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Abstract. Modeling glacial landform evolution is more challenging than modeling fluvial landform evolution.

While several numerical models of large-scale fluvial erosion are available, there are only a few models of

glacial erosion, and their application over long time spans requires a high numerical effort. In this paper, a

simple formulation of glacial erosion which is similar to the fluvial stream-power model is presented. The model

reproduces the occurrence of overdeepenings, hanging valleys, and steps at confluences at least qualitatively.

Beyond this, it allows for a seamless coupling to fluvial erosion and sediment transport. The recently published

direct numerical scheme for fluvial erosion and sediment transport can be applied to the entire domain, where

the numerical effort is only moderately higher than for a purely fluvial system. Simulations over several million

years on lattices of several million nodes can be performed on standard PCs. An open-source implementation is

freely available as a part of the landform evolution model OpenLEM.

1 Introduction

Glaciers have played a major part in shaping several orogens

on Earth. In contrast to fluvial erosion, however, glacial ero-

sion has not been extensively considered in modeling large-

scale landform evolution. The greater prevalence of rivers

and their relevance for life and society almost everywhere on

Earth may be the main reason for this imbalance. River dy-

namics have been studied quantitatively for more than a cen-

tury, not only scientifically, but also in numerous engineering

projects. As pointed out by Harbor (1989), glacier dynam-

ics have also been studied quantitatively since the end of the

19th century but received little attention at the time. Nowa-

days, glacier dynamics are still more difficult to observe than

fluvial dynamics, and there are larger uncertainties about the

relevance of the processes involved in glacial landform evo-

lution (e.g., Alley et al., 2019). As a consequence, the re-

spective models are not only mathematically and numerically

more complex than models of fluvial landform evolution, but

also less well constrained.

Models of large-scale fluvial landform evolution (for an

overview, see, e.g., Willgoose, 2005; Wobus et al., 2006) are

typically based on a simple expression for the erosion rate

which dates back to studies of longitudinal river profiles by

Hack (1957) and was introduced in numerical landform evo-

lution modeling by Howard (1994). This relation is often re-

ferred to as the stream-power law or as the stream-power in-

cision model and considers the erosion rate E as a function

of the upstream catchment size A and the channel slope S in

the form

E =KAmSn. (1)

All dependencies of E except for A and S are subsumed

in the lumped parameter K , called erodibility. This also in-

cludes the geometry of the river’s cross section, so that rivers

can be considered to be linear elements. The values of the

exponents m and n are believed to be more or less universal.

Equation (1) is occasionally written in the form

E =K
(

AθS
)n

(2)

with the concavity index θ = m
n

. In contrast to the absolute

values of m and n, θ can be determined from the shape of

longitudinal river profiles if the erosion rate is uniform along
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the river. Thus, the value of θ is well constrained. Most mod-

eling studies either use the value θ = 0.5 originally found

by Hack (1957) or a slightly lower reference value θ = 0.45

(e.g., Whipple et al., 2013; Lague, 2014).

While the stream-power incision model is limited to sce-

narios where all material that is detached from the riverbed

is immediately excavated, some extensions towards sediment

transport were developed. Recently, a generic formulation,

E

Kd
+

Q

KtA
= AmSn, (3)

called the shared stream-power model, was presented (Her-

garten, 2020), where Q is the sediment flux (volume per

time). This model contains two parameters beyond the expo-

nentsm and n, whereKd describes the erodibility in absence

of transported sediment (Q= 0) and Kt the ability to trans-

port sediment at zero erosion rate (E = 0). Since the physi-

cal units and the interpretation in the context of Hack’s find-

ings of Kd and Kt are identical, both can be considered to be

erodibilities, although Kt is rather a transport coefficient.

Both the stream-power incision model and the shared

stream-power model (as well as the mathematically equiv-

alent model of Davy and Lague, 2009) can be implemented

very efficiently in landform evolution models using fully im-

plicit schemes (Hergarten and Neugebauer, 2001; Braun and

Willett, 2013; Yuan et al., 2019; Hergarten, 2020). Here the

maximum time increment is not limited by the numerical sta-

bility but only by changes in the flow pattern. Beyond this,

the numerical effort per time step increases only linearly with

the size of the grid for the schemes mentioned above, which

allows for simulations on large grids over long time spans.

A comparable representation of glacial erosion where the

erosion rate can be directly computed from properties of the

topography is not yet available. Contemporary models in-

volve at least the thickness of the ice layer and its velocity

at each point of the topography. The shallow-ice approxima-

tion (Fowler and Larson, 1978; Hutter, 1980; Cuffey and Pa-

terson, 2010) is widely used in this context. The flow follows

the direction of the steepest descent of the ice surface, and

the depth-averaged horizontal velocity is decomposed into

a sliding velocity vs and a depth-averaged deformation ve-

locity vd. The latter can be obtained directly by combining

Glen’s flow law with the shallow-ice approximation, which

yields a power-law dependence on the thickness h of the ice

layer and on the slope S of the ice surface,

vd ∼ hψ+1Sψ , (4)

where ψ is the exponent of Glen’s flow law (typically ψ ≈ 3;

e.g., Cuffey and Paterson, 2010). In contrast, developing a

similar relation for the sliding velocity vs relies on further

assumptions. The simple relation proposed by Budd et al.

(1979) involves the shear stress and the effective normal

stress at the bed, which is in general lower than the static

pressure of the ice column due to the pressure of the melt-

water. The simplest models assume that the water pressure is

proportional to the static pressure of the ice column, i.e., to

the thickness h (e.g., Harbor et al., 1988; Braun et al., 1999;

Deal and Prasicek, 2021). Then the sliding velocity follows

a relation that is very similar to Eq. (4),

vs ∼ hψ−1Sψ . (5)

(e.g., Deal and Prasicek, 2021).

The erosion rate is usually assumed to depend on the slid-

ing velocity also by a power-law relation

E ∼ vls, (6)

where the linear version (l = 1) originally suggested by Hal-

let (1979) is still widely used. It should be noted that this re-

lation involves a large uncertainty, not only in itself but also

since it inherits the uncertainty from the sliding velocity.

The product of ice thickness and total velocity, h(vs + vd),

defines the ice flux per unit width. Inserting this property

into the mass balance of the glacier yields a differential equa-

tion for the thickness h. If the topography of the ice surface

(H +h, where H is the topography of the bedrock) is con-

sidered as the variable, it is a diffusion equation with a high

and strongly variable diffusivity. This property makes its nu-

merical treatment challenging and allows only for small time

increments.

