
ν = 1. More background about these procedures can be found in ref. 10. 

The minimum χ2 values for all classes, the optimized parameters α and their confidence 

intervals are summarized in Table 2. In general, a parameter α was considered reliable if its 

(one-sided) 68% confidence interval did not exceed 0.10, or if its relative confidence (i.e. the 

68% confidence interval of α divided by α) was <20% (for higher parameters). For very high α’s 

(>1), however, the calculated confidence intervals tend to be very large. This is mainly due to 
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 8

the fact that for very high parameters, the newborn duplicates are quickly lost and have less 

influence on the course of the distribution. As a consequence, small changes in these 

parameters have virtually no effect on the modeled distribution or the χ2, which leads to 

unnaturally large confidence intervals when using Eqs. 3, 4, and 5 (these equations only take 

into account the local environment of α). More accurate confidence intervals could be obtained 

by varying the α under study while optimizing for all other parameters until a given ∆χ2
ν is 

reached (10). Unfortunately, the time required to do the necessary simulations is prohibitive. 

Instead, parameters >1 were considered to be reliably high regardless of their calculated 

confidence interval. 



 9

1. Blanc, G. & Wolfe, K. H. (2004) Plant Cell 16, 1667-1678. 

2. The Gene Ontology Consortium (2000) Nat. Genet. 25, 25-29.  

3. Berardini, T. Z., Mundodi, S., Reiser, L., Huala, E., Garcia-Hernandez, M., Zhang, P., 

Mueller, L. A., Yoon, J., Doyle, A., Lander, G., et al. (2004) Plant Physiol. 135, 745-755. 

4. Zuckerkandl, E. & Pauling, L. (1965) in Evolving Genes and Proteins, eds. Bruson, V., 

Vogel, H. J. (Academic, New York), pp. 97-166. 

5. Jukes, T. H. & Cantor, C. R. (1969) in Mammalian Protein Metabolism, ed. Munro, H. N. 

(Academic, New York), pp. 21-132.   

6. Li, W.-H. (1997) Molecular Evolution (Sinauer, Sunderland, MA). 

7. Lynch, M. & Conery, J. S. (2000) Science 290, 1151-1155. 

8. Koch, M. A., Haubold, B. & Mitchell-Olds, T. (2000) Mol. Biol. Evol. 17, 1483-1498. 

9. Seo, T.-K., Kishino, H. & Thorne, J. L. (2004) Mol. Biol. Evol. 21, 1201-1213. 

10. Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (1992) in Numerical 

Recipes in C: The Art of Scientific Computing, eds. Cowles, L., & Harvey, A. (Cambridge 

University Press, Cambridge), 2nd Ed., pp. 656-706. 



 

 

 

 



 

 



  

 



 



 

 

 



