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Abstract

Background: Previous work has demonstrated that chromatin feature levels correlate with gene expression. The

ENCODE project enables us to further explore this relationship using an unprecedented volume of data. Expression

levels from more than 100,000 promoters were measured using a variety of high-throughput techniques applied to

RNA extracted by different protocols from different cellular compartments of several human cell lines. ENCODE also

generated the genome-wide mapping of eleven histone marks, one histone variant, and DNase I hypersensitivity

sites in seven cell lines.

Results: We built a novel quantitative model to study the relationship between chromatin features and expression

levels. Our study not only confirms that the general relationships found in previous studies hold across various cell

lines, but also makes new suggestions about the relationship between chromatin features and gene expression

levels. We found that expression status and expression levels can be predicted by different groups of chromatin

features, both with high accuracy. We also found that expression levels measured by CAGE are better predicted

than by RNA-PET or RNA-Seq, and different categories of chromatin features are the most predictive of expression

for different RNA measurement methods. Additionally, PolyA+ RNA is overall more predictable than PolyA- RNA

among different cell compartments, and PolyA+ cytosolic RNA measured with RNA-Seq is more predictable than

PolyA+ nuclear RNA, while the opposite is true for PolyA- RNA.

Conclusions: Our study provides new insights into transcriptional regulation by analyzing chromatin features in

different cellular contexts.

Background

Gene expression refers to the process of producing a

specific amount of gene product in a spatiotemporal

manner. It is highly regulated in many steps, including

transcriptional regulation, splicing, end modification,

export, and degradation. Transcriptional regulation can

occur on both genetic and epigenetic levels. Here, we

define genetic regulation as a direct or indirect interac-

tion between a gene and a transcription factor, and epi-

genetic regulation as altering DNA accessibility to

transcription factors by chemical modification of chro-

matin. The basic unit of chromatin is structured like

beads on a string, where the string is DNA and each

bead is a DNA-protein complex called a nucleosome.

Nucleosomes are an octameric complex of histone pro-

teins composed of two copies of four core histones

(H2A, H2B, H3 and H4) with roughly 147 bp of DNA

wrapped around each octamer. Several post-translational

modifications, such as methylation, acetylation, and

phosphorylation, occur on the amino-terminal tails of

histones. These modifications can change the structure

and function of chromatin by recruiting other enzyme

complexes [1]. It has been proposed that these histone

modifications can occur combinatorially to form a ‘his-

tone code’ that is read by other proteins to give rise to

various downstream events such as transcription [2,3].

Histone modifications have been shown to be involved

in both activation and repression of transcription. Early

studies on individual modifications reported their func-

tion in transcription regulation. For example, H3K4me1

[4] and H3K4me3 [5] are associated with transcriptional
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activation, while H3K9me3 and H3K27me3 are asso-

ciated with transcriptional repression [6]. Wang et al. [7]

systematically analyzed 39 histone modifications in

human CD4+ T cells and found that histone acetylation

positively correlates with gene expression, consistent

with its role in transcriptional activation. By clustering

histone modification patterns into classes, they also

showed that the class with the lowest expression contains

H3K27me3 but no acetylation, the class with intermedi-

ate expression contains H3K36me3, a backbone of 17

modifications, or the backbone plus H4K16ac, and the

class with the highest expression contains H2BK5me1,

H4K16ac, H4K20me1, and H3K79me1/2/3 in addition to

the backbone. The correlation between histone modifica-

tions and expression is also found in yeast [8] and Arabi-

dopsis thaliana [9]. Using the same datasets as the Wang

et al. study [7], Karlić et al. [10] recently derived quanti-

tative models to predict gene expression using histone

modifications and showed that they are well-correlated.

Cheng et al. [11] derived a support vector machine

model from modENCODE worm data and applied it to

human K562 cells and mouse embryonic stem cells with

good performance (Pearson’s correlation coefficient

(PCC) r = 0.73 and 0.74, respectively). Both studies suc-

cessfully quantified the relationship between histone

modifications and gene expression. However, due to the

limited human datasets used in these studies (for exam-

ple, only one cell line and/or no information regarding

RNA type), it is still largely unknown if this relationship

remains true in other cellular contexts.

Here, we further study this relationship taking advantage

of the wealth of datasets from the ENCODE project

[12,13]. We analyzed genome-wide localization for eleven

histone modifications, one histone variant, and DNase I

hypersensitivity in seven human cell lines (see Materials

and methods). For each cell line, ENCODE members

extracted RNA (for example, PolyA+, PolyA-) using differ-

ent protocols from different cellular compartments (for

example, whole cell, nuclear, cytosolic), and measured

their levels using various techniques (cap analysis of gene

expression (CAGE), RNA paired-end tag (RNA-PET)

sequencing, and RNA-Seq), thus providing us an excellent

platform for studying the relationship between chromatin

features and gene expression across different cellular con-

texts. We set out to answer the following questions. First,

can we reproduce the quantitative relationship between

gene expression levels and histone modifications? Second,

does the relationship hold across different human cell

lines and between different groups of genes? Third, if so,

do the most predictive chromatin features differ depend-

ing on the expression quantification technique used? And

fourth and more interestingly, how well can the chromatin

features predict expression levels of RNA from different

cell compartments and/or RNA extracted by different

methods (such as PolyA+ versus PolyA-)? To address

these questions, we derived a novel two-step quantitative

model to correlate measured gene expression levels with

histone modification levels. Our model not only confirms

the general relationship between histone modifications

and transcription output shown in previous studies

[10,11], but also shows that correlation strength and the

most predictive chromatin features vary when different

techniques were used for quantifying expression. For

example, transcriptomes quantified by CAGE are better

predicted by promoter marks such as H3K4me3, whereas

structural marks like H3K79me2 and H3K36me3 are bet-

ter predictors for transcriptomes measured with RNA-Seq.

Consistent with previous studies, low CpG genes are

shown to be less predictable than high CpG genes, and

these two groups of genes differ in their sets of predictive

chromatin features. This study also shows previously

unknown results, such as that PolyA+ RNA is more pre-

dictable than PolyA- RNA, and for RNA-Seq based mea-

surement, cytosolic RNA is more predictable than nuclear

RNA for PolyA+, while the reverse is true for PolyA-. In

summary, using the wealth of data from the ENCODE

project, our analysis not only confirms the quantitative

relationship between chromatin features and gene expres-

sion via a powerful model, but further provides a more

comprehensive and accurate view on this relationship by

comparing the model’s performance in different cellular

contexts.

Results
Development of a new quantitative model to correlate

chromatin features with transcription levels

To further understand the relationship between chromatin

features and expression levels under various conditions,

we took advantage of the massive high-throughput

sequencing data from the ENCODE Consortium [12],

which includes genomic localization data for eleven his-

tone modifications and one histone variant in seven

human cell lines [14], and expression quantification data

for various cell compartments and RNA extractions (for

example, PolyA+, PolyA-) in each corresponding cell line

(see Materials and methods). Moreover, gene expression

levels were quantified in two forms: RNA-Seq [15] was

used to quantify transcript (Tx)-based expression levels;

and CAGE [16,17] and 5’ tags of RNA-PET [18] were used

to capture transcription start site (TSS)-based expression

levels [19]. Thus, CAGE best captures the transcriptional

initiation of genes while RNA-Seq profiles transcription

elongation. For comparison, we also derived TSS-based

expression levels by summing the RNA-Seq quantification

for transcripts that share the same TSS.

