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Abstract

In genome-wide association studies (GWAS), it is of interest to identify genetic variants 

associated with phenotypes. For a given phenotype, the associated genetic variants are usually a 

sparse subset of all possible variants. Traditional Lasso-type estimation methods can therefore be 

used to detect important genes. But the relationship between genotypes at one variant and a 

phenotype may be influenced by other variables, such as sex and life style. Hence it is important to 

be able to incorporate gene-covariate interactions into the sparse regression model. In addition, 

because there is biological knowledge on the manner in which genes work together in structured 

groups, it is desirable to incorporate this information as well. In this paper, we present a novel 

sparse regression methodology for gene-covariate models in association studies that not only 

allows such interactions but also considers biological group structure. Simulation results show that 

our method substantially outperforms another method, in which interaction is considered, but 

group structure is ignored. Application to data on total plasma immunoglobulin E (IgE) 

concentrations in the Framingham Heart Study (FHS), using sex and smoking status as covariates, 

yields several potentially interesting gene-covariate interactions.
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1 Introduction

Earlier genetic studies focused on Mendelian traits which are, according to Mendel’s law, 

typically triggered through a single mutated gene. More recently, advancement in 

genotyping technology has made genome-wide association studies (GWAS) possible, and 

has led to the discovery of multiple loci affecting complex diseases that do not exhibit a 

Mendelian inheritance pattern. However, most complex diseases are affected by both 

genetics and covariates, such as lifestyle variables. In order to better understand the etiology 

of disease, both genetics and environmental variables must be taken into consideration. For 

example, genetics factors may have different effects on diseases smokers and non-smokers. 

The multiple regression model with gene-environment interactions (G×E) or more generally 

gene-covariate interactions is therefore likely more suitable to find associations between 

diseases and different genetic factors.

In GWAS, single nucleotide polymorphisms (SNPs) are measured on a large collection of 

participants, and association between SNPs and trait of interest is tested one SNP at a time. 

The number of SNPs measured is usually in the order of millions, and can be even larger 

when imputation approaches are utilized to estimate the SNPs at ungenotyped loci, creating 

an ultra-high-dimensional problem that increases with the number of participants enrolled in 

a study. The classical variable selection method Lasso (Tibshirani, 1996) with L1 penalty on 

the coefficients can help to select the important genetic factors. Numerous follow-up work 

has been done in the area with different penalties including the smoothly clipped absolute 

deviation (SCAD, Fan and Li, 2001), the elastic net (Zou and Hastie, 2005), the Adaptive 

Lasso (Zou, 2006), the Dantzig selector (Candes and Tao, 2007), the relaxed Lasso 

(Meinshausen, 2007), among others. Due to the presence of interactions, some special 

methods, such as the strong heredity interaction model (SHIM, Choi et al., 2010), the 

composite absolute penalties (CAP, Zhao et al., 2009) and the Variable selection using 

Adaptive Non-linear Interaction Structures in High dimensions (VANISH, Radchenko and 

James, 2010) are proposed to solve the selection problems by considering both main and 

interaction effects together. Naturally, all those models enforce a hierarchical structure 

where main effects are automatically added to a model simultaneously with the 

corresponding interaction term. This is considered as the marginality in generalized linear 

models (McCullagh and Nelder, 1989; Nelder, 1994) or the strong heredity in the study of 

designed experiments (Hamada and Wu, 1992). Justifications of the effects of heredity can 

be found in Chipman (1996) and Joseph (2006).

But current biological understanding is that genetic variables can be formed into certain 

groups according to biological information, such as biological pathways or gene functions. 