0 1 2 3 4 5
0

20

40

60
electron transport 

a
0
 = 0.55

a
1
 = 0.80

a
2
 = 0.30

a
3
 = 0.70

0 1 2 3 4 5
0

200

400

600

800

1000
whole paranome

a
0
 = 0.70

a
1
 = 0.90

a
2
 = 0.65

a
3
 = 0.85

0 1 2 3 4 5
0

50

100

150

200

250
protein metabolism 

a
0
 = 0.50

a
1
 = 0.85

a
2
 = 0.50

a
3
 = 0.70

0 1 2 3 4 5
0

10

20

30
structural constituent of ribosome 

a
0
 = 0.85

a
1
 = 5.00

a
2
 = 1.10

a
3
 = 0.45

0 1 2 3 4 5
0

10

20

30

40

50
response to biotic stimulus 

a
0
 = 0.35

a
1
 = 0.60

a
2
 = 0.55

a
3
 = 0.65

0 1 2 3 4 5
0

20

40

60

80
response to external stimulus 

a
0
 = 0.40

a
1
 = 0.75

a
2
 = 0.50

a
3
 = 0.80

0 1 2 3 4 5
0

100

200

300

400

500
metabolism 

a
0
 = 0.55

a
1
 = 0.90

a
2
 = 0.45

a
3
 = 0.75

0 1 2 3 4 5
0

2

4

6

8
carbohydrate transporter activity 

a
0
 = 0.95

a
1
 = 0.40

a
2
 = 0.15

a
3
 = 0.90

0 1 2 3 4 5
0

5

10

15

20
energy pathways 

a
0
 = 2.30

a
1
 = 0.55

a
2
 = 0.40

a
3
 = 0.70

0 1 2 3 4 5
0

100

200

300

400
catalytic activity 

a
0
 = 0.60

a
1
 = 0.70

a
2
 = 0.45

a
3
 = 0.75

0 1 2 3 4 5
0

100

200

300

400
binding 

a
0
 = 0.70

a
1
 = 0.70

a
2
 = 0.45

a
3
 = 0.70

0 1 2 3 4 5
0

2

4

6
flower development 

a
0
 = 1.35

a
1
 = 0.55

a
2
 = 0.35

a
3
 = 1.00

n
u

m
b

e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s
n

u
m

b
e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s

Ks

Ks

0 1 2 3 4 5
0

5

10

15

20

25
response to endogenous stimulus 

a
0
 = 0.75

a
1
 = 0.80

a
2
 = 0.55

a
3
 = 0.90

0 1 2 3 4 5
0

200

400

600

800

1000
biological process 

a
0
 = 0.65

a
1
 = 1.15

a
2
 = 0.60

a
3
 = 0.85

0 1 2 3 4 5
0

50

100

150
DNA binding 

a
0
 = 1.05

a
1
 = 0.70

a
2
 = 0.35

a
3
 = 0.60

0 1 2 3 4 5
0

5

10

15

20

25
ion transporter activity 

a
0
 = 1.25

a
1
 = 0.40

a
2
 = 0.40

a
3
 = 0.70

0 1 2 3 4 5
0

10

20

30

40

50
carbohydrate metabolism 

a
0
 = 0.65

a
1
 = 0.45

a
2
 = 0.30

a
3
 = 0.80

0 1 2 3 4 5
0

20

40

60

80

100
transport 

a
0
 = 1.05

a
1
 = 0.45

a
2
 = 0.35

a
3
 = 0.65

0 1 2 3 4 5
0

2

4

6

8
translation factor activity, nucleic acid binding 

a
0
 = 0.90

a
1
 = 0.95

a
2
 = 0.80

a
3
 = 0.85

0 1 2 3 4 5
0

10

20

30
receptor activity 

a
0
 = 0.55

a
1
 = 1.65

a
2
 = 0.55

a
3
 = 0.45

0 1 2 3 4 5
0

5

10

15
organismal physiological process 

a
0
 = 3.35

a
1
 = 0.25

a
2
 = 0.40

a
3
 = 0.55

0 1 2 3 4 5
0

20

40

60

80

100
protein modification 

a
0
 = 1.20

a
1
 = 0.35

a
2