While some fundamental studies focusing on modeling

the evolution of longitudinal and transversal valley profiles

(Oerlemans, 1984; Harbor et al., 1988; Harbor, 1992) even

date back to the 1980s, the model ICE-CASCADE pro-

vided the first implementation of this concept in a large-scale

landform evolution model (Braun et al., 1999). While this

model has been applied in several studies, the iSOSIA (in-

tegrated Second-Order Shallow Ice Approximation) model

introduced by Egholm et al. (2011) is a step towards a more

realistic description of ice flow without solving the full three-

dimensional equations of flow. As a major point, it also takes

into account longitudinal and transverse stresses, which im-

pede strong local gradients in ice velocity and the incision

into the bedrock along thin lines. This problem had to be

fixed in ICE-CASCADE by a more heuristic approach based

on the curvature of the topography. Both models were ex-

tended by models of meltwater dynamics (Herman et al.,

2011; Egholm et al., 2012), which helps to constrain the slid-

ing velocity as discussed above. However, both models still

require small time increments and are computationally ex-

pensive.

2 A stream-power law for glacial erosion

The model presented in this section is in its spirit very similar

to the sliding ice incision model (SIIM) proposed recently by

Deal and Prasicek (2021). The main difference is that Deal

and Prasicek (2021) developed an approximation for the to-

tal velocity vs + vd over the typical range of ice thickness of

alpine glaciers that can be treated analytically, while the limit
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of zero thickness is the starting point here. Although this ap-

proach is clearly less accurate, it will turn out to be useful

when combined with fluvial erosion. The extension towards

finite ice thickness will be the subject of Sect. 6.

According to Eqs. (4) and (5), the ratio of vd and vs is

proportional to h2. Thus, the relative contribution of defor-

mation to the total flux converges to zero in the limit of a thin

layer, provided that the ice is not frozen to the bedrock. So

let us assume for the moment that the entire ice flux is dom-

inated by sliding. If we consider a rectangular cross section

of a width w, the total ice flux (volume per time, not per unit

width) is

qi = whvs. (7)

The thickness h can be eliminated by combining Eqs. (5)

and (7), which yields

vs ∼

(qi

w

)

ψ−1
ψ
S. (8)

Then the erosion rate (Eq. 6) is

E ∼

(

(qi

w

)

ψ−1
ψ
S

)l

. (9)

In order to obtain an expression similar to the fluvial stream-

power law (Eq. 1 or 2), we need an estimate of the width w.

In the 1D model of Prasicek et al. (2020) with a dendritic

glacier network, the width was expressed in terms of the up-

stream flow length. This approach was justified by the results

of Bahr (1997), who found a power-law relationship

w ∼ Lξ (10)

with ξ = 0.6, where w is the mean width and L the total

length of the glacier. Prasicek et al. (2020) obtained the same

relationship with a slightly lower exponent of ξ = 0.58 from

an analysis of 52 000 glacier polygons. Equation (10) cannot

be transferred directly to the width at any point and the up-

stream flow length at this point. However, if we assume that

it holds for each point in terms of actual width and upstream

flow length, it is also valid for the mean width and the total

flow length. So the proposition of Prasicek et al. (2020) that

the scaling within individual glaciers also follows Eq. (10)

is at least not at odds with the observations of Bahr (1997),

though it cannot be concluded solely on them. In the absence

of any model that is better supported by data, Eq. (10) is used.

Prasicek et al. (2020) also found that glaciers follow the

fundamental relationship

L∼ Aη (11)

originally proposed by Hack (1957) for rivers, although with

a slightly lower exponent η. While Hack (1957) found η =

0.6 and a later, more comprehensive study of Rigon et al.

(1996) η = 0.56, Prasicek et al. (2020) obtained η = 0.52

from the drainage pattern of a previously glaciated region,

suggesting that glacier patterns are more straight than rivers.

Combining Eqs. (10) and (11) yields

w ∼ Aα, (12)

where α = ηξ ≈ 0.30, with the values suggested by Prasicek

et al. (2020).

If the rate of ice production was constant over the entire

upstream catchment, qi would be proportional to A, and thus

w ∼ qαi . (13)

As argued by Deal and Prasicek (2021), it is plausible to

assume that variations in width along a glacier depend on

the ice flux instead of the upstream catchment size. Here we

should keep in mind that Eq. (12) cannot be derived directly

from available data but is not in conflict with them. This

property is not affected when replacing Eq. (12) by Eq. (13)

if we assume that the rate of ice production follows a similar

function along the glacier for all glaciers. So Eq. (13) does

not rely on a constant rate of ice production, but the main

reason for using it in the following is still the absence of any

model that is better supported by data.

Using Eq. (13), the erosion rate (Eq. 9) turns into

E ∼

(

q
θg

i S
)l

(14)

with

θg = (1 −α)
ψ − 1

ψ
. (15)

Equation (14) has the same shape as Eq. (2), where l takes the

role of n. So Eq. (14) can be interpreted as a stream-power

law for glacial erosion.

The glacial concavity index θg is about 0.47 for ψ = 3,

which is strikingly close to the widely used values θ = 0.45

or θ = 0.5 for fluvial erosion. In contrast, Deal and Prasicek

(2021) obtained a considerably lower glacial concavity in-

dex θg = 1
3

(for α = 0.25, θg = 0.31 for α = 0.3). So the ap-

proach of Deal and Prasicek (2021) predicts a weaker in-

crease of the erosion rate with increasing ice flux than the

approach proposed here, owing to the different treatment

of sliding and deformation. The approximation proposed by

Deal and Prasicek (2021) takes into account that an increas-

ing ice flux results in a decreasing relative contribution of

the sliding velocity to the total velocity. This reduces the in-

crease in erosion rate with ice flux. In contrast, the approach

presented here is limited to the sliding-dominated regime and

is thus obviously weaker. In turn, θg is so close to typical val-

ues of θ for rivers that we can assume θg = θ . This consid-

erably facilitates the formulation, the numerical implemen-

tation, and the interpretation of erodibilities. However, we

have to think how to include the effect of deformation later

(Sect. 6).
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While Eq. (14) is already very similar to the fluvial model

(Eq. 2), the main difference is that the latter is written in

terms of catchment size instead of flux for historical rea-

sons. Since erosion rates rather depend on discharges than on

catchment sizes, the erodibilityK is a lumped parameter that

already includes precipitation implicitly. If we assume that a

given erodibility K refers to a uniform reference precipita-

tion p0, the long-term mean discharge from a catchment of

size A is q = p0A. Then Eq. (2) written in terms of q instead

of A should also be applicable to non-uniform precipitation.

However, we would either have to carry p0 through all equa-

tions or redefine the erodibility in the form Kp−m
0 .

In order to avoid this inconvenience, a new terminology is

introduced. Let us define

Aeq =
q

p0
(16)

and denote the result the catchment-size equivalent of the

discharge. It describes the catchment size that is needed to

generate the discharge q at the uniform reference precipita-

tion p0. While it may not be intuitive to measure discharge

in terms of area, the advantage is that all relations for erosion

remain valid for non-uniform precipitation. The catchment-

size equivalent Aeq is equal to the geometric catchment

size A for a uniform precipitation p = p0, while it differs

from A otherwise. Since all subsequent relations (except for

the χ transform; Eq. 29) are based on discharges instead of

catchment sizes, the subscript is omitted in the following, so

the symbol A refers to catchment-size equivalents.