Even ignoring interactions in the model, the prior biological group information can play a 

crucial role in the variable selection for the main effects (Yuan and Lin, 2006; Huang et al., 

2009; Zhou and Zhu, 2010; Friedman et al., 2010a, and Simon et al., 2013). Chen and 

Thomas (2010) proposed an approach to incorporate such biological knowledge, e.g., a 

Bayesian stochastic search algorithm was applied to identify gene-gene interactions. But 

none of the existing Lasso-like methodologies for selection of interactions incorporate prior 

group structure. In this paper, we design a special grouped interaction selection penalty 

(GISP) which not only enforces the interaction with the strong heredity property in the 
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model, but also considers the prior biological group information in the study. For the study 

of the gene-covariate interactions, the interactions between genetic variables and risk factor 

variables are considered in the model, and by adding the genetic group information, our 

designed penalty can greatly affect the variable selection efficiency. Simulation studies 

show that our proposed GISP method performs much better than the existing SHIM model 

without considering group structure.

We apply our method on allergy disease studies with the long-term and ongoing 

Framingham Heart Study (FHS) data (Granada et al., 2012). The total plasma 

immunoglobulin E (IgE) concentrations, which is a biomarker related to allergy to 

environmental allergens, is used as the phenotype, and the genetic SNP variables are 

genotypes. The covariates, such as, sex, smoking status and age, are also considered in the 

study. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are employed to 

group the genetic variables. The gene-covariate interactions are evaluated using the 

proposed method.

The rest of this paper is organized as follows: In Section 2, we describe our proposed 

method. We introduce the general model for gene-covariate interaction study, display the 

designed penalties and explain the specific roles the penalties play in the estimation 

procedures. We then present the algorithm to solve our estimation criteria in detail, and also 

show one way to reduce the high-dimensional computation cost. The proposed model is 

examined through extensive simulation studies in Section 3. The real data analysis of the 

IgE concentration data is provided in Section 4. Finally a short discussion is included in 

Section 5.

2 Methodology

In this section we present our proposed estimation method by considering both interaction 

and group structure in the model. The model and the optimization criterion are described in 

Section 2.1. A coordinate descent algorithm is then detailed in Section 2.2.

2.1 Optimization criterion

Suppose that there are p predictors in a multiple regression model, X1, …, Xp, which may be 

collected into K groups, G1, …, GK. The groups are usually not disjoint and typically have 

very complex overlapping structures when defined by biological pathways. This means that 

for a given genetic predictor Xj, it may belong to more than one group. Denote the 

phenotype vector of response for n subjects as Y = (Y1, …, Yn)T. Suppose that besides the p 

genetic variables, L risk factor variables, E1, …, EL, are considered in our study. For 

example, in genetic studies, sex and smoking status can be treated as important risk factors/

covariates related to phenotypes. The interaction terms between genetic variables and 

covariates are included in our analysis to gain a better understanding of the association 

between genotypes and phenotypes. Denote IGE = {(j, l)}:j∈Gg, 1≤g≤K and 1≤l≤L} as the 

two-way interaction set generated between gene and risk factor effects. Also naturally, we 

will insist that the strong heredity property is kept when interaction terms are included in the 

model, i.e., if the interaction term XjEl is in the model, then the main terms Xj and El must 

both be in the model.
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In introducing the interaction terms between genetic variables Xj and risk factor variables El, 

we write the regression model as

with a normal error vector ε = (ε1, …, εn)T.

In order to perform the variable selection not only including the group information but also 

keeping the heredity property, we design the following penalized estimation method:

(1)

where λ1, λ2 and λ3 are tuning parameters, pg and wj are pre-chosen weights for genetic 

groups and individual genetic predictors, and  and  are the indicator functions for the 

genetic and risk factor variables. If we don’t penalize one particular jth genetic or lth risk 

factor variable and force it in the model, we can set  or  at 0. Otherwise, they are 

taken at the value of 1. The first Lasso penalty with tuning parameter λ1 controls the sparsity 

of all main effects including genetic variables and risk factor variables. The second group 

Lasso penalty with tuning parameter λ2 controls the sparsity of groups. The third penalty is 

applied to select important interaction terms. Because the size of each group may vary, pg is 

used to avoid over-penalizing the groups with small size (Yuan and Lin, 2006). Moreover, 

because some of predictors may exist in more than two groups, we use the weights wj to 

avoid over-penalization for individual predictors that exist in more than two groups. 