Previous studies used a mean signal of the TSS-flanking

region ([-2k, +2k] around the TSS) [10,20] to estimate the

level of histone modifications for a gene. However, this
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strategy could result in bias since modification marks have

different density distributions along the gene [11]. For

instance, H3K4me3 and H3K36me3 peak at 5’ and 3’ ends,

respectively [21]. To better estimate the representative sig-

nal for each chromatin feature, we divided specific genetic

regions into bins following the approach by Cheng et al.

[11] and searched for the bin(s) showing the best correla-

tion between the chromatin feature signal and the expres-

sion level, namely ‘bestbin’. The bestbin was determined

using one-third of all genes (D1) and applied to the

remaining two-thirds of genes (D2) for further analysis

(see Materials and methods).

We used a two-step model to determine the correla-

tion between chromatin features and expression levels

(Figure 1; see Materials and methods for more details).

Briefly, we first transformed the normalized tag counts

Xij for chromatin feature j at gene i to a logarithmic

scale log2(Xij). To avoid the issue of log2(0), a pseudo-

count aj optimized using D1 was added to the same

modification in D2. The result of ‘bestbin’ selection and

the corresponding pseudocount for each chromatin fea-

ture is shown in Table S1 in Additional file 1. We then

built models to predict logarithm-scaled expression

values log2(Yi) using the log2(Xij + aj) of each chromatin

feature on the remaining dataset of D2. We performed

ten-fold cross-validation on D2 to verify that the corre-

lation was not specific to a subset of data. Considering

the structure of the data, we first trained a random for-

ests classifier C(X) to distinguish the genes with expres-

sion level of 0 (’off’) from the non-zero (’on’) genes and

a regressor R(X) on the non-zero genes in the training

set, and then applied C(X)*R(X) to the test set. In addi-

tion to the linear regression model, we also applied

non-linear models such as multivariate adaptive regres-

sion splines (MARS) and random forests for the regres-

sor. The Pearson’s correlation coefficient (r) and

normalized root-mean-square error (RMSE) between the

overall measured and predicted expression values were

then calculated to assess correlation. Our model shows

excellent correlation between chromatin features and

expression levels for both TSS-based and Tx-based data.

Figure 2a shows one example where CAGE performed

on long cytosolic PolyA+ RNA from K562 cells shows an

overall high prediction accuracy with PCC r = 0.9 and a

P-value <2.2 × 10-16. Note that many genes (approximately

6,000 in Figure 2a) have a zero expression level and are

correctly classified as unexpressed. These genes appear as

a single dot at the lower left corner of the graph, without

which the PCC would be lower (see below). We also mea-

sured the accuracy and importance of chromatin features

for classification and regression. We correctly classified

90.44% of genes into ‘on’ and ‘off’ categories (area under

the receiver operating characteristic (ROC) curve (AUC) =

0.95; Figure S1A in Additional file 2), and achieved PCC

r = 0.77 and RMSE = 2.30 for regressing the ‘on’ genes.

Diagnostic analysis of residuals also shows that the nor-

mality assumption is satisfied (Figure S1B,C in Additional

file 2).

In addition to the logarithm transformation, we also

converted the expression values to ranked ‘normal scores’

using the rankit transformation, which obviates the need

of a pseudocount (see Materials and methods). We still

saw significant correlation between predicted and mea-

sured normal scores (Figure S1D in Additional file 2; r =

0.86, RMSE = 0.71). In addition to the linear regression

model, we used two other multivariate regression models

(MARS and random forests), which automatically model

non-linearity. These three methods show similar predic-

tion accuracies (Figure S2 in Additional file 2) and we

thus chose the simplest linear model for the rest of our

analysis. We also used a random sampling method to

ensure that the prediction accuracy is stable and inde-

pendent of sample size (Figure S3 in Additional file 2).

We determined the relative importance of each feature

for predicting expression datasets (see Materials and

methods). We observed that histone modifications like

H3K9ac and H3K4me3 are more important in identifying

genes that are ‘on’ or ‘off,’ while histone modifications

like H3K79me2 and H3K36me3 are more important for

regression of expressed genes (Figure 2b). DNase I hyper-

sensitivity is the third most important feature for both

classification and regression. We also observed that the

normalized CpG score is more important for gene ‘on’ or

‘off’ status classification than for regression of the expres-

sion levels of ‘on’ genes. This is consistent with the obser-

vation that the percentage of high CpG promoter genes

increases along with increasing average expression levels

of the genes (Figure S4B in Additional file 2).

To verify that there are no inherent structures in the

data that can lead to an ‘easy’ prediction, we performed

three randomization tests for each prediction. First, we

randomly shuffled expression values (Y) of genes without

shuffling chromatin and sequence features (X), which

gives a baseline performance based on random assign-

ments of promoters to genes, which, as expected, yielded

a very low PCC (r = 0.01) and a high RMSE (5.51). In the

second randomization test, we shuffled each chromatin

feature independently (without changing the labels for

the chromatin features). This also led to low accuracy

(r = -0.01, RMSE = 6.27). In the third test we swapped

the × labels before applying the models to the testing set

to check the importance of having an accurate coefficient

for each chromatin feature. Again, this led to lower accu-

racy (r = 0.57, RMSE = 3.30). The residual correlation is

likely due to correlations between some chromatin

features.

We summarized the correlation coefficients between

predicted and measured expressions for all 78 RNA
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Figure 1 Modeling pipeline. Genes longer than 4,100 bp were extended and divided into 81 bins. The chromatin feature density in each bin is

logarithm-transformed and then used to determine the best bin (the bin that has the strongest correlation with the expression values). To avoid

log2(0), a pseudocount is added to each bin, which is then optimized using one-third of genes in each dataset (D1) and then applied to the

other two-thirds of genes in the datasets (D2) for the rest of the analysis. D2 was divided into training set (TR) and testing set (TS) in a ten-fold

cross-validation manner. A two-step model was built using the training set. First, a classification model C(X) was learned to discriminate the ‘on’

and ‘off’ genes, followed by a regression model R(X) for predicting the expression levels of the ‘on’ genes. Finally, the correlation between the

predicted expression values for testing set, C(TS_X)*R(TS_X), and the measured expression values of testing set (TS_Y) was used to measure the

overall performance of the model. TSS, transcription start site; TTS, transcription termination site; RMSE, root-mean-square error.
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expression experiments from the seven cell lines in our

analysis (Figure 2c). It shows that most experiments

show a strong correlation (median r = 0.83) between

predicted and measured expression levels by both TSS-

based CAGE and RNA-PET and Tx-based RNA-Seq

techniques. Table S2 in Additional file 1 contains a

detailed display for each experiment, including the cor-

relation coefficient, P-value for the correlation, the

Figure 2 Quantitative relationship between chromatin feature and expression. (a) Scatter plot of predicted expression values using the

two-step prediction model (random forests classification model and linear regression model) versus the measured PolyA+ cytosolic RNA from