The ice flux qi can also be measured as a catchment-size

equivalent according to

Ai =
qi

p0
. (17)

In principle, any reference precipitation p0 can be used here.

In a coupled model of glacial and fluvial erosion, how-

ever, p0 must be the same for both components since the

catchment-size equivalent is nothing but an alternative phys-

ical unit for measuring fluxes. Using the catchment-size

equivalent of the ice flux, Eq. (14) can be written in the same

form as Eq. (2),

E =Kg

(

Aθi S
)l
. (18)

As mentioned above, both exponents l and n are not well

constrained. However, values of 1 or 2 are often used in both

cases. So it is convenient to assume l = n. The glacial stream-

power law can then be written in the same form as Eq. (1),

E =KgA
m
i S

n. (19)

where the exponents m and n are the same as for fluvial ero-

sion. Then the erodibilitiesKg andK have the same meaning

and the same physical unit. As an example, Kg =K would

mean that a glacier at a given ice flux and a given slope of the

ice surface has the same erosion rate as a river at the same

discharge and the same channel slope.

3 Implementation in a landform evolution model

While the glacial stream-power model developed in the pre-

vious section is similar to the fluvial model, two specific as-

pects have to be taken into account in a numerical implemen-

tation in a landform evolution model. First, the slope S refers

to the ice surface and not to the bedrock. This is in princi-

ple also true for the fluvial model (with the water level), but

there the difference can be neglected at large scales. In turn,

at least some characteristic features of glacial erosion such

as overdeepenings require a difference between the slopes of

the ice surface and the bedrock. Since introducing the ice sur-

face as an additional variable would cost most of the model’s

simplicity, the implementation developed in this section still

uses the approximation of small thickness from the previous

section and assumes that both slopes are the same. The ex-

tension towards finite thickness will be discussed in Sect. 6.

Second, rivers and glaciers are considered linear elements.

While the width of individual rivers has a minor effect on

fluvial landforms, U-shaped valleys as the perhaps most char-

acteristic glacial feature cannot arise if erosion acts along a

thin line. So the finite width of glaciers must be taken into

account, although Eq. (19) refers to a line. Since Eq. (19) in-

volves the total ice flux through the entire cross section area

and not the flux per unit width, a glacier should be described

by a single cardinal flow line (like a river) instead of a paral-

lel flow pattern, but its erosion must act over a wider domain.

So let us start from a dendritic flow pattern on a discrete lat-

tice as typically used in large-scale fluvial landform evolu-

tion models. Each cell of the grid has a unique flow direction

towards the neighbor with the steepest descent, and the re-

spective slope defines the channel slope S.

Let us assume steady-state conditions for the fluxes of wa-

ter and ice, although this is, strictly speaking, not justified for

the ice if the climate changes rapidly. The total flux A (wa-

ter and ice) and the ice flux Ai (both measured in terms of

catchment-size equivalent) are then given by the steady-state

balance equations

A= s
p

p0
+
∑

donors

A, (20)

Ai = s
pi

p0
+
∑

donors

Ai, (21)

where p is the total precipitation, pi is the part of p that is

converted into ice, and s is the pixel area of the considered

grid cell. The sum extends over all neighbors that deliver

their discharge to the considered site, called donors in the

following.

This concept is widely used in modeling fluvial erosion.

However, the spatial scales are different here. At least small

rivers are usually narrower than the mesh width of the lattice.

As this may cause problems for detachment-limited erosion

in combination with hillslope processes, approaches taking

into account that rivers cover the individual pixels of the grid
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Figure 1. Different concepts of extending erosion from the cardinal

flow path to a wider swath in order to transform a V-shaped valley

(black line) into a U-shaped valley. Lower lines (from blue to yel-

low) describe increasing time. Not to scale.

only partly were developed (Howard, 1994; Perron et al.,

2008; Pelletier, 2010). Glaciers are, however, often wider

than typical mesh widths of some tens to hundreds of me-

ters. Thus, glacial erosion acts over an area around the car-

dinal flow path, called swath in the following. The scaling

arguments developed in the previous section suggest that the

width of the swath is a function of the ice flux according to

Eq. (13). This concept is in principle the same as following

the cardinal flow path with a highlighter pen of a variable

width w.

Since Eq. (19) only describes the erosion rate at the car-

dinal flow path, an assumption must be made for the other

points of the swath. At this stage, it is not possible to recover

a physically justified representation of the across-valley vari-

ation in erosion from the simplifications already made. The

goal must be to achieve the result that all points of the swath

follow the erosion dictated by the cardinal flow line, taking

into account that glacial valleys are typically U-shaped.

Transferring a suitable property directly from the cardi-

nal flow line to the entire swath is the simplest idea. Erosion

rate, surface height, and ice flux are candidates here. Fig-

ure 1 illustrates these versions, starting from a V-shaped val-

ley. Assuming that all points across the swath share the same

erosion rate comes closest to the spirit of the model but is

unable to change the shape of a valley. So V-shaped fluvial

valleys would just incise more rapidly if Kg >K .

Extending the surface elevation to all points across the

swath can be seen as the opposite limiting case, where V-

shaped valleys would immediately turn into U-shaped valleys

with a flat floor. This may be questionable with regard to es-

timates in the order of magnitude of 100 000 years for the

conversion to a U-shaped valley (Harbor et al., 1988). More

important here, this approach converts the dendritic flow pat-

tern towards the cardinal flow line into a parallel flow pattern

over long time periods. However, parallel flow does not con-

tribute to the flux at the cardinal flow path and thus reduces

the erosion rate artificially since the glacial stream-power law

(Eq. 19) refers to the total ice flux and not to the flux per unit

width. Moreover, serious problems would occur if sediment

transport is taken into account (Sect. 5), since a huge amount

of material would be transported towards the cardinal flow

line instantaneously.

The third version – transferring the ice fluxAi to the swath

and using this extended ice flux in the erosion law (Eq. 19)

– works quite well. The key point is that the erosion rate at

each point still depends on the local slope, so that the shape

of the valley can adjust. Since the extended ice flux is typi-

cally much larger than the original flux, the valley floor be-

comes fairly flat through time. As illustrated in Fig. 1, how-

ever, the flanks of a V-shaped valley are not flattened contin-

uously but rather pushed outwards by a new, fairly flat valley

floor spreading from the cardinal flow path. This behavior is

probably not completely realistic, but in turn, this concept is

technically simple since it uses the original erosion model,

where only the ice fluxes have to be modified.

The algorithm used for swath profiles across a given base-

line based on the minimum distance (Hergarten et al., 2014)

could be used for drawing the swath and for assigning a ref-

erence point on the cardinal flow line to each point of the

swath. In this study, however, a slightly different approach

based on catchments is suggested.

Let c0 be a point on the cardinal flow path and ci for i ≥ 1

the upstream points on the cardinal flow path, defined by the

condition that ci+1 is the biggest donor of ci . Let u be any

donor of c0, which is not on the cardinal flow path (u 6= c1).