Typically, one can choose pg to equal the size of the g-th group, and wj is chosen as the 

reciprocal of the number of groups which contain the jth main effect. From the above 

regularized penalty, analogous to the SHIM model (Choi et al., 2010), we can easily find 

that the interaction coefficient γjlβjαl will shrink to zero if either βj or αl goes to zero. 

Therefore, the heredity property is automatically enforced in the optimized solution.

Note that, due to the generality with which our estimation criterion and notion of 

interactions and group structure are defined, our method is not restricted only to work with 

certain biological pathways, but can be applied as well to more general biological units with 

group structure, such as the functional units recently produced by the ENCODE study (The 

ENCODE Project Consortium, 2012).

In our simulation and real data analysis, there are only a handful of risk factor variables. We 

want to fully recover the interaction between genetic variable and all risk factor variables, 
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and we set all  equal to 0. This means that the risk factor variables are all included in our 

estimation. In particular, when λ2 = 0, the estimation criterion will reduce to the SHIM 

model (Choi et al., 2010), and when no interaction terms are involved and λ3 = 0, this 

becomes similar to the method in Friedman et al. (2010a). But the difference is that the 

groups in our study have complex overlapping structure. In Friedman et al. (2010a), they 

only consider equal-size and non-overlapping groups.

2.2 Algorithm

In this subsection, we develop a unified shooting algorithm (Fu, 1998; Friedman et al., 

2010b) for solving (1). The shooting algorithm is essentially a “coordinate descent” 

algorithm. In short, in each iteration we fix all but one coefficient, say, βj, at their current 

values, then optimize (1) to solve for βj. Because this optimization only involves one 

parameter, it is often easy to achieve a solution. Both simulation and theoretical results in Fu 

(1998) and Friedman et al. (2010b) show that this is a very stable and fast algorithm to solve 

L1-type regularization problem. Moreover, similar to Friedman et al. (2010b), we can run 

iterations around the active set of variables with nonzero coefficients until convergence after 

a full cycle through all the variables. This active strategy significantly speeds up the 

convergence, specially, for large genetic datasets.

We first introduce some mathematical notations to better describe the algorithm. For the β 

coefficient vector, let β−j be the same as the coefficient vector β except that the jth element is 

equal to 0, and for the α coefficient vector, α−l holds the same meaning as β−j. We denote 

β(k) as the coefficient vector for the group Gk. If j∈Gk, let β(k),−j be the same as the 

coefficient vector β(k) except that the jth element is equal to 0. Denote G(j) = {k:j∈Gk}, 

 and . The algorithm can be formulated as 

follows:

1. (Standardization): Center Y, center and normalize each Xj, El and XjEl

2.
(Initialization): Initialize  and  with possible values. For example, use 

the least square regression results or simple regression results by regressing Y on 

each term.

3. (Update γ̂jl) For each (j, l)∈IGE, update γ̂jl with α̂
l, β̂

j and γ̂jolo ((j0, l0)∈IGE/(j, l)) 

fixed at the previous s-th step. Let

Then update γjl with
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4. (Update β̂) For each j∈{1, …, p}, update β̂
j with α̂l, β̂

jo (jo≠j) and γ̂
jolo ((jo, lo)∈IGE, 

jo≠j) fixed at the previous s-th step. Let

If  is the empty set ϕ, then

where  with X̃=[X ̃
1, ⋯, X̃

p] else if  then

(2)

Note that both sides of (2) involve , thus the solution  can be achieved 

by iterating between the two sides of (2).

5. (Update α̂) For each l∈{1, …, L}, update αl with α̂
lo(lo≠l), β̂

j and γ̂jolo((jo, lo)∈IGE, 

lo≠l) fixed at the previous s-th step. Let

Estimate α̂
l by
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where  with Ẽ = [Ẽ1,⋯,ẼL],

6. Calculate the difference Δ(s+1) = ‖α̂(s+1)α̂(s)‖+‖β̂(s+1)‖+‖λ(̂s+1)−λ̂(s)‖. If Δ(s+1) is 

small enough, stop the algorithm. Otherwise, let s = s+1, go to 3.