K562 cells measured by CAGE. Each blue dot represents one gene. The red dashed line indicates the linear fit between measured and predicted

expression values, which are highly correlated (PCC r = 0.9, P-value <2.2 × 10-16), indicating a quantitative relationship between chromatin

features and expression levels. The accuracy for the overall model is indicated by RMSE (root-mean-square error), which is 1.9. Accuracy for the

classification model is indicated by AUC (area under the ROC curve), which is 0.95. The accuracy for the regression model is r = 0.77 (RMSE =

2.3). (b) The relative importance of chromatin features in the two-step model. The most important features for the classifier (upper panel)

include H3K9ac, H3K4me3, and DNase I hypersensitivity, while the most important features for the regressor (bottom panel) include H3K79me2,

H3K36me3, and DNase I hypersensitivity. (c) Summary of overall prediction accuracy on 78 expression experiments on whole cell, cytosolic or

nuclear RNA from seven cell lines. The bars are sorted by correlation coefficient in decreasing order for each high throughput technique (CAGE,

RNA-PET and RNA-Seq). Each bar is composed of several colors, corresponding to the relative contribution of each feature in the regression

model. The red dashed line represents median PCC r = 0.83. Code for cell lines: K, K562; G, GM12878; 1, H1-hESC; H, HepG2; E, HeLa-S3; N, NHEK;

U, HUVEC. Code for RNA extraction: +, PolyA+; -, PolyA-. Code for cell compartment: W, whole cell; C, cytosol; N, nucleus.
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individual correlation, and relative importance of each

chromatin feature. In the remaining sections, we analyze

the performance of our models according to techniques

for measuring expression, cell line, types of chromatin

features, types of TSS, and cellular compartment.

Comparison of different techniques for measuring

expression

Due to high correlation between replicates (Figure S5 in

Additional file 2), we merged multiple replicates from the

same sample into one dataset. After merging, there were a

total of 39, 14, and 45 expression datasets in the CAGE,

RNA-PET, and RNA-Seq categories, respectively (Table

S3 in Additional file 1). Out of the 98 total experiments,

78 were done for PolyA+ or PolyA- RNAs from whole

cell, cytosol or nucleus. We first compared the expression

levels measured by these three different techniques. By

clustering long PolyA+ RNA measurements from seven

cell lines with measurements from three cellular compart-

ments for each cell line, we see that experiments using the

same technique tend to group together, and that RNA-Seq

is an out-group of CAGE and RNA-PET (Figure 3a).

Nonetheless, RNA-Seq expression is positively correlated

with CAGE and RNA-PET expression for RNA extracted

from the same cell line (for example, r = 0.57 between

CAGE and RNA-Seq measurements for cytosolic PolyA+

Figure 3 Comparison of expression quantification methods. (a) Heatmap of correlations between PolyA+ experiments from various cell lines

and cell compartments. Experiments from the same expression quantification methods tend to cluster together, and CAGE and RNA-PET are

closer to each other than they are to RNA-Seq. The clustering tree also shows that experiments on different cell compartments in the same cell

line tend to group together and RNA expression from the cytosol (blue) and whole cell (black) tend to group together rather than with that of

the nucleus (light blue). Code for cell lines: K, K562; G, GM12878; 1, H1-hESC; H, HepG2; E, HeLa-S3; N, NHEK; U, HUVEC. (b) Boxplot of correlation

coefficients for all expression prediction in CAGE, RNA-PET, and RNA-Seq categories. Paired Wilcoxon test shows that CAGE-based expression

data are significantly better predicted than RNA-Seq-based expression data (P-value = 3 × 10-5).
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RNA from K562 cells; see the 3 × 3 red dashed box in

Figure 3a). The correlation increases when considering

only single-transcript genes (r = 0.69 for the same exam-

ple; Figure S6 in Additional file 1). An assessment of RNA

from different cellular compartments in the same cell line

shows that whole cell extracted RNA is more similar to

cytosolic RNA than nuclear RNA (Figure 3a). This may be

due to the presence of a poly(A) tail, which aids in export-

ing mRNA from the nucleus, and offers protection from

cytoplasmic degradation.

We applied our models to each dataset to determine

the prediction accuracy, measured as the correlation

between predicted and measured expression levels. To

compare the prediction accuracy of these different

expression datasets, we grouped all PolyA+ experiments

from the same high throughput technique and Figure 3b

shows the distributions of the correlation coefficients.

We see that expression measured by each of the three

techniques is well-predicted by the model (median r

ranges from 0.79 to 0.88), although, on average, predic-

tions for expression from CAGE are better than for

RNA-PET or RNA-Seq (Figure 3b). We also observed

that both TSS-based and Tx-based RNA-Seq quantifica-

tions have comparable performance (median r = 0.80 and

0.79, respectively) for all genes (Figure 3b) as well as for

single-transcript genes only (data not shown), indicating

that the lower predictivity for RNA-Seq is not due to

multiple transcripts that share the same TSS. For subse-

quent analysis, we used RNA-Seq data only for Tx-based

expression.

Chromatin features are predictive of gene expression

across different ENCODE human cell lines

We then compared different cell lines to see whether

gene expression is better predicted by chromatin features

in some cell lines over others. Figure 4a shows PCCs for

Figure 4 Comparison of prediction accuracy across different cell lines. (a) Boxplot of correlation coefficients for seven cell lines (K562,

GM12878, H1-hESC, HeLa-S3, HepG2, HUVEC and NHEK) with different types of expression quantification (CAGE, RNA-PET, and RNA-Seq). It shows

that the high quantitative relationship between chromatin features and expression exist in various cell lines and using different expression

quantification methods. Paired Wilcoxon tests between H1-hESC and other cell lines show that H1-hESC has significantly lower prediction

accuracy (P-value = 0.02, 0.02, 0.07, 0.02, and 0.05 for K562, GM12878, HeLa-S3, HepG2 and HUVEC, respectively). (b) Application of the model

learned from K562 to other cell lines (GM12878, H1-hESC, HeLa-S3 and NHEK) indicates that the model performs well across cell lines (r = 0.82,

0.86, 0.87 and 0.84, respectively). This indicates that the quantitative relationship between chromatin features and gene expression is not cell

line-specific, but rather a general feature.
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seven cell lines, both for TSS-based CAGE data and Tx-

based RNA-Seq data, with an average r of 0.8 (with a

relatively lower correlation for RNA-Seq data from the

H1-hESC cell line; see discussion below). This shows that

our models are effective at predicting gene expression by

chromatin feature signals among various cell lines.

To further explore whether the models are generaliz-

able across different cell lines, we applied the model

trained in one cell line to other cell lines, using the

values of chromatin features in those cell lines as inputs

to the models to determine if the prediction accuracy

dramatically changed. Figure 4b shows an example of

this cross-cell line prediction, wherein we learned a pre-

diction model from CAGE-measured PolyA+ cytosolic

RNA from K562 cells and applied it to CAGE-measured

PolyA+ cytosolic RNA from four other cell lines. The

prediction accuracy remains high, with r = 0.82, 0.86,

0.87, and 0.84 for GM12878, H1-hESC, HeLa-S3, and

NHEK cell lines, respectively. These results indicate that

our models accurately captured the relationships among

the various chromatin features and are broadly applic-

able to predicting expression in all cell lines.