 = 0.15

a
3
 = 0.45

0 1 2 3 4 5
0

5

10

15

20
death 

a
0
 = 0.40

a
1
 = 5.00

a
2
 = 0.45

a
3
 = 0.35

0 1 2 3 4 5
0

10

20

30

40
DNA metabolism 

a
0
 = 0.85

a
1
 = 0.80

a
2
 = 0.85

a
3
 = 0.75

n
u

m
b

e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s
n

u
m

b
e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s

Ks

Ks

0 1 2 3 4 5
0

10

20

30
response to abiotic stimulus 

a
0
 = 0.60

a
1
 = 0.65

a
2
 = 0.45

a
3
 = 0.85

0 1 2 3 4 5
0

2

4

6

8

10
post-embryonic development 

a
0
 = 1.80

a
1
 = 0.60

a
2
 = 0.30

a
3
 = 0.90

0 1 2 3 4 5
0

5

10

15
channel/pore class transporter activity 

a
0
 = 0.85

a
1
 = 0.30

a
2
 = 0.35

a
3
 = 0.45

0 1 2 3 4 5
0

200

400

600
physiological process 

a
0
 = 0.60

a
1
 = 0.80

a
2
 = 0.45

a
3
 = 0.75

0 1 2 3 4 5
0

2

4

6

8

10
morphogenesis 

a
0
 = 1.80

a
1
 = 0.70

a
2
 = 0.70

a
3
 = 0.85

0 1 2 3 4 5
0

20

40

60

80
kinase activity 

a
0
 = 4.25

a
1
 = 0.25

a
2
 = 0.10

a
3
 = 0.40

0 1 2 3 4 5
0

50

100

150

nucleobase, nucleoside, nucleotide 

and nucleic acid metabolism 

a
0
 = 0.95

a
1
 = 0.70

a
2
 = 0.45

a
3
 = 0.65

0 1 2 3 4 5
0

20

40

60

80

100
transcription 

a
0
 = 0.90

a
1
 = 0.70

a
2
 = 0.35

a
3
 = 0.60

0 1 2 3 4 5
0

10

20

30

40
development 

a
0
 = 1.55

a
1
 = 0.60

a
2
 = 0.45

a
3
 = 0.75

0 1 2 3 4 5
0

50

100

150
transferase activity 

a
0
 = 2.70

a
1
 = 0.40

a
2
 = 0.25

a
3
 = 0.45

0 1 2 3 4 5
0

20

40

60

80

100
transporter activity 

a
0
 = 1.75

a
1
 = 0.40

a
2
 = 0.25

a
3
 = 0.60

0 1 2 3 4 5
0

5

10

15
RNA binding 

a
0
 = 0.90

a
1
 = 0.85

a
2
 = 0.55

a
3
 = 0.80

Ks

Ks

n
u

m
b

e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s
n

u
m

b
e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s

0 1 2 3 4 5
0

50

100

150
cellular physiological process 

a
0
 = 0.60

a
1
 = 0.70

a
2
 = 0.50

a
3
 = 0.75

0 1 2 3 4 5
0

10

20

30

40
response to stress 

a
0
 = 0.55

a
1
 = 0.95

a
2
 = 0.50

a
3
 = 0.90

0 1 2 3 4 5
0

5

10

15

20
cell proliferation 

a
0
 = 2.10

a
1
 = 0.75

a
2
 = 0.60

a
3
 = 0.65

0 1 2 3 4 5
0

2

4

6

8
chaperone activity 

a
0
 = 1.20

a
1
 = 0.65

a
2
 = 0.55

a
3
 = 0.80

0 1 2 3 4 5
0

10

20

30

40
hydrolase activity, acting on ester bonds 

a
0
 = 0.65

a
1
 = 0.60

a
2
 = 0.35

a
3
 = 0.75

0 1 2 3 4 5
0

2

4

6

8

10
carbohydrate binding 

a
0
 = 5.00

a
1
 = 0.10

a
2
 = 0.20

a
3
 = 0.15

0 1 2 3 4 5
0

100

200

300

400
molecular function unknown 

a
0