In the above algorithm, the element-wise coordinate method is applied due to complicated 

overlapping group structure and interaction terms. In Yuan and Lin (2006) and Simon et al. 

(2013), they used the group-wise coordinate descent algorithm for simple non-overlapping 

group penalties. But the group effect can also be found when updating βj in Step 4 of our 

algorithm. When  is empty, meaning that all other β elements in the same group as βj are 

shrunk to 0, and if the whole group(s) is/are not important, βj should be shrunk to 0. In this 

situation, the threshold of βj is  which is larger than 

 due to empty . This means βj would be shrunk to 0 more 

easily and the whole non-important group(s) would tend to be knocked out. Also using the 

same argument, if the important group has several important variables, the threshold when 

updating βj is always smaller because of non-empty . As a result, the important group 

will be kept during the iteration.

There are three tuning parameters in our estimation criteria. In order to reduce the 

computation cost, we set the three tuning parameters at reasonable ratios informed by 

carefully consideration. First, note that each Xj and XjEl are standardized in our estimation. 

But in order to maintain the heredity property, we add βjαl in the regressor term XjEl. The 

additional βjαl affect the threshold in the algorithm, and we cannot simply take λ3 to be 

equal to λ1. We can absorb the βjαl into the tuning parameter by setting λ3 = c3λ1 where 

 the average value of absolute values of βjαl for all interaction pairs (j, l)∈IGE. 

Since the true values of βj and αl are unknown, we use a rough approximation in the form of 

the least square estimates or ridge regression estimates for p>n to find c3.

Second, from examination of the penalties we observed previously that λ1 controls the 

sparsity of main effects and λ2 controls the sparsity of groups. In real biological data, the 

number of genetic predictors are typically much larger than the number of groups. The ratio 

of true predictors over all predictors is smaller than the ratio of true important groups over 

all groups. The ratio of λ2 over λ1 should likely be smaller than 1. We can find a simple 

justification from some theoretical results about the ratio of λ2 over λ1. In Nardi and Rinaldo 

(2008), if the groups have no overlapping structure and group sizes are equal, the tuning 

parameter for controlling the sparsity of groups with group Lasso method is around 

 where K1 is a constant related to the restricted eigenvalues of the design 

matrix with group structure constraint, and from Bickel et al. (2009), we know that the 
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tuning parameter for controlling the sparsity of individual predictors with Lasso method is 

around  where K2 is also a constant related to the restricted eigenvalues of the 

design matrix. With the design matrix from the same data X, we might assume that K1≈K2, 

and since K<p, we have λ2/λ1<1. In our simulation study, we consider different values of the 

ratio c2 = λ2/λ1 and find that the simulation results are not particularly sensitive to the value 

of c2. We can therefore reduce three tuning parameters into one justified by the above 

analysis.

The number of predictors is usually very large. We first select a moderate number of 

nonzero main effects by ignoring the interaction terms. Within the selected main effects, the 

estimation criterion (1) is considered. Due to the extremely low signal-to-noise ratio (SNR) 

in real biological data, the estimates of β and λ could have very large standard errors and the 

traditional information criteria, such as BIC and AIC, may not work well in the presence of 

low SNR. Also, our goal is to select important associated genetic variables and possible 

gene-covariate interaction terms, not to predict the disease response variable Y. We are most 

interested in the subset of nonzero regression coefficients. Therefore, in analogy to Wu et al. 

(2009), instead of selecting the tuning parameters for each data with information criteria or 

cross validation, we choose a certain fixed number of predictors with gradually decreasing 

tuning parameters. The estimation procedure can be formulated in the following two steps.

– Step 1: We apply the double penalized group LASSO penalty on the main 

effects only and select n/4 main predictors with n samples. This step is similar to 

the relaxed lasso method in Meinshausen (2007). The main effects for both 

participating and non-participating interactions will be selected with high 

probability in this step. The optimization criterion is written as:

Because the effect of the group penalty, the unimportant groups tend to be 

shrunk simultaneously, and we cannot select nonzero main effects with exact 

numbers, for example, 250 if sample size is equal to 1000. Therefore we restrict 

the number of nonzero main effects in the range of [n/4−n/100, n/4+n/100], 

which is [240, 260] if n = 1000.