Even though the models work well for different cell

lines, we observed that H1-hESC cells have relatively

weaker correlations than the other six cell lines for pre-

dicting RNA-Seq-based experiments, unlike in CAGE-

based experiments, where all seven cell lines have equally

high correlations (Figure 4a). This may be due to a differ-

ence in transcriptome features between undifferentiated

stem cells and committed cells. Transcriptional pausing

(that is, initiation but no elongation) is an obligate transi-

tion state between definitive activation and silencing, as

the cell changes from an undifferentiated to a committed

state [22]. A study comparing mouse embryonic stem

cells with mouse embryonic fibroblasts also showed that,

during differentiation, many genes leave the paused state

and enter the elongation state [23]. While our model can-

not directly compare H1-hESC with other cell lines based

on differentiation, our results are in line with the obser-

vation that many genes in H1-hESC are transcriptionally

paused, and thus more precisely captured by CAGE,

while eluding full capture by RNA-Seq.

Transcription initiation and elongation are reflected by

different sets of chromatin features

In addition to determining the chromatin features that

contribute the most to individual expression datasets

(as shown in Figure 2b), we also wanted to determine

if different types of chromatin features contribute the

most in predicting CAGE-measured RNA, polyadeny-

lated RNA, and RNA from a specific cellular compart-

ment, and so on. To do so, rather than analyzing all

possible combinations of chromatin features, we simply

grouped the eleven histone marks and one histone

variant into four categories based on their known func-

tions in gene regulation, namely, H3K4me2, H3K4me3,

H2A.Z, H3K9ac and H3K27ac as promoter marks

[5,24], H3K36me3 and H3K79me2 as structural marks

[25,26], H3K27me3 and H3K9me3 as repressive marks

[6], and H3K4me1, H4K20me1 and H3K9me1 as dis-

tal/other marks [4,6]. These groupings allow us to

determine the prediction accuracy based upon each

category, as well as combinations of different cate-

gories (such as promoter and structural marks

together).

By comparing the prediction accuracy using marks

from each category or a combination of two categories

(Figure 5), we show that for CAGE TSS-based gene

expression, promoter marks are the most predictive,

while for RNA-Seq Tx-based expression data, structural

marks are better predictors. For CAGE-measured PolyA+

cytosolic RNA, promoter marks as a group have high

correlation coefficients (median r = 0.86). Promoter

marks combined with another category of chromatin fea-

tures give equally high prediction accuracy. However,

non-promoter mark categories have lower prediction

accuracy (for example, median r = 0.84 for structural

marks only; median r = 0.35 for repressive marks only).

On the other hand, structural marks like H3K79me2 and

H3K36me3 are more predictive for RNA-Seq expression

data. This was expected, since CAGE mainly profiles

transcription initiation events and RNA-Seq captures

transcription elongation. Thus, our results further con-

firmed that transcription initiation and elongation are

characterized by different chromatin marks. We noticed

that DNase I hypersensitivity, a general indicator for

open chromatin, has a significantly lower correlation

coefficient (r = 0.83, paired Wilcoxon test P-value = 4 ×

10-15) than that of promoter marks. This is also observed

in other experiments (Figure S7 in Additional file 2), and

may indicate that open chromatin is a general prerequi-

site for regulating gene expression, but that histone mod-

ifications are involved in fine-tuning expression levels.

Genes with high CpG content promoters are more

predictable than those with LCP promoters

Previous studies have shown that CpG-rich promoters

are associated with ubiquitously expressed genes while

CpG-poor (and often TATA-containing) promoters are

associated with cell type-specific genes [27-29] and have

different patterns of histone modifications [29]. We

expected that the predictive power of chromatin features

based on ENCODE data would differ between the genes

driven by high CpG content promoters (HCPs) or low

CpG content promoters (LCPs). To test this, we divided

genes into two groups based on their normalized CpG

score in the promoter region (see Materials and meth-

ods), and applied our models on both groups. The
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results show that the models have higher prediction

power on HCP genes than on LCP genes for most of

the experiments (median r = 0.8 for HCP versus 0.66

for LCP, P-value = 2.19 × 10-14; Figure 6), independent

of high throughput technique or chromatin feature cate-

gory (Figure S4A in Additional file 2).

We also examined whether different sets of chromatin

features are necessary for predicting the expression of

HCP and LCP genes. The most important chromatin

features for HCP genes are similar to those for all genes

(compare Figures 6a and 2c), consistent with the finding

from previous work [10]. We noticed that H3K79me2

and H3K36me3 are the top two predictors for HCP

genes and all genes. Promoter marks (the red group in

Figures 2c and 6) are more important for CAGE and

RNA-PET measured transcriptomes whereas structural

marks (the green group) are important for RNA-Seq

measured transcriptomes. Strikingly, this difference

Figure 5 Comparison of groups of chromatin features. Twelve chromatin features are grouped into four categories according to their known

function in gene regulation: promoter marks (H3K4me2, H3K4me3, H2A.Z, H3K9ac, and H3K27ac), structural marks (H3K36me3 and H3K79me2),

repressor marks (H3K27me3 and H3K9me3), and distal/other marks (H3K4me1, H4K20me1, and H3K9me1). Correlation coefficients are shown for

individual categories, a combination of promoter with three other categories, all histone marks (HM), and HM together with DNase I

hypersensitivity are shown in the boxplot for CAGE (TSS-based), RNA-PET (TSS-based), and RNA-Seq (Tx-based) expression data. It indicates that

for TSS-based data, promoter marks are the most predictive among the four categories, while for Tx-based expression, structural marks are the

most predictive.
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becomes more pronounced in LCP genes (Figure 6b),

where H3K4me3 and H3K9ac are the top two predictors

for CAGE and RNA-PET measured transcriptomes, and

H3K36me3 is far more important for predicting the

RNA-Seq measured transcriptomes. Again, the Tx-based

RNA-Seq dataset allows us to measure the chromatin

feature signal along the whole gene body until the 3’

end, where structural marks like H3K36me3 were

shown to have strong signals. This explains why

H3K36me3 is a more important mark for RNA-Seq

expression than for CAGE or RNA-PET. However, it is

unclear why the difference is so much greater in LCP

genes. We venture to suggest that the regulation of the

transcription initiation and elongation are uncoupled for

LCP genes, and the chromatin features that are most

predictive for initiation are thus poor predictors of elon-

gation, and vice versa.

We compared our most predictive chromatin features to

the HCP and LCP expression predictions by Karlić et al.

[10]. While their datasets and methods to measure the

relative importance of chromatin features differed from

ours, the lists for the top effectors partially overlap. For

example, H3K4me3 is important for LCPs and H4K20me1

shows greater importance for HCPs than LCPs.