 = 0.75

a
1
 = 1.40

a
2
 = 0.80

a
3
 = 0.90

0 1 2 3 4 5
0

2

4

6

8

10
motor activity 

a
0
 = 5.00

a
1
 = 0.35

a
2
 = 0.40

a
3
 = 0.60

0 1 2 3 4 5
0

50

100

150
biosynthesis 

a
0
 = 0.65

a
1
 = 0.80

a
2
 = 0.55

a
3
 = 0.75

0 1 2 3 4 5
0

2

4

6

8
translation regulator activity 

a
0
 = 0.80

a
1
 = 1.05

a
2
 = 0.85

a
3
 = 0.90

0 1 2 3 4 5
0

10

20

30

40
signal transducer activity 

a
0
 = 0.65

a
1
 = 0.85

a
2
 = 0.50

a
3
 = 0.60

0 1 2 3 4 5
0

50

100

150
cell growth and/or maintenance 

a
0
 = 1.05

a
1
 = 0.50

a
2
 = 0.40

a
3
 = 0.65

Ks

Ks

n
u

m
b

e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s
n

u
m

b
e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s

0 1 2 3 4 5
0

10

20

30

40

50
amino acid and derivative metabolism 

a
0
 = 0.55

a
1
 = 1.05

a
2
 = 0.45

a
3
 = 0.80

0 1 2 3 4 5
0

20

40

60

80

100
signal transduction 

a
0
 = 3.05

a
1
 = 0.35

a
2
 = 0.10

a
3
 = 0.35

0 1 2 3 4 5
0

20

40

60

80

100
cell communication 

a
0
 = 1.90

a
1
 = 0.40

a
2
 = 0.15

a
3
 = 0.40

0 1 2 3 4 5
0

10

20

30

40
carrier activity 

a
0
 = 1.05

a
1
 = 0.50

a
2
 = 0.35

a
3
 = 0.60

0 1 2 3 4 5
0

5

10

15

20

25
secondary metabolism 

a
0
 = 0.40

a
1
 = 0.45

a
2
 = 0.15

a
3
 = 0.55

0 1 2 3 4 5
0

1

2

3

4

5
photosynthesis 

a
0
 = 0.50

a
1
 = 0.90

a
2
 = 0.75

a
3
 = 1.10

0 1 2 3 4 5
0

10

20

30
lipid metabolism 

a
0
 = 0.55

a
1
 = 0.80

a
2
 = 0.70

a
3
 = 0.80

0 1 2 3 4 5
0

20

40

60

80
transcription regulator activity 

a
0
 = 1.00

a
1
 = 0.65

a
2
 = 0.35

a
3
 = 0.60

0 1 2 3 4 5
0

5

10

15

20
oxygen binding 

a
0
 = 0.25

a
1
 = 0.05

a
2
 = 0.50

a
3
 = 0.15

0 1 2 3 4 5
0

200

400

600

800

1000
molecular function 

a
0
 = 0.65

a
1
 = 1.15

a
2
 = 0.60

a
3
 = 0.85

0 1 2 3 4 5
0

1

2

3

4

5
cell homeostasis 

a
0
 = 1.05

a
1
 = 0.35

a
2
 = 0.30

a
3
 = 0.55

0 1 2 3 4 5
0

50

100

150

200
nucleotide binding 

a
0
 = 0.60

a
1
 = 0.70

a
2
 = 0.40

a
3
 = 0.70

Ks

Ks

n
u

m
b

e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s
n

u
m

b
e
r 

o
f 

re
ta

in
e
d

 d
u

p
li
c
a
te

s

0 1 2 3 4 5
0

5

10

15
enzyme regulator activity 

a
0
 = 1.80

a
1
 = 0.50

a
2
 = 0.35

a
3
 = 0.45

0 1 2 3 4 5
0

50

100

150
nucleic acid binding 

a
0
 = 0.85

a
1
 = 0.80

a
2
 = 0.45

a
3
 = 0.70

0 1 2 3 4 5
0

2

4

6

8
nuclease activity 

a
0
 = 1.25

a
1
 = 1.00

a
2
 = 0.70

a
3
 = 0.75

0 1 2 3 4 5
0

20

40

60

80
transcription factor activity 

a
0
