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Theorem 4 The solutions to Model 4 are of the following form:

�
r

p

�
= Q(t)e�t

where � are eigenvalues of S, and Q(t) is a matrix whose elements are poly-

nomials on t.

This theorem is in the same style as the other theorems we have proved, but
apparently weaker: the constraints of the degree of Q(t) do not hold. All the
interesting questions regarding stability of Model 4 can be answered through
the studies on the set S. We will leave this discussion to the future.

Limitations of the models and the approaches

Like many other models, the Linear Transcription Model (Model 1) does not
consider time delays in transcription and translation. This assumption greatly
reduces the complexity of the problem. Although we make an e�ort to incorpo-
rate time delays, no interesting conclusion can be drawn. The most signi�cant
limitation comes from ignorance of other regulators such as metabolites. It
is known that many genes and other factors directly or indirectly a�ect the
pathway that feeds back to transcription. However, the Linear Transcription
Model clearly captures more features of gene expression than other models to
our knowledge.

The approach of the Fourier Transform for Stable Systems makes an as-
sumption that gene expressions are periodic in cell cycles. This assumption
does not hold for some genes, and cell cycle length may vary too. The other
approach of MWSLE assumes the number of regulators of a gene is a small
constant, but the actual number may be much larger than expected and the
solution may be intractable computationally.

Conclusion and Future Work

In conclusion, we proposed a Linear Transcription Model for gene expression,
and discussed two algorithms to construct the model from experimental data.
Our future work will apply our methods to real experimental data, and continue
to investigate a combined method to reconstruct these models, solutions to the
Time Delay Model, and quantitative analysis of experimental designs.
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The construction of Protein Model is similar to the MWSLE of Model 1. Be-
cause V , L, and U are all diagonal matrices, (�LVL�1 � U ) and �LVL�1U
are also diagonal. Also LC is sparse because C is sparse. Thus

Theorem 3 Model 3 can be constructed by solving MWSLE on time-series

sampling of protein concentrations.

Time-Delay Model

The real gene expression mechanism has time delays in transcription and trans-
lation. Let n-dimensional vectors � = (�1; �2; : : : ; �n) and � = (�1; �2; : : : ; �n)
be delays for transcription and translation respectively, and t = (t; t; : : : ; t) be
the global time clock. Also, r and s are constants. Thus we de�ne our model
as

Model 4 Gene expression with time delay can be modeled as

dr

dt
= Cp(t� �)� Vr(t)

dp

dt
= Lr(t� �) � Up(t)

Now we take the Fourier transform. We obtain:

i�r̂(�) = C e�i��p̂(�) �V r̂(�)

i�p̂(�) = Le�i�� r̂(�) �U p̂(�)
(12)

where � is the frequency, and r̂ and p̂ are Fourier transforms of r and p. We
simplify these two equations, obtaining

(i�In + V )r̂(�) = C e�i��p̂(�) (i�In +U )p̂(�) = Le�i�� r̂(�)

where In is a n� n identity matrix. We combine these two equations

(i�In + V )r̂(�) = C e�i��(i�In +U )�1Le�i��r̂(�)

Therefore r̂(�) is a vector-valued distribution supported on the solutions to the
following equation:

S = f� 2 C j det(i�In +V � C e�i��(i�In + U )�1Le�i��) = 0g

Therefore, we obtain the following theorem.
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e�U t

Z
eU tLrdt = C�1 dr

dt
+ C�1V r (CC�1C = C )

where C�1 is a (general) inverse of C . We di�erentiate this equation,

d2r

dt2
= C (�U )e�U t

Z
eU tLrdt+ C e�U teU tLr� V

dr

dt

= C (�U )(C�1dr

dt
+C�1V r) +CLr� V

dr

dt

= (�CUC�1 � V )
dr

dt
+ (�CUC�1V + CL)r

Then we de�ne our second model:

Model 2 Gene expression can be partially modeled by the following dynamic

system of mRNA concentrations.

d2r

dt2
= (�CUC�1 � V)

dr

dt
+ (�CUC�1V+ CL)r

There exists one general inverse C�1 that matches the real situation.

The degeneracy of the transcription matrix C indicates that r cannot be self-
determined. Any solution to r depends on the initial value of p. This is con-
sistent with our understanding that proteins (and other subsumed feedbacks)
are major operators in transcription and translation, and thus determine the
fate of gene expression. mRNA concentrations alone, handled in this manner
at least, are not su�cient to model the whole system of gene expression.