Since LCP genes typically have low expression levels,

we compared the predictability of highly and lowly

expressed genes to establish if there are differences in

the most predictive chromatin features. Genes were

divided into ten bins according to their expression levels

measured by CAGE, and we calculated the prediction

Figure 6 Comparison of the prediction accuracy of high- and low-CpG content promoter gene categories. (a) Summary of prediction

accuracy for all high-CpG content promoter (HCP) genes in 78 RNA expression experiments on whole cell, cytosolic or nuclear RNA, showing

that the median correlation for all experiments is r = 0.8. Each bar is divided into different colors corresponding to the relative contribution of

variables in the regression model. (b) Same as in (a), but for low-CpG content promoter (LCP) genes, showing that the median correlation

coefficient for all experiments is r = 0.66. This indicates that HCP genes are better predicted than LCP genes. Comparison of the relative

contribution of various chromatin features in each experiment indicates that the promoter marks (red and light red) show more importance in

predicting LCP genes using TSS-based data (for example, CAGE and RNA-PET), while structural marks (green show most importance in predicting

LCP genes for transcript-based data. Code for cell lines: K, K562; G, GM12878; 1, H1-hESC; H, HepG2; E, HeLa-S3; N, NHEK; U, HUVEC. Code for

RNA extraction: +, PolyA+; -, PolyA-. Code for cell compartment: W, whole cell; C, cytosol; N, nucleus.
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accuracy in a cumulative way. Results show that the per-

centage of LCP genes anti-correlate with expression

levels, confirming that more of the LCP genes fall into

the category of lowly expressed genes. The relative

importance of various marks in different subsets of

genes also indicates that structural marks like

H3K79me2 and H3K36me3 are better at predicting

highly expressed genes while promoter marks become

more predictive when lowly expressed genes are added

(Figure S4B in Additional file 2). This is consistent with

our previous observations that structural marks are

more important in predicting HCP genes while promo-

ter marks are more important in predicting LCP genes

using CAGE quantification (Figure 6).

Comparison of different RNA types in different cell

compartments

Current high-throughput sequencing methods largely

rely on the enrichment of transcripts with a Poly(A) tail,

which precludes analysis of the expression and regula-

tion of PolyA- transcripts. On the other hand, PolyA-

RNAs have important biological functions. Katinakis et

al. [30] suggested that some transcripts can be

‘bimorphic’ (that is, existing in both PolyA+ and PolyA-

forms), and that PolyA+ transcripts can be processed to

reduce or totally remove the Poly(A) tail under certain

conditions. A recent study confirmed the existence of

bimorphic transcripts in two human cell lines, and

showed dynamic expression of a subset of PolyA- his-

tone mRNA during differentiation [31]. While the regu-

lation of PolyA- RNAs is far from fully understood, it is

possible that PolyA+ and PolyA- RNAs are regulated by

different mechanisms.

We first compared expression levels of PolyA+ RNAs

and PolyA- RNAs among different cell compartments,

such as whole cell, cytosolic, and nuclear. As described

above, Figure 3a shows the clustering of all long PolyA+

RNA expression levels for all genes measured by different

techniques, and whole cell and cytosolic RNA cluster

together while nuclear RNA is an out-group. Clustering

all PolyA+ and PolyA- RNA from RNA-Seq experiments

(Figure S8 in Additional file 2) shows that PolyA- RNA is

largely different from PolyA+ RNA. Interestingly, unlike

the high similarity in expression levels between PolyA+

RNA from different compartments within the same cell

line, expression levels from PolyA- cytosolic RNA are

more similar across different cell lines than compared

with PolyA- RNA from nuclear or whole cell extracts in

the same cell line. On the other hand, whole cell and

nuclear PolyA- RNA from the same cell line cluster

together, consistent with the knowledge that most

PolyA- RNAs reside in the nucleus.

We then assessed how well histone modifications can

predict PolyA+ and PolyA- RNA levels. PolyA+ RNA is

significantly better predicted than PolyA- RNA, regard-

less of the technique with which RNA levels are mea-

sured and the location from which the RNA molecules

are extracted (Figure 7a,b), indicating that the PolyA-

fraction might be regulated by different mechanisms

from the PolyA+ fraction. We also compared the perfor-

mance for RNAs extracted from different compartments.

The analysis based on RNA-Seq datasets showed that

for polyadenylated RNAs (left panel of Figure 7b), cyto-

solic RNA is significantly better predicted than nuclear

RNA (paired Wilcoxon test P-value = 0.01) and the

reverse is true for non-polyadenylated RNA (P-value =

0.03). We noticed that the better predicted RNA popula-

tions (PolyA- nuclear RNA and PolyA+ cytosolic RNA)

comprise the majority of their respective mRNA popula-

tions. Chromatin features were less predictive of the

other two minority groups (PolyA+ nuclear RNA and

PolyA- cytosolic RNA), possibly because degradation

plays an important role in their abundances, and degra-

dation is not accounted for in our model.

We further looked into the performance of nuclear

sub-compartments (chromatin, nucleoplasm, and

nucleolus). The nucleus is the largest cellular organelle

in animals, and is composed of a nuclear envelope,

chromatin, a nucleolus, and nucleoplasm (similar to the

cytoplasm found outside of the nuclear envelope). Using

the total RNA extracted from K562 cells, we showed

that the RNAs from the three sub-compartments have

comparable prediction accuracy between CAGE and

RNA-Seq (Figure 7c), with the exception of chromatin-

associated RNAs. We noticed that the chromatin RNAs

measured by RNA-Seq are much better predicted than

those measured by CAGE (r = 0.8 versus 0.63), which

might indicate that chromatin-associated RNA is tran-

scribed, but uncapped.

Discussion

In this study, we have derived a novel two-step model to

study the relationships between chromatin features and

gene expression. With this model, we have shown

strong correlation (for example, r = 0.9) between gene

expression and chromatin features in various human

cell lines, confirming the conclusions from previous stu-

dies with better performance. We also took advantage of

the wide range of datasets from the ENCODE project

and compared the accuracy of predicting RNA mea-

sured by different sequencing techniques (that is,

CAGE, RNA-PET, and RNA-Seq), and from different

cell lines (for example, embryonic stem cells, normal tis-

sue cells, and tumor cells) and different cell compart-

ments. We showed that different groups of chromatin

features reflect gene ‘on’/’off’ status versus gene tran-

scription levels. Also, we revealed different groups of

chromatin features predict CAGE- versus RNA-Seq-
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based expression, suggesting transcription initiation and

transcription elongation are represented by different sets

of chromatin features. Comparisons among various cel-

lular sub-compartments suggests that the non-polyade-

nylated RNAs might be regulated by different

mechanisms from polyadenylated RNAs, and that chro-

matin-associated RNAs are likely transcribed, but

uncapped.

Although previous studies have already identified the

correlation between chromatin features and gene

expression levels, our study makes additional contribu-

tions in three ways. First, our analysis benefits from the

wealth of data produced by the ENCODE project, allow-

ing us to use the widest range of data thus far to study

this problem. The ENCODE Consortium quantified

RNA species in whole cells and sub-cellular compart-

ments, mapped histone modifications by ChIP-Seq, and

measured chromatin and DNA accessibility in various

cell lines. Unlike the limitations of other studies (for

example, only one cell line, no RNA type), for the first

time we have linked gene expression with its effectors in

great detail and in well-matched conditions.