The point u is added to the swath and assigned to c0 if the

distance between u and ci is not greater than wi
2

for any i ≥

0, where wi is the width according to Eq. (13) applied to

the ice flux of the point ci . After selecting the donors of c0

that satisfy this condition, the same procedure is applied to

all donors of these points. The procedure continues until no

more donors that satisfy the condition are found.

However, there is no straightforward definition of cardinal

flow lines on an absolute scale since dendritic flow patterns

may cover a wide range of scales. Therefore, the procedure

described above is applied to all points c0 with a nonzero ice

flux. Finally, the largest value of Ai (resulting from different

starting points c0) is taken for each point.

An example of the obtained swaths and the respective

fluxes is shown in Fig. 2. The topography used here is a flu-

vial equilibrium topography withK = 1,m= 0.5, and n= 1

under uniform uplift U = 1 on a grid of 5000 × 5000 nodes.

This topography is shown in Fig. 3. It was already used by

Hergarten (2020, Fig. 1a), where the only difference is a shift

of the periodic eastern and western boundaries in such a way

that the three biggest rivers do not cross the boundaries.

The parameter values defined above refer to nondimen-

sional coordinates. The choice m= 0.5 and n= 1 is very

convenient in this context since the horizontal length scale,

the vertical length scale, and the timescale are then indepen-

dent. The erodibility has a unit of inverse time and directly

defines the timescale. If we, e.g., assume a fluvial erodibil-

ity of K = 2.5 Myr−1 (Robl et al., 2017), a unit of nondi-

mensional time corresponds to 400 000 years. The vertical

https://doi.org/10.5194/esurf-9-937-2021 Earth Surf. Dynam., 9, 937–952, 2021
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Figure 2. Illustration of the fluxes in the swath around the cardinal flow path. The domain corresponds to the small, white square in Fig. 3.

Figure 3. Fluvial equilibrium topography under uniform uplift

(Hergarten, 2020, Fig. 1a). The small, white square depicts the do-

main of Fig. 2 and the black square the domain of Figs. 10 and 12.

The blue and red lines show the three biggest rivers. The violet line

refers to the profile shown in Fig. 5.

length scale can be defined arbitrarily. If we define one ver-

tical unit as 250 m, the maximum nondimensional surface

height of about 16 corresponds to 4000 m. The uplift rate

U = 1 (one vertical unit per time unit) is then equivalent to

0.625 mm Myr−1. The horizontal length scale can even be

chosen arbitrarily without any interference with the parame-

ter values.

Numerical experiments revealed that the approach de-

scribed above is still not able to suppress parallel flow com-

pletely. If the ice flux is extended to the swath, the slope of

the fairly flat valley floor finally approaches the channel slope

of the cardinal flow line. While this is not relevant if only a

cross section is considered as in Fig. 1, the channel slope will

prevail, at least at some locations in the swath in general. In

order to support the dendritic flow pattern towards the car-

dinal flow line sufficiently, the across-valley slope should be

greater than the channel slope of the cardinal flow line. This

can be achieved by reducing the extended ice flux. As a sim-

ple approach, an effective ice flux obtained from a weighted

geometric mean value

Ai,eff = AǫA1−ǫ
i (22)

can be used in the glacial stream-power law, where Ai is the

extended ice flux andA the (non-extended) total flux. The pa-

rameter ǫ defines the weighting of the two fluxes. Larger val-

ues of ǫ provide a better suppression of parallel flow patterns

but in turn make glacial valleys more V-shaped. In all nu-

merical simulations performed during the preparation of this

paper, ǫ = 0.25 turned out to be a safe choice. Since A typi-

cally decreases with increasing distance from the central flow

line, this approach introduces some parabolic shape of the

valley flow, which is not unrealistic. However, it should be

kept in mind that this concept just enforces the swath to fol-

low the erosion dictated by the cardinal flow line with a not

completely unrealistic valley shape but is still far off from

predicting the evolution of valley shapes on a theoretically

solid basis.

As a first example, Fig. 4 shows a steady-state glacial to-

pography for Kg = 1. It was assumed that the entire precipi-

tation is converted into ice (pi = p = p0). The factor of pro-

portionality in Eq. (13) was set to unity (in units of the grid

spacing), so w = A0.3
i . The term “steady state” is seen in a

loose sense here. After simulating a time span of 25 time

units starting from the fluvial equilibrium topography, both

the maximum and the mean surface height show no system-

atic trend any more, although they still oscillate due to local

reorganization of the drainage pattern. Obtaining a steady

state in the strict sense would, if possible at all, require a

much longer time period, but this is not relevant for this

study.

As expected, a strong downstream increase in valley width

is the main difference towards the fluvial equilibrium topog-

raphy. Due to the U shape of the big valleys, the parts of
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Figure 4. Glacial equilibrium topography under uniform uplift with

the entire precipitation converted into ice. The red line refers to the

profile shown in Fig. 4.

the tributaries that are captured by the swath are almost flat,

which is equivalent to lowering their base level compared to

the fluvial topography. As a consequence, the surface heights

of high regions decrease, although the same erodibility as for

fluvial erosion was assumed.

Both the occurrence of wide, U-shaped valleys and the re-

duced elevation are also visible in the topographic profiles

shown in Fig. 5. Beyond these, the slight V-shape of the val-

ley floors arising from Eq. (22) is also visible. If we assume

a typical grid spacing of 50 m, the largest valley is about

6 km wide. The height difference across the largest valley is

about 0.08, corresponding to about 20 m if one vertical length

unit is equivalent to 250 m (see Sect. 3). So the across-valley

slope of this valley is about 0.3 %. Smaller valleys, how-

ever, have a stronger residual V shape. The valleys around

x1 = 1000 and x1 = 1500, e.g., have across-valley slopes be-

tween 2 % and 6 %.

4 Fluvioglacial systems

The ratio of pi and p typically decreases with decreasing al-

titude. The equilibrium line altitude (ELA) defines the height

where pi = 0. Below the ELA, melting dominates, so pi is

negative. Somewhere below the ELA, melting even com-

pensates the contribution of tributaries, resulting in a down-

stream decrease in Ai.

A simple, linear model for the part of the total precipitation

that is converted into ice,

pi = pmin

(

H −He

Hf −He
,1

)

, (23)

is used in this study, where He is the ELA and Hf is the alti-

tude where the entire precipitation is converted into ice. The

Figure 5. Topographic profiles along the lines depicted in Figs. 3

and 4.

surface height H cannot be included easily in the fully im-

plicit scheme for erosion, so it is evaluated at the beginning

of the time step. This will, however, not strongly affect the

stability of the implicit scheme and is a minor restriction of

the maximum time increment compared to treating the flow

directions in an explicit manner (Hergarten, 2020).

Figure 6 shows an example of the total flux and the ice flux

of the three largest rivers from Fig. 3 forHe = 8 andHf = 10,

corresponding to 2000 and 2500 m, respectively, using the

vertical scale defined above. Practically, Ai is still not much

lower than A at the ELA. The point of maximum ice flux is

found below the ELA due to the ice flux of tributaries. At

this point, A is already more than 3 times greater than Ai for

the considered flow paths. This means that the discharge of

water is considerably higher than the ice flux for a major part

of the flow path.