 = 1.25

a
1
 = 0.60

a
2
 = 0.30

a
3
 = 0.55

0 1 2 3 4 5
0

10

20

30

40
structural molecule activity 

a
0
 = 0.70

a
1
 = 5.00

a
2
 = 0.90

a
3
 = 0.45

0 1 2 3 4 5
0

10

20

30

40
cell organization and biogenesis 

a
0
 = 0.70

a
1
 = 0.75

a
2
 = 0.55

a
3
 = 0.65

0 1 2 3 4 5
0

100

200

300

400

500
biological process unknown 

a
0
 = 0.70

a
1
 = 1.30

a
2
 = 0.75

a
3
 = 0.90

0 1 2 3 4 5
0

20

40

60
protein binding 

a
0
 = 1.10

a
1
 = 0.45

a
2
 = 0.45

a
3
 = 0.60

0 1 2 3 4 5
0

50

100

150
hydrolase activity 

a
0
 = 0.45

a
1
 = 0.80

a
2
 = 0.55

a
3
 = 0.85

0 1 2 3 4 5
0

20

40

60

80
response to stimulus 

a
0
 = 0.50

a
1
 = 0.75

a
2
 = 0.50

a
3
 = 0.80

0 1 2 3 4 5
0

2

4

6

8
cell differentiation 

a
0
 = 4.40

a
1
 = 0.60

a
2
 = 0.45

a
3
 = 0.80

0 1 2 3 4 5
0

5

10

15
protein transporter activity 

a
0
 = 5.00

a
1
 = 0.80

a
2
 = 0.50

a
3
 = 0.45

Ks

n
u

m
b

e
r 

o
f 

re
ta

in
e

d
 d

u
p

li
c

a
te

s
n

u
m

b
e

r 
o

f 
re

ta
in

e
d

 d
u

p
li
c

a
te

s

0 1 2 3 4 5
0

2

4

6

8

10
lipid binding 

a
0
 = 0.45

a
1
 = 5.00

a
2
 = 0.35

a
3
 = 0.75

0 1 2 3 4 5
0

50

100

150
macromolecule biosynthesis 

a
0
 = 0.70

a
1
 = 0.70

a
2
 = 0.55

a
3
 = 0.75

0 1 2 3 4 5
0

50

100

150

200

250
cellular process 

a
0
 = 0.90

a
1
 = 0.50

a
2
 = 0.35

a
3
 = 0.60

0 1 2 3 4 5
0

20

40

60

80
protein biosynthesis 

a
0
 = 0.70

a
1
 = 0.90

a
2
 = 0.55

a
3
 = 0.70

0 1 2 3 4 5
0

10

20

30
electron transporter activity 

a
0
 = 1.45

a
1
 = 0.65

a
2
 = 0.10

a
3
 = 0.60

0 1 2 3 4 5
0

2

4

6

8
drug transporter activity 

a
0
 = 0.40

a
1
 = 0.65

a
2
 = 0.10

a
3
 = 1.00

0 1 2 3 4 5
0

2

4

6
regulation of gene expression, epigenetic 

a
0
 = 5.00

a
1
 = 0.40

a
2
 = 0.75

a
3
 = 0.60

0 1 2 3 4 5
0

5

10

15

20
cell death 

a
0
 = 0.30

a
1
 = 5.00

a
2
 = 0.60

a
3
 = 0.20

0 1 2 3 4 5
0

20

40

60

80
catabolism 

a
0
 = 0.45

a
1
 = 0.90

a
2
 = 0.60

a
3
 = 0.80

0 1 2 3 4 5
0

5

10

15

20
cell cycle 

a
0
 = 1.80

a
1
 = 0.75

a
2
 = 0.60

a
3
 = 0.65

0 1 2 3 4 5
0

2

4

6
reproduction 

a
0
 = 4.40

a
1
 = 0.35

a
2
 = 0.30

a
3
 = 0.75

Ks

Ks

continuous mode

3R 2R 1R

observed K   distr. S

n
u

m
b

e
r 

o
f 

re
ta

in
e

d
 d

u
p

li
c

a
te

s
n

u
m

b
e

r 
o

f 
re

ta
in

e
d

 d
u

p
li
c

a
te

s


	/content/pnas/supplemental/0501102102/DC1/1/01102SuppText.pdf
	Supporting Methods
	Simulation and Optimization strategy
	Parameter confidence intervals