Second, we built a novel two-step model to quantify

the relationship between chromatin features and expres-

sion. Several early studies [7,32-38] either simply

described this relationship or quantified chromatin fea-

tures and/or expression. Recent studies [10,11,39] have

assessed the relationship using more sophisticated quan-

titative models. Here, our model expands upon this pre-

vious work by using both classification and regression,

giving an even further in-depth analysis of the relation-

ship. Given the observation that nearly 40% of all TSSs

are not expressed in each of the investigated datasets

(data not shown), applying regression directly on a data-

set with many zeros could bias the result. Compared

with a regression model alone, the two-step model

shows an improvement in performance (for example, r

= 0.895 versus 0.871 for the dataset in Figure 2a; Table

1). More importantly, chromatin features involved in

turning gene expression ‘on’ and ‘off’ may differ from

those that control the level of expression. This is why

we chose a two-step model - first classifying the ‘on’

and ‘off’ genes by the available features, then performing

regression on the expressed genes only - so each

Figure 7 Comparison of prediction accuracy among different RNA extractions and different cell compartments. (a) Prediction accuracy

of PolyA+ and PolyA- RNA for all genes measured with the CAGE and RNA-Seq techniques. This shows that PolyA+ RNA are better predicted

than PolyA- RNA (P-value of paired Wilcoxon test between PolyA+ and PolyA-). (b) Prediction accuracy of PolyA+ and PolyA- RNA from different

cell compartments for all genes measured with the RNA-Seq technique (P-value of paired Wilcoxon test between cytosol and nuclues). (c)

Prediction accuracy of total RNA in different nuclear sub-compartments, measured by CAGE or RNA-Seq.
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predicted expression is based on the product of the out-

put of these two models. Additionally, instead of using a

fixed bin for different chromatin features, we used the

‘bestbin’ strategy to capture maximal effects from differ-

ent chromatin features. We have compared the perfor-

mance of the ‘bestbin’ strategy with that of several other

bin-selection methods. Table 1 shows that the ‘bestbin’

approach improves the performance by 2 to 13% com-

pared to fixed-bin or no binning, and that ‘bestbin’ has

the best performance overall. Moreover, most chromatin

marks show very stable ‘bestbin’, such as H3K36me3,

DNase, H3K27me3, H4K20me1, and H3K9me1 (Figure

S9 in Additional file 2). Finally, using an optimal pseu-

docount led to a consistent improvement in perfor-

mance compared with using a small fixed pseudocount

(Figure S10 in Additional file 2), without changing the

primary conclusions.

Third, our model performs well in predicting gene

expression using chromatin features. Using a linear

regression model to correlate histone modifications at

promoters and expression in human CD4+ T cells, Kar-

lić et al. [10] calculated a correlation coefficient of r =

0.77 for microarray data, and 0.81 for RNA-Seq data.

Cheng et al. [11] showed that a support vector machine

regression model learned from modENCODE worm

data has r = 0.73 in human K562 cells, and r = 0.74 in

mouse embryonic stem cells. Our model expands upon

these well-performing models, with a number of datasets

having r > 0.9, and 55 (out of 78) datasets having r ≥

0.8.

While our model shows high correlation between

chromatin features and gene expression levels, it cannot

be used to imply the causal effect of chromatin features

on gene expression. Henikoff and Shilatifard [40]

recently discussed the ‘cause or cog’ role of histone

modifications in gene transcription, and proposed that

histone modification patterns are actually the result of a

series of dynamic processes coupled with transcription,

including transcription factor binding, RNA polymerase

elongation, nucleosome remodeling, and targeting of

non-coding RNAs.

It has been shown that chromatin features possess a

certain level of redundancy and that certain chromatin

features may work in a combinatorial fashion. One way

to study the effect of combinatorial chromatin features

is to introduce interaction terms in the linear regression

model, which is computationally expensive for a model

with more than ten terms and has been shown to pro-

vide little contribution in improving the expression pre-

diction accuracy [11]. Instead, we grouped chromatin

features into different categories according to their

known function in transcriptional regulation and per-

formed regression on each category. This is less compu-

tationally expensive and the results are straightforward

to understand. For example, grouping H3K4me2,

H3K4me3, H2A.Z, and H3K27ac together allows us to

determine how predictive promoter marks are for gene

expression. However, the details of how these multiple

chromatin features work together to reflect the gene

expression levels need further exploration.

The model can be further improved in several ways.

While the model can well predict gene expression using

the current available set of chromatin features, we could

retrain the model by incorporating newly discovered

marks (such as histone lysine crotonylation [41]) and

therefore study the importance of new effectors in regu-

lating gene expression levels. Although our model shows

good results for genes with single transcripts (Figure S11

in Additional file 2), multiple transcripts from the same

gene may be subject to differential chromatin-based reg-

ulation. It is interesting and challenging to interpret

chromatin-based regulation for multiple transcripts with

shared TSSs. In this study, we chose the transcript with

the highest expression level as the representative if a

gene has multiple transcripts, which could hamper our

ability in uncovering the effectors of repressed genes or

transcripts (for example, a repressive mark such as

H3K37me3). Also, if a gene has zero (or low) expres-

sion, we cannot tell whether it is unexpressed or sup-

pressed. Unlike active marks (where a higher signal level

indicates a higher expression level), repressive marks

cannot lead to a negative expression level. These limita-

tions could potentially underestimate the relative impor-

tance of repressive marks, which underscores a need for

future work on refining the models for repressed genes.

We have shown the general application of models across

different cell types. As an extension of this analysis,

further work could include building models to relate dif-

ferential gene expression with differential histone modi-

fication profiles, and evaluate the relative contributions

of these modifications to differential expression between

cell types (for example, in differentiated versus H1-hESC

cells). Due to the requirements of our binning method,

Table 1 Performance of different modeling and bin

selection strategies

Allbins TSSbin bins.0.2 best5bins bestbin

Simple model 0.772
(2.77)

0.836
(2.40)

0.770
(2.78)

0.867
(2.16)

0.871
(2.14)

Two-step
model

0.839
(2.37)

0.877
(2.10)

0.841
(2.36)

0.889
(1.99)

0.895
(1.94)

Simple models only perform regression, whereas our two-step model

performs classification before regression. The columns are different bin-

selection strategies, where ‘allbins’ uses the mean density of all bins, ‘TSSbin’

uses the two bins flanking the TSS, ‘bins.0.2’ uses the bins with individual

correlation coefficient (r) greater than a threshold (0.2 in this case), ‘best5bins’

uses the top five bins with the greatest r, and ‘bestbin’ uses the bin(s) with

the greatest r. The values are PCCs (r) between predicted and measured

expression levels of PolyA+ cytosolic RNA from K562 cells measured by CAGE,

and the values in brackets are RMSE for the predictions.
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we only included transcripts longer than 4,100 bp in this

study. Also, current analysis only includes experiments

for RNA molecules longer than 200 nucleotides. This

leaves room for improvement in understanding how

chromatin features help regulate other genes (especially

long or short non-coding RNA genes). With regular

improvements in gene annotation and expression quan-

tification techniques, it is promising that we will under-

stand the regulation of gene expression more accurately

in the future.