Assuming that all sites with Ai > 0 are eroded glacially,

while fluvial erosion only affects ice-free sites, is the simplest

concept of a coupled model. It was used in the context of

steady-state topographies by Prasicek et al. (2020). Figure 7

shows a topography obtained forHe = 8 andHf = 10, where

the glacial erodibility, Kg = 2, is twice the fluvial erodibility

(K = 1). This choice has no specific relevance here. The ratio

of 2 is just convenient for recognizing steady-state longitudi-

nal profiles visually. While the initial state (fluvial equilib-

rium) and the simulated time span (t = 25) are the same as

in the example with full glaciation (Fig. 4), the topography is

still far off from a steady state here.

Profiles along the three largest flow paths marked in Fig. 7

are depicted in Fig. 8 (lower solid lines). All profiles show a

fairly steep increase at the glacier terminus, which may even

be a sharp front. It occurs because the ice flux approaches

zero close to the glacier terminus. In this situation, a nonzero

erosion rate can only be achieved if the decreasing ice flux

https://doi.org/10.5194/esurf-9-937-2021 Earth Surf. Dynam., 9, 937–952, 2021



944 S. Hergarten: Modeling glacial and fluvial landform evolution using a stream-power approach

Figure 6. Total flux A and ice flux Ai of the flow paths shown in

Fig. 3 for He = 8 and Hf = 10, both expressed in terms of their

catchment-size equivalent. The along-stream coordinate x starts

from the boundary of the domain.

Figure 7. Topography at t = 25 for He = 8, Hf = 10, Kg = 2, and

K = 1.

is compensated by an increasing slope. This effect is ampli-

fied by the zero-thickness approximation that is still used at

this stage, where the slope S is the same for the bedrock and

for the ice surface. However, it is neither the result of this

approximation alone nor an inherent property of the stream-

power approach since it also occurred in the steady-state to-

pographies obtained by Prasicek et al. (2020, Figs. 5 and 7)

using the shallow-ice approximation with finite thickness.

Regardless of the question of whether this behavior is real-

istic, including subglacial fluvial erosion would change this

behavior, so offering an option for taking subglacial fluvial

processes into account is not a disadvantage. Sediment trans-

port by meltwater was included in the iSOSIA model quite

Figure 8. Longitudinal profiles of the largest flow paths in the flu-

vioglacial topographies shown in Fig. 7 (solid lines) and Fig. 9

(dashed lines). The lower set of lines refers to the original along-

stream coordinate x, while the upper set of lines depicts the χ -

transformed profiles. Both start from the boundary of the domain.

early on (Egholm et al., 2012). While Beaud et al. (2016)

developed a more elaborate model for the incision by melt-

water within narrow channels, erosion by subglacial fluvial

processes is still one of the most challenging and controver-

sial topics in the field of glacial erosion (e.g., Alley et al.,

2019).

As a simple approach, it is proposed here to describe sub-

glacial fluvial processes by the same equations as fluvial pro-

cesses in rivers. This approach is clearly limited by not ex-

plicitly taking the water pressure into account. In fact, the

apparent absence of any better model that can compete with

the simplicity of the stream-power model is the only justifi-

cation for this approach. The respective form of Eq. (1) reads

E =Kf(A−Ai)
mSn, (24)

where A−Ai is the catchment-size equivalent of the meltwa-

ter flux. The respective erodibility Kf cannot be constrained

easily since it obviously depends on the topology and the

cross-sectional geometry of the meltwater channels and on

which fraction of the total meltwater flux reaches the valley

floor. As discussed, e.g., by Egholm et al. (2012), this frac-

tion may also depend on the thickness of the ice layer. While

the flux A−Ai could be multiplied by the respective factor,

it would also be possible to include it in the erodibility as a

lumped parameter.

Adding the glacial erosion rate (Eq. 19) and the subglacial

fluvial erosion rate (Eq. 24) yields

E =KgA
m
i S

n+Kf(A−Ai)
mSn. (25)
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Figure 9. Topography obtained under the same conditions as in

Fig. 7 but assuming that erosion by meltwater follows the same re-

lation as fluvial erosion with the same erodibility.

This expression can be written conveniently in the form of

Eqs. (1) or (19),

E =KeffA
mSn, (26)

with the effective erodibility

Keff = γmKg + (1 − γ )mKf, (27)

where

γ =
Ai

A
(28)

is the relative contribution of ice to the total flux.

In the following examples, the same erodibility Kf is as-

sumed for rivers and for subglacial fluvial processes, soKf =

K . This should, however, not be seen as an attempt to provide

a realistic estimate, which would go beyond the scope of this

study. Figure 9 shows a fluvioglacial equilibrium topography

obtained under the same conditions as the previous example

but including subglacial fluvial erosion. While the topogra-

phy is qualitatively similar to that shown in Fig. 7, the upper

regions are lower here. This is recognized more clearly in the

longitudinal profiles (Fig. 8).

The χ transform introduced by Perron and Royden (2013)

provides a simple way to analyze longitudinal river profiles

quantitatively. It transforms the upstream coordinate x to a

new coordinate

χ =

∫

A(x)−θdx. (29)

The χ transform eliminates the inherent concavity of river

profiles arising from the upstream decrease in catchment

size. Equilibrium profiles under spatially uniform conditions

turn into straight lines with a slope of
(

U
K

)

1
n . In our example

(K = 1, U = 1), it is even the diagonal line H = χ .

The upper lines in Fig. 8 depict the χ -transformed profiles.

Assuming Kf =K and Kg >K guarantees Keff ≥K every-

where. As a consequence, the respective profiles are never

above the fluvial equilibrium lineH = χ , in contrast to those

without subglacial fluvial erosion. The transition from the

fluvial regime to the fully glaciated domain, characterized

by a straight line with a slope of 1
2

(according to Kg = 2), is

smooth. This would not necessarily be the case for Kf <K ,

where the profile may be steeper than the fluvial equilibrium

profile close to the glacier terminus.

5 Sediment transport

The shared stream-power model (Eq. 3) provides a simple

formulation for the entire range between the detachment-

limited and transport-limited end-members of fluvial ero-

sion. In principle, it just describes how sediment transport

reduces the ability to erode the bedrock in such a way that

equilibrium river profiles remain consistent with the findings

of Hack (1957). While this is a rather generic concept, the

mathematically equivalent model of Davy and Lague (2009)

explicitly refers to the settling of particles.

While the model ICE-CASCADE assumes that trans-

ported sediment has no effect on glacial erosion (so

detachment-limited erosion), the more comprehensive model

iSOSIA assumes that a thick layer of sediments protects the

bed against erosion. Since glacial sediments are transported

at the velocity of the ice in this model, a large sediment

flux results in a thick layer and thus reduces the rate of ero-

sion. Although this is an oversimplified view on the inter-

action between glacial erosion and sediment transport in the

iSOSIA model, it illustrates that it is not very far away from

the shared stream-power model in its spirit. Contemporary

models of bedrock incision or sediment transport by sub-

glacial fluvial processes (Beaud et al., 2016; Delaney et al.,

2019) combine models for the flow in channels with erosion

laws based on shear stress. This is not fundamentally differ-

ent from physically based models of erosion and sediment

transport in rivers, apart from the more complex distribution

of pressure that drives the flow.