– Step 2: Within the selected main effects, we apply (1) to re-select n/20 nonzero 

main effects and also associated nonzero important interaction terms. Again, due 

to the effect of the group penalty, we pick up main effects in the range of [n/

20−n/200, n/20+n/200], which is [45, 55] if n = 1000.

The proportion 1/4 and 1/20 in the two steps can be adjusted on a case by case basis. For our 

simulation study, Steps 1 and 2 can be done over 100 times with simulated data. We can 

rank the selection frequencies to find the important predictors and also associated interaction 

terms. For the real data analysis, one can apply Steps 1 and 2 on bootstrapped data or sub-

sampled data for each analysis, and then rank the corresponding selection frequencies to 
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detect important main effects and interaction terms. Also, we must assume that the true 

signals are sparse because the number of true predictors is unknown in real data.

3 Simulation study

In this section, the proposed method is evaluated using simulated data sets for modeling 

gene-covariate interactions. We use two scenarios to generate the genotype SNPs datasets. 

In the first scenario, the SNPs are simulated through independent binomial random 

generators. Due to complicated dependence structure of real SNPs, we also randomly 

subsample the real Framingham Heart Study dataset to generate the other SNPs datasets in 

the second scenario. In detail, for the first scenario, we simulate 1000 subjects with 1000 

SNPs (SNP1 to SNP1000) in the model, i.e., n=p=1000. Within 1000 SNPs, there are 20 

true SNPs with nonzero regression coefficients. The allele frequencies for the 20 true 

predictors are 0.3 and 0.5 alternatively, i.e, SNP1 is generated from Binomial(2, 0.3), SNP2 

is generated from Binomial(2, 0.5), etc. In addition to 1000 SNPs, we generate 2 covariates 

E1 and E2 into the models, where E1 is one binary random variable from Bernoulli(0.5) and 

E2 is one normal distributed random variable for N(0, 0.52). In our setting, we treat each 

SNP as a random variable with a binomial distribution, not a category variable with 3 levels. 

In some genetic studies, SNPs are considered as 3-level category variables and 2 dummy 

variables are used to represent each SNP. But in that setting, we will consider more 

restriction, e.g., the estimation coefficients for the 2 dummy variables should be either both 

not equal to 0 or both equal to 0. Also, the interactions term has similar restriction. The 

algorithm would be more complicated and the scale of predictors including both main and 

interactions are doubled. The computing load would be heavier. After considering SNPs as 

random binomial variables, similar to Choi et al. (2010), we standardize the main and 

interaction terms before applying the coordinate descent algorithm.

About the interactions, we specify two gene-covariate interaction settings as follows:

– Case I: We add the interactions (SNP1×E1, SNP3×E1, …, SNP9×E1) and 

(SNP1×E2, SNP3×E2, …, SNP9×E2) in the model.

– Case II: We add the interactions (SNP1 ×E1, SNP3×E1, …, SNP9×E1) and 

(SNP11×E2, SNP13×E2, …, SNP19×E2) in the model.

In Case I, both covariates E1 and E2 interact with the same set of true active SNPs, but in 

Case II, E1 and E2 interact with different sets of true active SNPs. The coefficients for both 

main and interaction effects are set for 80% power with 5% significance level under 

standard single-SNP GWAS models with additive-trait structure. In detail, the true 

coefficients for SNPs with 0.3 and 0.5 allele frequencies are set at 0.15 and 0.13 

respectively. The true coefficient for E1 and E2 are equal to 0.21 and 0.15, respectively. The 

interaction coefficients are set at 0.24 between SNP and E1, and 0.20 between SNP and E2.