Conclusions

In this study, we have developed a novel two-step model

to study the quantitative relationship between chromatin

features and gene expression. We recapitulated previous

findings that histone modifications are predictive of

gene expression, and HCP and LCP genes are best pre-

dicted by different histone marks. Our model is gener-

ally applicable across multiple cell lines, and has led to

several new insights, including: 1) histone modifications

such as H3K9ac and H3K4me3 are more important for

identifying genes that are ‘on’ or ‘off,’ while histone

modifications such as H3K79me2 and H3K36me3 are

more important for regression of expressed genes; 2)

expression levels measured by all three techniques

(CAGE, RNA-PET, and RNA-Seq) are well-predicted by

the model (median r ranges from 0.79 to 0.88), and, on

average, expression measured with CAGE is better pre-

dicted by the model than expression measured with

RNA-PET or RNA-Seq; 3) promoter marks (for exam-

ple, H3K4me2, H3K4me3, H2A.Z, H3K9ac, and

H3K27ac) are the most predictive for CAGE-based mea-

surement of transcription initiation, while structural

marks like H3K79me2 and H3K36me3 are more predic-

tive for RNA-Seq expression data (which can measure

the transcription elongation); 4) PolyA+ RNA is overall

better predicted by chromatin features than PolyA-

RNA; and 5) for expression levels measured with RNA-

Seq in different cellular compartments, RNA from

major functioning compartments (for example, cytosolic

PolyA+ RNA and nuclear PolyA- RNA) is better pre-

dicted by the model than RNA from other less function-

ing compartments (for example, nuclear PolyA+ RNA

and cytosolic PolyA- RNA).

Materials and methods
The two-step prediction model

We used a two-step model to predict the expression

levels of GENCODE genes: 1) we constructed a random

forests classification model to predict whether a promo-

ter was expressed or not; and 2) we constructed a

regression model (for example, linear regression, MARS,

or random forests) to predict the expression level of a

promoter. The two models were combined by setting

the predicted values ŷi = C(Xi)*R(Xi), where C(Xi) is the

results from the classification model (C(Xi) = 1 if pro-

moter Xi is predicted to be expressed, and 0 otherwise),

and R(Xi) is the predicted value for promoter Xi by the

regression model.

The performance of the classification model, the

regression model, and the combined two-step model

were evaluated based on ten-fold cross-validation. Each

dataset was divided into a training set (a third of genes)

and a testing set (two-thirds of genes). We trained a

model using the training set and then applied it to the

testing set to make predictions. We used AUC to repre-

sent the accuracy of the classification model, which

measured the AUC (sensitivity versus 1 - specificity of a

classification model). For the regression model, the pre-

dictive accuracy was measured by the PCC between the

predicted value and the experimental value (r), and

RMSE:

RMSE =

√

∑

i
(yi − ŷi)

2/n

Input datasets and gene annotation

All datasets used in this study are from the ENCODE

project [13]. Genome-wide locations of eleven histone

modifications (H3K4me1, H3K4me2, H3K4me3,

H3K27me3, H3K36me3, H3K79me2, H3K9me1,

H3K9me3, H4K20me1, H3K9ac, and H3K27ac) and one

histone variant (H2A.Z) were generated by the Broad/

MGH ENCODE group using ChIP-Seq [42], and are

available from the Gene Expression Omnibus (GEO;

accession number GSE29611). DNase I hypersensitivity

was measured genome-wide using the Digital DNaseI

methodology [43], and can be accessed via GEO acces-

sion number GSE32970. Uniformly processed genome-

wide signal tracks for these signals were downloaded in

bigwig format from the ENCODE project website [13].

GENCODE TSSs are defined as the most 5’ position

of GENCODE transcripts that show no evidence of an

incomplete coding sequence (CDS) 5’ end (for example,

CDS start not found; tag not present). Each GENCODE

TSS can be shared by multiple GENCODE transcripts.

From the 153,993 GENCODE v7 transcripts that fulfill

the above criteria, we derived 137,958 GENCODE v7

TSSs, which we then quantified using three different

technologies: CAGE, RNA-PET and RNA-Seq. Since

CAGE captures the 5’ ends of the transcripts, the CAGE

expression of a given TSS is defined as the sum of the

CAGE tags whose 5’ end falls within the 101 bp window

centered on the TSS. In order to compare TSS expres-

sion from different CAGE experiments, this expression

is further normalized by the total number of mapped

CAGE tags in the experiment and multiplied by 1
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million (number of reads per million mapped reads

(RPM) value). RNA-PET provides both the 5’ and the 3’

ends of transcripts, and the RNA-PET expression of a

given TSS is defined as the sum of the RNA-PET 5’ tags

whose 5’ ends fall within the 101 bp window centered

on the TSS. Again this expression is normalized by the

total number of mapped RNA-PET 5’ tags in the experi-

ment. For RNA-Seq experiments, we used GENCODE

v7 transcript expression as measured by RPKM (reads

per kilobase per million mapped reads; computed using

the flux capacitor [44]) to measure GENCODE v7 TSS

expression. If a TSS is shared by transcripts t1,... tn, its

expression in an RNA-Seq experiment will be defined as

the sum of the RPKM of transcripts t1,... tn in this same

experiment (already normalized). This procedure assigns

each RNA-Seq read (or each part of the read) to one

transcript only, thus not counting it multiple times

because the flux capacitor is a deconvolution tool. The

raw data from expression profiling can be downloaded

from the GEO (accession numbers GSE26284 (RNA-

Seq), GSE34448 (CAGE), and GSE33600 (RNA-PET)).

As described previously [28], normalized CpG content

for each transcript was calculated for the [-1,500 bp,

+1,500 bp] region flanking the TSS. Promoters with nor-

malized CpG content >0.4 are defined as HCP, and

those with normalized CpG content ≤0.4 as LCP.

Dealing with multiple replicates and genes with multiple

transcripts

To reduce the possibility of bias from a single measure-

ment, the ENCODE Consortium performed multiple

biological replicates for most experiments. To reduce

redundancy, we merged multiple replicates of the same

experiment by taking the mean expression level of each

gene from the replicates.

For genes with multiple transcripts, it is difficult to

decipher which transcript is correlated with the signal of

chromatin features. This may lead to bias, particularly in

cases where the ‘on’ and ‘off’ transcripts have very close

TSSs but different expression levels. To avoid this bias,

we selected the transcript with the strongest expression

level as the representative transcript for each gene.