Anyway, these considerations show that extending both

the ice and the meltwater component of the model in such

a way that sediment transport reduces the ability to erode the

bedrock could be useful. Writing the shared stream-power

model (Eq. 3) as the presumably simplest generic model in

this context individually for the ice and the meltwater com-

ponents yields

Eg

Kd,g
+

Qg

Kt,gAi
= Ami S

n, (30)

Ef

Kd,f
+

Qf

Kt,f (A−Ai)
= (A−Ai)

mSn. (31)
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The additional indices “g” and “f” refer to the glacial and

subglacial fluvial (meltwater) component, respectively. So

there are four erodibilities now, referring to glacial and flu-

vial incision and transport, respectively.

At this point, we should be aware that this step adds new

capabilities to the model but also moves it further away from

well constrained relations. However, assuming Kt,g → ∞ or

Kt,f → ∞ recovers the detachment-limited version for the

respective component. So we do not lose anything by pro-

ceeding to the shared stream-power model.

Since the flow of meltwater should be confined to nar-

row channels, the best approach would be to consider the

two sediment fluxes Qg and Qf as separate variables with-

out any mixing. The numerical scheme proposed by Her-

garten (2020) could in principle be extended accordingly.

However, this would require additional theoretical and nu-

merical effort. Beyond this, the two sediment fluxes merge

anyway, e.g., if material is deposited by the glacier due to

decreasing transport capacity when approaching the glacier

terminus and eroded again by the meltwater stream. There-

fore, a simpler approach using a single sediment flux is sug-

gested. According to Eqs. (30) and (31), the total erosion rate

E = Eg +Ef follows the relation

E+
Kd,gQg

Kt,gγA
+

Kd,fQf

Kt,f(1 − γ )A
=Kd,effA

mSn, (32)

where the definition of the effective erodibility for incision,

Kd,eff = γmKd,g + (1 − γ )mKd,f, (33)

is the same as in Eq. (27). If the total sediment flux Q=

Qg +Qf is given, the fraction of the stream power spent for

sediment transport depends on how Q is distributed. Let us

assume an optimized distribution in the sense that this frac-

tion is minimized. It is easily recognized that this is the case

if either the glacier or the meltwater carries the entire load,

and thus

E+ min

(

Kd,g

Kt,gγ
,

Kd,f

Kt,f(1 − γ )

)

Q

A
=Kd,effA

mSn. (34)

This equation can be written in the same form as the original

shared stream-power model (Eq. 3),

E

Kd,eff
+

Q

Kt,effA
= AmSn, (35)

with

Kt,eff =Kd,effmax

(

γ
Kt,g

Kd,g
, (1 − γ )

Kt,f

Kd,f

)

. (36)

Figures 10 and 11 provide a numerical example. Since sedi-

ment transport is more interesting in transient states than in

a steady state, a declining ELA was chosen here. The ELA

starts from He = 16 (slightly higher than the maximum sur-

face height of the fluvial equilibrium topography) and de-

creases at a rate of 4 (4 times faster than the uplift), so that

an ELA of He = 8 (and Hf = 10) is reached at t = 2.

Figure 10. Change in surface height compared to the initial flu-

vial topography (black square in Fig. 3) obtained from the shared

stream-power model at the time when the ELA reaches He = 8.

Figure 11. Longitudinal profiles of the largest flow paths, which

are basically the same as in the fluvial topography in map view

(Fig. 3). The lower set of lines refers to the original longitudinal

coordinate x, while the upper set of lines depicts the χ -transformed

profiles.

The fluvial erodibilities are set to Kd,f = 2.6 and Kt,f =

1.625 for rivers and meltwater. Their ratio is
Kd,f

Kt,f
= 1.6. This

ratio is the sediment deposition coefficient in the notation of

Davy and Lague (2009), where a recent analysis of steady-

state topographies suggested 1.6 as a realistic value for n=

1 (Guerit et al., 2019, data supplement). Furthermore, these

values satisfy the relation

1

Kd,f
+

1

Kt,f
=

1

Kf
(37)
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with Kf = 1, which ensures that the fluvial equilibrium to-

pography computed for the detachment-limited model is also

in equilibrium here (Hergarten, 2020). For glacial erosion,

it is assumed that bedrock incision is not more efficient

than fluvial bedrock incision (Kd,g =Kd,f = 2.6), while the

glacier transports sediment 10 times more efficiently than

water (Kt,g = 10 and Kt,f = 16.25).

Since the overall topography does not change fundamen-

tally over the limited time span considered here, Fig. 10

shows the difference in height compared to the initial flu-

vial topography for a part of the domain. As expected, the

strongest erosion occurs where V-shaped valleys turn into U-

shaped valleys and at the fully glaciated high ranges. How-

ever, the most interesting effect is an increase in height along

the original river, which concerns the U-shaped glacial val-

leys as well as rivers below the glaciers. In the glacial val-

leys, it arises from the rapid transformation towards a U-

shape, which produces large amounts of sediment. In the

non-glaciated part, it arises from the sediment flux from the

glaciers, which is higher than that of the former rivers. It

should, however, be noted than none of the changes in sur-

face height describes a net deposition of sediments but only

reduced erosion. Since the total uplift is 2 (U = 1, t = 2), the

maximum increase in elevation shown in Fig. 10 is less than

half of the uplift, so that the minimum erosion is still more

than half of the uplift.

These effects, which would not occur in the detachment-

limited version, are also visible in the longitudinal profiles

(Fig. 11). First, the fluvial parts of the profiles have become

steeper compared to the initial fluvial topography due to the

high sediment flux from the glaciated part. As the erosion

rate in the glacial part is higher than in equilibrium, the

glacier brings more sediment than the upstream part of the

river brought under fluvial conditions. This increased sedi-

ment flux reduces the ability to erode the bedrock according

to Eq. (3), and the fluvial erosion cannot follow the uplift any

more.

The glaciated parts of the profiles are less steep than the

initial fluvial profiles but still steeper than would be expected

in equilibrium. Their slope in the χ plot is about 0.8, while

Eq. (37) predicts an equilibrium slope of 1
Kd,g

+ 1
Kt,g

= 0.45

with the glacial erodibilities assumed here. So the glaciated

part is even steeper than the fluvial part if both are considered

in relation to their equilibrium slope. The reason for the in-

creased steepness is basically the same as for the fluvial part.

Converting a V-shaped valley into a U-shaped valley goes

along with a high erosion rate and thus yields a high amount

of sediment. Although the efficiency of the glacier in trans-

porting sediment was assumed to be 10 times higher than for

the rivers, the large amount of sediments limits the ability of

the glacier to erode the bedrock during the conversion of the

valley shape.