For both cases, we simulate a high level of normal observation noise with SNR equal to 0.1 

to mimic similar real weak genetic signals. Since the simulated SNPs have independent 

correlation structure, in order to show the efficiency of our proposed method on real genetic 

data, we randomly take 100 subsamples of 1000 SNPs in our real data example in the second 

scenario of SNP dataset generation. We also assign the true SNPs with the same 
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coefficients, and use the same interaction settings (Case I and Case II) as in the first 

scenario. The normal observation noises are still applied to guarantee SNR equal to 0.1 for 

the second scenario.

The group structures are simulated from the most popular and interesting real KEGG 

biological pathway. Since about one-third of genes are found in the KEGG pathways in our 

real biological dataset, we first randomly sample 300 genes from KEGG pathways, and 700 

genes are not from KEGG. We can consider these other 700 genes as 700 groups of size 1. 

First the 300 genes in the pathways are randomly selected. We then use our first 300 SNPs 

to represent the 300 selected genes, one SNP per gene. In our simulation, 159 pathways are 

formed to group 300 genes with the KEGG pathway information. The total number of 

pathways in KEGG is 186. Therefore around 85% KEGG groups are represented in our 

simulation. Among the selected 159 pathways, only 16 of them do not overlap with others.

We design two strategies to assign the true SNPs into the formed groups. In the first strategy 

(Group I), the true SNPs are assigned to guarantee that the true active SNPs percentages are 

lower than 10% in their groups. This is one more realistic scenario comparing with real 

genetic data. We put six true SNPs (SNP1 to SNP6) in the pathway group with the largest 

size. The 12 SNPs (SNP7 to SNP18) are randomly put into 6 groups which include at least 

20 variables. SNP19 and SNP20 are randomly distributed into 2 additional groups which 

include at least 10 variables. In this setting, the situation that one group may contain only 

one true active SNP is also simulated. In the second strategy (Group II), all of the true SNPs 

are put in the largest group, and don’t overlap with other groups. This is one extreme case. 

We use this special group assignment to find how the performance of our method is affected 

by the groups containing true SNPs.

The two covariates are not penalized and are forced in our model. We run the simulation 100 

times for each simulation setting, and record the selection frequencies for main effects in 

Step 1, and the selection frequencies for both main effects and interaction terms in Step 2. 

For the competing SHIM model, we simply run Lasso without considering the group 

structure in Step 1. We also rank the selection frequency of main and interaction effect 

terms, and use the top 20 main SNPs to calculate the false discovery rate (FDR) for main 

effects FDRM and the top 10 interaction terms to calculate the corresponding FDRI for 

interaction terms.

The simulation results of our proposed method are shown and compared with the results of 

the SHIM model in Tables 1 and 2. From the results of various simulation outcome, due to 

the additional group Lasso penalty, our proposed method tends to have much higher 

selection frequencies for true active main effects and lower selection frequencies for non-

active main effects comparing with the SHIM method. This means that the power 

performance of our method is much better for main effects. The performance of selection 

frequencies is also very consistent when the ratio c2 between λ2 and λ1 ranges from 0.1 to 

0.9. The selection frequencies at c2 = 0.9 are slightly higher than the results at c2 = 0.1, 

especially, for simulation using random subsamples of real SNPs. Within the same 

interaction case, the performance of our method for the second true SNP assignment Group 

II is slightly better comparing with Group I under the same set of SNP variables. This is due 
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to the special true SNP group structure. Since all true SNPs are in the same group, the group 

Lasso penalty is more efficient to knock out all nuisance groups. Because SHIM method 

does not consider the group structure, the performance of SHIM for Group I and Group II is 

similar. Also within the same interaction case, due to the complicated correlated structure of 

real SNPs, we can find that the results of real SNPs are always worse than the ones of 

independent simulated SNPs. The selection frequencies for interaction terms are comparable 

between our proposed method and SHIM method. In most situations, our method selects the 

true interaction terms with slightly higher frequencies, and selects the non-true interaction 

terms with slightly lower frequencies. Moreover, because the interaction effects of Case II 

are much stronger than the ones of Case I, both the true main variables involved in 

interaction and the true interactions have higher selection frequencies in Case II. In terms of 

FDR, our method tends to have better performance for main effects. For interaction effects, 

most simulation results indicate that our method performs better than SHIM. This means 

that our methods generally tend to have smaller Type I error comparing with SHIM.