Protein Model

Similarly to the argument in the RNA Model, we can eliminate r in Model 1,
leaving a dynamic system of p. The �nal equation is

d2p

dt2
= (�LVL�1 � U )

dp

dt
+ (�LVL�1U + LC )p (11)

Here, L is a non-degenerate diagonal matrix and its inverse L�1 exists. We
de�ne a model of proteins:

Model 3 Gene expression can be modeled by the following dynamic system

of protein concentrations.

d2p

dt2
= (�LVL�1 �U)

dp

dt
+ (�LVL�1U+ LC)p
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where vii, ci1, ..., cin are to be determined. The equations are underdetermined
because k < n. There is no unique solution. However, by the argument we
made that C is sparse, this problem belongs to the following category 9:

Problem 1 MWSLE (Minimum Weight Solutions to Linear Equations): Given

k pairs (a1; b1); (a2; b2); :::; (ak; bk), where a1; a2; :::; ak are n-tuple of reals and

b1; b2; :::; bk are reals, is there a n-tuple y such that y has at most h non-zero

entries and such that ai � y = bi for all i?

Solving Equations 7-10 involves solving MWSLE: the unknowns vii, ci1,
..., cin corresponding to y, and one equation corresponding to ai � y = bi.
Unfortunately, MWSLE is NP-complete, and therefore does not guarantee a
polynomial time solution. However, there is a hope:

Lemma 1 If h is a constant, MWSLE can be solved in O(knh) time.

Proof: There are at most nh combinatorial choices of y which have at most h
non-zero entries. For each choice of y, it is over-determined because there are
k linear equations but only h variables (h < k). The over-determined linear
equations can be solved by using least-square analysis, which takes O(k) time.
Thus it takes O(knh) to solve MWSLE.

Without loss of generality, let h be the number of non-zero variables in
ci1, ..., cin, which is to say that gene i has at most h regulators. We can apply
Lemma 1 into Equations (6)-(9) and obtain the following theorem:

Theorem 2 Model 1 can be constructed in O(nh+1) time.

The additional \+1" comes from solving n genes. The solution to dp=dt =
Lr � Up is straightforward, because L and U are diagonal matrices. Thus,
Theorem 2 holds.

Extended Models and Solutions

RNA Model

Various recent techniques have focused on pro�ling mRNA concentrations. A
straightforward method for studying the dynamic system in Model 1 is to
eliminate the variables p and leave r as the only variables. We substitute
p = e�U tp1, and from the second equation, we obtain

Lr� Up =
dp

dt
= �U e�U tp1 + e�U t dp1

dt
= �Up+ e�U t dp1

dt

Therefore, we have dp1
dt

= eU tLr, and p = e�U t
R
eU tLrdt. Substituting p into

dr
dt

= Cp�V r, we obtain

dr

dt
= C e�U t

Z
eU tLrdt� V r
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matrix Q = fqijg, so Equation 3 can be simpli�ed as

x(t) = Qet� (4)

We observe that at every cell cycle, many genes repeat their expression
patterns. Although cell cycle lengths may vary even when the environmental
conditions are held constant, the transcription analysis of the yeast mitotic
cell cycle10 revealed many similar expression patterns between two consecutive
cell cycles. If the cell cycle period is � , the Fourier Series of x(t) should have
1=�; 2=�; 3=�; ::: as the frequencies, and every gene has a solution

x(t) =

+1X
j=�1

aje
i jt
T (a�j = aj) (5)

Equation 4 and 5 are equivalent: each eigenvalue corresponds to a Fourier
frequency, and a�j = aj eliminates non-real terms. We approximate x(t) by
the largest k periods, and thus

x(t) � x0(t) =

kX
j=�k

aje
i jt
T (6)

Applying x(t1); :::;x(tk) into Equation 6, can solve variables a1; a2; :::; ak, and
thus x0(t) can be uniquely determined. From x0(t), we can approximate the
matrix M in Model 1.

Minimum Weight Solutions to Linear Equations

Biologically, the transcription matrix C in Model 1 represents gene regulatory
networks: cij 6= 0 indicates gene j is a regulator for the transcription of gene
i, and cij = 0 indicates gene j is not a regulator for gene i. C is considered
sparse because of many indications that the number of regulators for a gene
is small 2, mostly less than 10. In other words, each row of C has only a few
nonzero elements.

We apply r(t0); :::; r(tk);p(t0); :::;p(tk) into dr=dt = Cp � V r, and ap-
proximate dr=dt by 4r=4t:

ri(t1)� ri(t0)

t1 � t0
= ci1p1(t1) + :::+ cinpn(t1)� viiri(t1) (7)

ri(t2)� ri(t1)

t2 � t1
= ci1p1(t2) + :::+ cinpn(t2)� viiri(t2) (8)

� � � (9)

ri(tk) � ri(tk�1)

tk � tk�1
= ci1p1(tk) + :::+ cinpn(tk)� viiri(tk) (10)
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Figure 2: A stable system (top) and a semistable system (bottom).