6 Finite ice thickness

The approach developed in Sect. 2 considers the limit of zero

ice thickness. The finite thickness, however, has a strong in-

fluence on glacial landform evolution. Overdeepened valleys

would be neither possible in the stream-power model pro-

posed here nor in the original shallow-ice approximation in

the limit of zero thickness. Beyond this, the ice surface de-

fines a base level for the tributaries and may thus play an

important part in the formation of hanging valleys.

A first estimate of the thickness h can be obtained by com-

bining Eqs. (7) and (8) in the form

qi ∼ wh
(qi

w

)

ψ−1
ψ
S, (38)

and thus

h∼

(qi

w

)
1
ψ
S−1. (39)

In combination with Eq. (13), this yields

h∼ q
1−α
ψ

i S−1. (40)

Solving Eq. (40) numerically using an explicit scheme is not

a big problem if the nodes are treated in upstream order. If the

height of the bedrock surface, the ice flux, and the ice thick-

ness of the downstream neighbor are known, the ice thick-

ness of the respective node is obtained by solving a quadratic

equation.

However, this concept still poses some challenges, in par-

ticular in combination with the consideration of the swath

along the cardinal flow line. Therefore, a simple parameteri-

zation of h by the ice flux alone without taking the slope into

account is proposed here. While this concept is in its spirit

consistent with the parameterization of the width by the ice

flux alone, it should be emphasized that it leaves room for

further development of better approaches.

For a straight profile (S = const), the exponent in Eq. (40)

is about 0.23 for α = 0.3 and ψ = 3. On the other hand, the

sliding velocity is constant if the erosion rate is constant

along the profile, and then Eqs. (7) and (13) immediately

yield h∼ q1−α
i . So the exponent is about 0.7 for a uniform

erosion rate.

However, Eq. (40) still relies on the approximation of

small thickness in the sense that the total ice flux is domi-

nated by sliding. Adopting the approximation introduced by

Deal and Prasicek (2021) would indeed be an advantage at

this point since it captures sliding and deformation over the

typical thickness range of alpine glaciers. However, the limit

of small thickness was preferred in Sect. 2 since it is con-

sistent with using the same concavity index for fluvial and

glacial processes, which considerably simplifies the formu-

lation and the implementation. As discussed in Sect. 2, ne-

glecting deformation increasingly underestimates the ice flux
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at large thickness. So the increase of thickness with ice flux

is described well by Eq. (40) only for small thickness, while

the increase becomes weaker for large thickness.

Taking this into account, a parameterization of the thick-

ness by the ice flux alone should rather be in the lower range

between the two extremes 0.23 and 0.7 for the exponent

found above. The simplest approach is assuming that the

exponent is equal to α (here about 0.3), which means that

glaciers have a constant thickness-to-width ratio. So let us

assume h∼ w in the following, although the model itself is

still open for improved scaling relations.

Three effects of the finite thickness can be included in the

model. First, the ice surface H +h can be taken into account

in the glacial mass balance (Eqs. 21 and 23), as is usually

done in glacial models. SinceH already has to be taken at the

beginning of the time step in Eq. (23), h is treated the same

way without affecting the stability of the scheme strongly.

The most important effect of a finite ice thickness is that

the channel slope S should refer to the ice surface H +h

instead of the bedrock surface H as assumed in the pre-

vious examples. With the parameterization h∼ w, the im-

plicit scheme for the erosion part can be maintained with the

slope of the ice surface. Technically, this can be easily imple-

mented by adding h to H before performing the erosion step

and subtracting it afterwards. Here the scheme for drawing

the swath around the cardinal flow path described in Sect. 3

is particularly useful. It ensures that all points of the swath

draining to a given point on the cardinal flow path, except for

those located upstream on the cardinal path, have the same

extended ice flux and thus also the same ice thickness. So the

finite ice thickness only has a strong effect within the swath

close to the glacier terminus and at confluences where the ice

flux changes abruptly. In turn, it sets a higher base level for

tributaries at the boundary of the swath, which facilitates the

formation of steep walls and hanging valleys. However, local

depressions in the ice surface may occur at the boundary of

the swath or along the cardinal flow path. These would cause

a sediment flux opposite to the direction of the ice flux. In or-

der to avoid this, local depressions in the ice surface should

be filled.

Figures 12 and 13 illustrate the effect of these two ex-

tensions on the example considered in Sect. 5. All param-

eters are the same, except that the thickness-to-width ratio

is 0.05 in nondimensional coordinates. Using the previously

suggested length scales of 50 m horizontally and 250 m ver-

tically, the ratio would be 0.25 in reality.

While the slopes along the cardinal flow path are similar

to the scenario with zero ice thickness, the glaciers become

wider and advance further downstream here. This difference

is related to taking the ice surface into account instead of the

bedrock surface in Eq. (23), which defines the part of the pre-

cipitation that is converted into ice. This part has increased,

which results in a higher ice flux and thus in an advancing of

the glaciers.

Figure 12. Change in surface height compared to the initial flu-

vial topography (black square in Fig. 3) obtained from the shared

stream-power model with a thickness-to-width ratio of 0.05 at the

time when the ELA reaches He = 8.

Figure 13. Longitudinal profiles of the largest flow paths in the to-

pography shown in Fig. 12. The filled areas depict the ice layer. The

lower set of lines refers to the original longitudinal coordinate x,

while the upper set of lines depicts the χ -transformed profiles.

The upper parts of the glaciated valleys feature smooth

segments, which are interrupted by distinct steps. These steps

occur at major confluences. Due to the abrupt increase in ice

flux at confluences, the ice thickness also increases abruptly.

Over long time periods, however, erosion will smoothen the

ice surface, so that the step is transferred from the ice surface

to the bedrock topography.

The overdeepening of the valley floor in the lower part

of the glacier can be recognized well in the χ -transformed

profiles. The longitudinal shape of the bedrock surface
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looks quite irregular, with several short segments of strong

overdeepening. This localized overdeepening occurs if the

glacier advances very slowly or the glacier terminus even

stays at the same point for some time. The mechanism in the

model is the same as for the confluences. Erosion attempts

to flatten the steep front, and the gradient of the ice surface

is transferred to the bedrock surface. In contrast to the steps

at confluences, there is no persistent strong variation in ice

flux here. So these local overdeepenings are transient struc-

tures which are slowly erased by erosion and filling when the

glacier advances further.

The third point where the model could be improved by the

finite ice thickness is the separation of the total flow veloc-

ity into a deformation velocity vd and a sliding velocity vs.

While the ice flux (Eq. 7) depends on the sum of both veloci-

ties, the erosion rate (Eq. 6) depends only on vs. As discussed

in the beginning of Sect. 2, the ratio of the two velocities is

proportional to h2. In the 1D model of Prasicek et al. (2018),

this relation was used for eliminating vd from the equations.