Defining the ‘bestbin’ of chromatin feature density

For each transcript longer than 4,100 bp, we extended

the transcript by 2,000 bp on each side and divided it

into 81 bins (40 bins for the [-2k, +2k] region flanking

the TSS, one bin for the rest of the gene body, and 40

bins for the [-2k, +2k] region around the TTS). We cal-

culated the mean density of chromatin features in each

bin by using the bigWigSummary command-line utility

[45]. We defined the ‘bestbin’ for each chromatin feature

as the bin with the highest absolute correlation coeffi-

cient with gene expression levels. For Tx-based

expression data, we searched for the ‘bestbin’ among all

81 bins. For TSS-based expression data such as CAGE,

we could not tell which transcript the CAGE tags were

from if multiple transcripts shared the same TSS, so we

used 41 bins for each unique TSS (that is, the first 40

bins plus one bin of the gene body from the above 81

bins) to ensure full coverage of the relevant chromatin

feature signals.

Data transformation and pseudocount optimization

Because log2 transformation was applied to the signal of

chromatin features Xij for each gene i and chromatin

feature j, a small pseudocount aj was added to the values

of each chromatin feature to avoid the log2(0) issue. We

used one-third of the genes in each dataset to optimize

the pseudocount, and applied the optimized pseudo-

count to the remaining two-thirds of the genes. For

each bin of chromatin feature j, we searched for the

optimized pseudocount ajranging from 0 to 20% of the

maximal value of Xij in that bin. The optimized pseudo-

count aj was determined by a maximal correlation

between log2(Xij + aj) and logarithm of measured

expression values for one-third of the genes in each

dataset.

As an alternative to log transform and using pseudo-

counts, we also converted data to ‘normal scores’ using

rankit transformaton, which samples the same number

of values from an equivalent normal distribution, fol-

lowed by re-ordering of the data. We implemented the

rankit transformation in R as:

x = qnorm((rank(x) - 0.375)/(sum(!is.na(x)) + 0.25))

Variable importance

For the linear regression model, we used the R2 decom-

position according to Verena and Korbinian [46] imple-

mented in the calc.relimp function in the

{relaimpo} R package. For MARS, we used the nsub-

sets criterion implemented in the evimp function in

the {earth} R package [47], which counts the number

of model subsets that include the variable of interest.

Variables that are included in a greater number of sub-

sets are considered more important. For random forests,

we used the decreased Gini index as criteria of variable

selection [48], which was implemented in the impor-

tance function of the {randomForest} R package.

Additional material

Additional file 1: Supplementary tables. Table S1: bestbin and

pseudocount results for each mark. Table S2: results of all predictions,

including the correlation coefficient, P-value for the correlation, the

individual correlation, and relative importance of each chromatin feature.

Table S3: list of experiments used in the analysis.

Dong et al. Genome Biology 2012, 13:R53

http://genomebiology.com/2012/13/9/R53

Page 15 of 17

http://www.biomedcentral.com/content/supplementary/gb-2012-13-9-r53-S1.???


Additional data file 2: Supplementary figures. Figure S1: model

diagnosis. (A) ROC curve for random forests classifier in predicting the

‘on’ and ‘off’ expression status for the CAGE PolyA+ cytosolic RNA from

K562 cells. The AUC (area under the curve) is 0.95 and error rate is 9.56%.

(B) Residual plot for the fitted values. The red line is the mean of

residuals, which should be centered around 0 for a model without

systematic bias. The sharp border at the bottom of the scatter plot is

due to the limited resolution of measured expression (for example, not

enough data points between 0 and first non-zero value). (C) Q-Q plot of

standardized residuals, which shows that standardized residuals are

normally distributed. (D) Scatter plot of predicted expression and

measured expression using the ‘rankit’ transformation (which samples

from an equivalent normal distribution that respects the rank order of

the expression data; see Materials and methods). PCC r = 0.86 for overall

prediction (P-value <2.2 × 10-16), AUC for classification is 0.94 and PCC r

for regression is 0.72. Figure S2: comparison of the performance of three

regression models. Figure S3: model stability. Each bar is a set of

randomly sampled genes (10%, 20%,... 100% of all genes). The blue line

represents the PCC r for each set. The black line with filled circles is the

percentage of high-CpG promoter (HCPs) genes and the open circle

black line is the percentage of low-CpG promoter (LCPs) genes in each

set. The model performance is stable regardless of sample size. Figure S4:

comparison of performance between HCP and LCP genes. (A,B) The

performance of different chromatin feature categories for predicting HCP

genes versus LCP genes (A) and highly expressed versus lowly expressed

genes (B). It shows the results of the top X% of genes (X =10, 20, 30,...

100) in decreasing order of expression for CAGE PolyA+ cytosolic RNA

from K562 cells. Figure S5: heatmap of correlation between replicates of

expression experiments. Among the total of 98 experiments, 55

experiments have two biological replicates (replicates 1 and 2). The

heatmap indicates that two replicates from the same technique, RNA

type, cell line, and compartment are generally highly correlated. Code for

RNA type: t, total RNA; +, PolyA+; -, PolyA-. Code for cell lines: K, K562; G,

GM12878; 1, H1-hESC; H, HepG2; E, HeLa-S3; N, NHEK; U, HUVEC. Code for

cell compartment: W, whole cell; C, cytosol; N, nucleus; h, chromatin; u,

nucleolus; l, nucleoplasm. Figure S6: heatmap of correlation between

CAGE and RNA-Seq experiments for single-transcript genes. Each row (or

column) depicts a PolyA+ RNA expression experiment from one of the

cellular compartments (cytosol, nucleus, and whole cell) and one of

seven cell lines (H1-hESC, HeLA-S3, GM12878, HepG2, K562, NHEK, and

HUVEC) from CAGE or RNA-Seq. It shows that CAGE and RNA-Seq

expression from the same cell lines are well-correlated (black-frame

boxes), even though the correlation is weaker than experiments using

same quantification method (the red blocks along the diagonal). There

are a total of 31,484 genes with single transcripts. Figure S7: model

performance using DNase I hypersensitivity only and promoter marks

only. Each bar is the correlation coefficient of predicting expression using

only either DNase I hypersensitivity or promoter marks (that is, H3K4me2,

H3K4me3, H2A.Z, H3K9ac, and H3K27ac). It shows that promoter marks

are more predictive than DNase I hypersensitivity (paired Wilcoxon test

P-value = 4 × 10-15). Figure S8: heatmap of correlations between PolyA+

RNA-Seq and PolyA- RNA-Seq. Figure S9: stability of the ‘bestbin’

selection. Each panel is a histogram of the ‘bestbin’ index for a

chromatin mark. Since the ‘bestbin’ is calculated based on a randomly

selected one-third of the total dataset (D1 in Figure 1) for each

experiment, the most stable ‘bestbin’ will be shown as a sharp peak on

the histogram. Figure S10: improvement by pseudocount optimization.

Correlation coefficient of histone modification (H3K79me2) density with

expression level is calculated at each bin, using a fixed pseudocount of

0.001 or an optimized pseudocount (see Materials and methods). The

pseudocount optimization (black line) consistently performs better than

the fixed pseudocount (gray line). The blue line indicates the average

H3K79me2 level. Figure S11: prediction using single-transcript genes.

PCCs (r) of all 78 RNA expression experiments using only the single-

transcript gene subset. Comparing Figures S10 and 2c, we can see that

there is no significant change in model performance or most important

variables when including genes with multiple transcripts.
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