In Figure 1, we plot the histograms of main effect selection frequencies for the two different 

interaction cases (Case I and Case II) of SHIM method and our GISP method at c2 = 0.5. 

Since the performance patterns of our proposed method and SHIM for different true SNP 

assignment strategies and different datasets using in the simulation are similar, we only 

display the simulation results of Group I with random subsamples of real SNPs. We can find 

the frequencies at low main effect selection frequencies in our method are larger than the 

ones in SHIM method. Also, the frequency bars from the true active main effect are further 

apart from the histogram peak from non-active main effects. The dotted line in Figure 1 

represents the minimum value of true SNP selection frequencies (fd), while the solid one 

represents the 20-th value of the ordered selection frequencies for all SNPs (fs). The smaller 

the relative distance, which is defined as (fs−fd)/fd, the better performance of the estimation 

method. Our method has smaller relative distances in all simulation situations comparing to 

SHIM. Moreover, if there are fewer SNPs between the solid line and dotted line (δN), one 

can improve FDR result by just lowering the cutoff number of chosen SNPs. Comparing 

with SHIM, our method always has a smaller δN for both interaction cases.

4 Real data analysis

In this section, we use the Framingham Heart Study (FHS) data in illustrate the performance 

of our proposed method in real data. Participants from the town of Framingham, 

Massachusetts have been recruited in the studies from 1948, and have been followed over 

the years for the development of heart disease and related traits, including pulmonary 

function and allergic response measured by IgE concentration. We use the log transformed 

plasma IgE concentration (logIgE), which is a biomarker that is often elevated in individuals 

with allergy to environmental allergens, as the response phenotype. The plasma IgE 

concentration is associated with allergic diseases, for example, asthma, allergic rhino 

conjunctivitis, atopic dermatitis, and food allergy. In Granada et al. 2012, some genes 

associated with IgE are identified, but the gene-covariate interaction has not yet been 

carefully studied. In our analysis, we consider the risk factor variables Sex, Former Smoker, 

Current Smoker and Age, and apply our method to detect possible gene-covariate 

interactions using the logIgE concentration response variable.
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The genotype SNP data are from Affymetrix 500 K and MIPS 50 K arrays, with imputation 

performed using HapMap 2 European reference panel (Li and Abecasis, 2006). The 

expected number of minor alleles, i.e., dosage genotypes, are used in our analysis. Some 

pre-processing was applied to select a set of SNPs for the final analysis. We first attempt to 

map each of 2,411,590 genotyped and imputed SNPs in the dataset to a reference gene 

containing it. If no such gene is available, we map the SNP to the closest reference gene 

within 60 kilobases of the SNP, if available. Because this example focus on gene groups, 

SNPs that are not within 60 kilobases of a gene are excluded. After mapping SNPs to genes, 

some genes are found to include multiple SNPs. In this situation, we select one SNP, which 

is most significantly associated with the phenotype logIgE, to represent the gene using a 

linear mixed effect regression. Finally, we get 17,025 SNPs and construct a unique SNP-to-

gene correspondence.

There are 6918 participants (3183 men and 3735 women) included in our analysis. Among 

the participants, there are 6674 related individuals from 991 families and 244 persons who 

have no relatives in the dataset. We first reduce the number of SNPs to 1000 by ranking the 

correlations with the response variable logIgE. This type of univariate screening process is 

justified, for example, by theory by Fan and Lv (2008). Then we take 100 random 

subsamples of 1000 participants from all of participants. All existing theoretical works about 

Lasso-type variable selection methods are based on homoscedastic random noises, such as, 

Fan and Li (2001) and Bickel et al. (2009). Due to family structures in our data, the noise 

errors within each family might be heteroscedastic. We take certain steps to avoid the 

heteroscedasticity when random samples are from the same family, such as, siblings with 

same mother or father cannot be sampled together, and parents and offsprings cannot be 

sampled together. The KEGG pathways are used to group the genes in our analysis. For 

those genes which are not in the KEGG pathway, we simply treat them as individual groups 

with size 1. In the pre-selected 1000 genes, there are 291 genes found in the KEGG 

pathways. These 291 genes form 152 groups, and among those groups, only 16 groups do 

not overlap with others. The group structure is similar to our simulation study.