Reconstructing Models from Temporal Data

Unfortunately, matrix M has yet to be determined because its sub-matrices
are mostly unknown. In this section, we will discuss how to determine M

from temporal experimental data. We will assume that we obtain a set of
time-series samples of x(t0);x(t1); :::;x(tk), where x includes both mRNA and
protein concentrations.

Fourier Transform for Stable Systems

We re�ne the dynamic system x(t) = Q(t)et� in Theorem 1 to obey real bio-
logical meanings. The system is unstable if there exists a positive eigenvalue
of �, because the term qij(t)e

�j t is an exponential function if �j has a positive
value. The system is semistable if all the real parts of the eigenvalues of � are
non-positive. As depicted at the bottom of Figure 2, a semistable system has
a polynomial growth rate because of its polynomial term qij(t). The system is
stable if it is semistable and all the polynomials qij(t) are constants. The top
curve in Figure 2 shows a stable system.

The gene expression system has to be a stable system since an exponential
or a polynomial growth rate of a gene or a protein is unlikely to happen. It
implies that qij(t) is actually a constant, denoted as qij for convenience. Let
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where C = df (p)

dp
jp0 and s = f (p0) �

df (p)

dp
jp0p0. Therefore, we may study

Equation 1 (near p0):

dr

dt
= Cp�V r+ s

dp

dt
= Lr� Up

To eliminate s by variable substitution, we apply r = r + rs and p = p+ ps
into Equation 1 to calculate what constants rs and ps su�ce to eliminate s
and obtain

dr

dt
= Cp�V r+ (Cps � V rs) + s

dp

dt
= Lr�Up+ (Lrs �Ups)

where rs and ps can be determined by the following equation:�
�V C

L �U

��
rs
ps

�
=

�
�s
0

�

Because both V and U , the degradation rates, are nonsingular diagonal ma-
trices, we can assume the equation has a unique solution. Therefore it su�ces
to consider the following dynamic system even if f(p) is nonlinear.

dr

dt
= Cp�V r

dp

dt
= Lr�Up (2)

We can de�ne the Linear Transcription Model as

Model 1 Let x = (r;p)T be variables for mRNAs and proteins, M be a

2n�2n transition matrix, and gene expression can be modeled by the following

dynamic system:

dx

dt
= Mx where M =

�
�V C

L �U

�

Solution to Linear Transcription Model

Assume M has 2n eigenvalues � = (�1�2:::�2n)
T . It is well-known that the

dynamic system in Model 1 has the following solution:
Theorem 1 The solution to Model 1 is of the form

x(t) = Q(t)et� (3)

where Q(t) = fqij(t)g satis�es

2nX
j=1

deg(qij(t)) + 1 � 2n for i = 1; 2; :::; 2n

Q(t) is a 2n � 2n matrix whose elements are polynomial functions of t, and
deg() returns the degree of a polynomial function.
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molecule degrades randomly, and its components are recycled in the cell. One
important feedback missing here is frommetabolites to the transcription, which
also plays a key role in signaling. Then, Figure 1 can be modeled as a nonlinear
dynamic system:

dr

dt
= f (p)�V r

dp

dt
= Lr�Up (1)

where the variables are functions of time t and de�ned as follows:

n The number of genes in the genome;
r mRNA concentrations, n-dimensional vector-valued functions of t;
p Protein concentrations, n-dimensional vector-valued functions of t;
f (p) Transcription functions, n-dimensional vector polynomials on p;
L Translational constants, n� n non-degenerate diagonal matrix;
V Degradation rates of mRNAs; n � n non-degenerate diagonal matrix;
U Degradation rates of Proteins, n � n non-degenerate diagonal matrix;

The change in mRNA concentrations (dr=dt) equals the transcription (f (p))
minus the degradation (V r), and similarly, the change in protein concentra-
tions (dp=dt) equals the translation (Lr) minus the degradation (Up). Here,
L, V and U are non-degenerate diagonal matrices, because we assume both
the translation rates and the degradation rates are constants for each species.
Also, we consider zero time delay in transcription and translation, and leave
the time delay case to a later section.

Linear Transcription Model

First we assume the transcription functions, f (p), to be linear functions of p,
f(p) = Cp. For example, a combined e�ect of activators and inhibitors in tran-
scription can be described by a linear function in the form of wa[activators]�
wi[inhibitors], where wa and wi are contributions of the activators and the
inhibitors to the gene regulation. Otherwise, we can still make the assumption
from the following argument.

We let p0 be the value of p at time zero, and take the �rst-order Taylor
approximation:

f (p) = f (p0) +
df (p)

dp
jp0(p� p0)

= Cp+ s
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Figure 1: Simpli�ed dynamic system of gene regulation emphasizing feedback on transcrip-

tion.

mRNAs and proteins: Minimum Weight Solutions to Linear Equations
and Fourier Transform for Stable Systems.