We apply both our proposed method and the SHIM method to this real data. We set c2 = 0.5 

in our method. The real data are more noisy than the simulated data. The interaction 

selection frequencies are very low when we take the c3 value suggested in the simulation. 

We lower c3 to some extent, say, c3/50, to allow the weaker interaction terms into the model. 

We rank the selection frequencies for both the main effects and interaction terms, pick the 

top 20 main effects and top 10 interaction terms and list them in Table 3 for the gene-

covariate interaction outcomes.

In general, our proposed method has slightly higher selection frequencies for both main and 

interaction effects comparing to the SHIM method. The gene-covariate results show that the 

interactions between genetic variable and Sex has high selection frequencies comparing to 

other interactions from both our method and SHIM method. Some of genes may have weak 

interaction with smoking status, such as LRP1 and OSBPL3 from our proposed method, and 

EMID2 from the SHIM method. Since most of gene-covariate interaction studies are 

observational studies, further study using other data sets is recommended to confirm our 

results.
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5 Discussion

In this paper, we have proposed a new method,which we call “GISP,” to model the 

interactions with strong heredity property and simultaneously incorporate the prior 

biological group structure during the estimation. We also implement a unified fast 

“coordinate descent” algorithm to implement the proposed new method for gene-covariate 

interaction studies. The numerical simulation results show that the new designed penalty has 

much better selection performance compared to the SHIM model, in which the group 

structure is not considered. These results suggest substantial promise for the use of this 

method to detect the gene-covariate interactions for the genome-wide association studies 

(GWAS).

Due to the difficulty in choosing the three turning parameters, we use multiple simulation 

replicates in our simulation study, and bootstrap samples in the real data analysis, and treat 

variables selected with high frequency as important variables. This is very computationally 

expensive. Moreover, because the Lasso-type regularization cannot provide standard error 

estimates, it is difficult to set up a proper hypothesis test to evaluate our results. But similar 

to Nardi and Rinaldo (2008) and Bickel et al. (2009), the theoretical nonasymptotical bounds 

of our estimators could be derived and used to justify the results.

Because the relationship between genotypes at a variant and a phenotype may also be 

influenced by other genetic variants, in addition to studying gene-covariate interactions, it is 

straightforward to extend our gene-covariate estimation criterion to study gene-gene (G×G) 

interactions. With biological pathway information, one can assume that two-way 

interactions between genetic variables to be allowed only within the same group. Then, 

similar to the interaction set IGE, one can define the interaction set IGG = {(j, j′):both j and j

′∈Gg, g = 1, ⋯, K} for the gene-gene study. To consider possible interaction across groups, 

the interaction set IGG can be revised according to other reasonable requirement. But the 

estimation criteria and algorithm for genegene is similar to the algorithm presented for gene-

covariate study. Moreover, it is worth mentioning that our method can select gene-covariate 

and gene-gene interactions simultaneously within one criteria if we modify the interaction 

set to the union set of IGE and IGG.

In the real data analysis, we apply our method on the FHS data to find important genes 

related to the plasma IgE concentration. To minimize the high correlation due to the linkage 

disequilibrium (LD) with each gene, we select one SNP per genes. However, one could 

potentially select multiple SNPs per genes, or use the first principal component (PC) to 

represent a gene (Gauderman et al., 2007). For multiple SNP approach, it is difficult to find 

a standard criterion to select useful SNPs which have no high correlation structure. Other 

approaches are worth investigating in future work.
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Figure 1. 

Histograms for SNP selection frequencies of two different interaction settings (Case I and 

Case II) with the same true SNP assignment strategy (Group I) using random subsamples of 

real SNPs dataset. Dotted lines: the minimum value of true SNP selection frequencies. Solid 

lines: the 20th value of the ordered selection frequencies for all SNPs.
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