� We discuss three extended models: RNA Model, Protein Model and
Time Delay Model, among which the Protein Model parameters can be
reconstructed through a set of temporal samples of protein expression
levels.

� Our results suggest that it is possible to determine most of the gene
regulation in the genome level from a minor set of accurate temporal
data.

Dynamic System for Gene Expression

The transcription of a gene begins with transcription elements, mostly proteins
and RNAs, binding to regulatory sites on DNA. The frequency of this bind-
ing a�ects the level of expression. Experiments have veri�ed that a stronger
binding site will increase the e�ect of a protein on transcription rate. On the
other hand, since the DNA sequence is unchanged, the transcription is mostly
determined by the amounts of transcription proteins. In translation, proteins
are synthesized at ribosomes. An mRNA can be translated into one or multiple
copies of corresponding proteins, which can further change the transcription
of other genes. A feedback network of genes, mRNAs and proteins is shown in
Figure 1.

In Figure 1, we ignore other feedback such as mRNAs to genes, since
we subsume such e�ects in the protein feedback indicated. We assume the
translation mechanism is relatively stable (at least for a short time), so the
feedback from proteins to mRNAs has no e�ect. Each mRNA and protein
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It is widely believed that gene expression data contains rich information
that could discover the higher-order structures of an organism and even inter-
pret its behavior. Conceivably within a few years, a large amount of expression
data will be produced regularly as the cost of such experiments diminishes.
Biologists are expecting powerful computational tools to extract functional in-
formation from the data. Critical e�ort is being made recently to build models
to analyze them.

One of the most studied models is the Boolean Network, where a gene has
one of only two states (ON and OFF), and the state is determined by a boolean
function of the states of some other genes. Somogyi and Sniegoski 2 showed
that boolean networks have features similar to those in biological systems,
such as global complex behavior, self-organization, stability, redundancy, and
periodicity. Liang et al. 3 implemented a reverse-engineering algorithm to infer
gene regulations and boolean functions by computing the mutual information
between a gene and its candidate regulatory genes. Akutsu et al. 4 gave an
algorithmic analysis of the problem of identifying boolean networks from data
obtained by multiple gene disruption and gene over-expressions in regard to
the number of experiments and the complexity of experiments.

In addition to the boolean networks, other models are also studied. Thi-
e�ry and Thomas 5 discussed a generalized logical model and a feedback-loop
analysis. They suggested that a logical approach can be used to get a �rst
overview of a di�erential model and thus help to build and re�ne the model.
McAdams and Shapiro1 proposed a nice hybrid model that integrates a conven-
tional biochemical kinetic model within the framework of a circuit simulation.
However, it is not clear how to determine model parameters from experimen-
tal data. Gene expression data can also be analyzed directly by statistical and
optimization methods. Michaels et al. 7 measured gene expression temporally
and applied statistical clustering methods to reveal the correlations between
patterns of gene expression and phenotypic changes. Chen et al. 6 transferred
experimental data into a gene regulation graph and imposed optimization con-
straints to infer the true regulation by eliminating the errors in the graph.

In practice, the determination of the networks has to (1) derive regulatory
functions from a small set of data samples; (2) scale up to the genome level;
and (3) take into account the time delay in transcription and translation. In
this paper, we propose a linear di�erential equation model for gene expression
and two algorithms to solve the di�erential equations. Potentially, our methods
answer the practical questions in (1) and (2), and we also make an e�ort to
incorporate (3). In summary,

� We propose a Linear Transcription Model for gene expression, as well as
two algorithms to construct the model from a set of temporal samples of
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We propose a di�erential equation model for gene expression and provide two
methods to construct the model from a set of temporal data. We model both tran-
scription and translation by kinetic equations with feedback loops from translation

products to transcription. Degradation of proteins and mRNAs is also incorpo-
rated. We study two methods to construct the model from experimental data:

MinimumWeight Solutions to Linear Equations (MWSLE), which determines the
regulation by solving under-determined linear equations, and Fourier Transform

for Stable Systems (FTSS), which re�nes the model with cell cycle constraints.
The results suggest that a minor set of temporal data may be su�cient to con-

struct the model at the genome level. We also give a comprehensive discussion of
other extended models: the RNA Model, the Protein Model, and the Time Delay
Model.

Introduction

The progress of genome sequencing and gene recognition has been quite sig-
ni�cant in the last few years. However, the gap between a complete genome
sequence and a functional understanding of an organism is still huge. Many
questions about gene functions, expression mechanisms, and global integration
of individual mechanisms remain open. Due to the recent success of bioengi-
neering techniques, a series of large-scale analysis tools have been developed to
discover the functional organization of cells. DNA arrays and Mass spectrom-
etry have emerged as powerful techniques that are capable of pro�ling RNA
and protein expression at a whole-genome level.

aPublished in 1999 Paci�c Symposium of Biocomputing
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