Equation (7) then turns into

qi = whvs

(

1 +βh2
)

, (41)

with a parameter β depending on the rheology of the ice (for

details, see Prasicek et al., 2018). The thickness h cannot be

eliminated easily then. If we, however, assume that the last

term in Eq. (41) is only a small correction, we can insert the

estimate of h developed in this section there. Then all sub-

sequent relations remain the same, but where the catchment-

size equivalent Ai of the ice flux is replaced by

Ai

1 +βh2
=

Ai

1 + ξA2α
i

(42)

with another parameter ξ . So the influence of the ice flux on

erosion and sediment transport decreases if deformation be-

comes relevant. While Eq. (42) could easily be implemented,

it introduces an additional parameter and will presumably not

yield fundamentally different results. This extension is there-

fore not considered further in this study.

7 Numerical performance

The concepts developed in the previous sections were imple-

mented in the open-source landform evolution model Open-

LEM. A fully implicit scheme for the fluvial shared stream-

power model was already available in OpenLEM before

(Hergarten, 2020).

The behavior concerning the time increment δt is basically

the same as for the fluvial version. Practically, the accuracy

is not limited by the accuracy of the implicit scheme itself

but by changes in the flow pattern, which are treated in an

explicit way. While the flow directions are the only explicit

component in the fluvial version, the glacial mass balance,

i.e., the terms H and h in Eq. (23), is also treated in an ex-

plicit way in the fluvioglacial version. This may introduce an

additional limitation of the maximum time increment if the

climatic conditions change rapidly.

The time-dependent simulations with the declining ELA

and the finite ice thickness (Sect. 6) were performed with

δt = 10−2, δt = 10−3, and δt = 10−4. On a visual level

(Figs. 12 and 13), the results were almost indistinguishable

for δt = 10−3 and δt = 10−4, while a small difference was

observed for δt = 10−2. However, the difference is rather a

small shift on the time axis than a principal difference in

the shape of the glaciers and the resulting landforms. So

δt = 10−3 should be a safe choice, while larger values should

also be possible if required, e.g., in long-term simulations. If

we, e.g., assume a fluvial erodibility ofK = 2.5 Myr−1 (Robl

et al., 2017), a unit of nondimensional time corresponds to

400 000 years. So time increments of some hundreds of years

appear to be safe, while some thousands of years will also

yield reasonable results.

However, the fluvioglacial model requires a higher numer-

ical effort per time step than the purely fluvial version. On

the 5000 × 5000 grid, an increase in CPU time by a factor

of about 1.7 was found for the fluvioglacial shared stream-

power model compared to the respective fluvial version even

if the ice flux is zero everywhere. This factor increases to

about 2.7 if the topography is completely glaciated. This

factor, however, depends on the width of the glaciers. An

increase of the factor of proportionality in Eq. (12) will

result in an increasing numerical effort. In principle, the

factors may also increase slightly for larger grids than the

5000 × 5000 nodes considered here since the width of the

largest glaciers may also increase then. In turn, the imple-

mentation in OpenLEM used here is still in a preliminary

state and leaves room for further optimization.

So the increase in numerical effort compared to the purely

fluvial model is moderate, and simulations even over several

million years are possible on standard PCs.

8 Strengths and weaknesses

The simplicity and the numerical efficiency are the most im-

portant strengths of the model proposed here. It allows for

simulation of combined fluvial and glacial landform evolu-

tion of entire mountain ranges over millions of years. This

property also makes the model well suited for considering

multiple climatic and tectonic scenarios. While the recent

study of Liebl et al. (2021) was limited by computing capac-

ities, topographic signatures could be investigated in future

for much larger domains with a higher spatial variability and

over longer time spans where the effect of tectonics becomes

relevant.

In turn, it must be admitted that the model is not a com-

prehensive model of glacial landform evolution. It was de-

signed for valley glaciers from the beginning, and even the U

shape of typical glacial valleys was introduced explicitly. So

the model cannot predict under which conditions U-shaped

https://doi.org/10.5194/esurf-9-937-2021 Earth Surf. Dynam., 9, 937–952, 2021
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valleys occur or how flat the bottom of such a valley is. The

model will even fail completely, e.g., for piedmont glaciers.

Here the glacier would keep its width after leaving the valley

and would finally incise an overdeepened U valley into the

plain. Similarly, a plateau glacier would dissect the plateau

into a network of U-shaped valleys.

The restriction to valley glaciers is closely related to the

parameterization of the glacier width by the ice flux. This

approximation decouples the valley shape from the longitu-

dinal profile. Starting glaciation in a very steep fluvial to-

pography, we should expect higher flow velocities and thus

narrower glaciers than in a moderate topography. This effect

is not captured by the parameterization of the glacier width,

which also holds for the models of Prasicek et al. (2020) and

Deal and Prasicek (2021). However, including the slope of

the ice surface in the parameterization of the glacier width

(and thickness) would cost much of the model’s simplicity.

Accepting the parameterization of the glacier width, the

stream-power law for bedrock incision by glaciers (Eq. 19)

can in principle be derived from widely used relations. How-

ever, the subsequent steps rather leave solid ground. The idea

of sharing the stream-power term Ami S
n between bedrock in-

cision and sediment transport is just adopted from the respec-

tive concept for fluvial erosion. Also, adopting the respective

fluvial relations for incision and sediment transport by melt-

water is only justified by some similarity in the processes. So

the relations going beyond glacial bedrock incision are rather

based on intuition than on real-world data or on established

relations.

The parameters of the model are strongly lumped and do

not refer directly to the physical properties of the ice and the

bedrock. All K values occurring in the model have basically

the same meaning and describe the ability of rivers, ice, or

meltwater to erode the bedrock or to transport sediment. So

the model is not able to predict, e.g., under which conditions

glacial erosion is more efficient than fluvial erosion or how

efficient subglacial fluvial processes are. These properties are

prescribed by the parameter values. In turn, this rather phe-

nomenological definition of the parameters may even by an

advantage when investigating, e.g., how efficient glacial ero-

sion must be compared to fluvial erosion in order to generate

a buzzsaw-like erosion above the ELA or how efficient sub-

glacial fluvial erosion must be in order to have a considerable

effect at large scales.

9 Conclusions

This study proposes a stream-power law for glacial erosion,

which is in its spirit similar to the relation introduced re-

cently by Deal and Prasicek (2021). While their model cap-

tures the contribution of deformation to the ice flux better, the

approach proposed here has the advantage that the same con-

cavity index may be assumed for fluvial and for glacial ero-

sion. This property allows for a seamless combination with

fluvial erosion, where fluvioglacial erosion can also be in-

cluded conveniently. Sediment transport can also be taken

into account with the help of the shared stream-power model

recently presented by Hergarten (2020).

Regarding the implementation in a large-scale landform

evolution model, the main difference towards fluvial erosion

is that glaciers are usually wider than the grid spacing in con-

trast to rivers. Including the finite width of glaciers is the

main challenge in the implementation.

While the first model formulation assumes an infinitely

thin ice layer, a finite thickness can also be included, where

further approximations are necessary. With this extension,

overdeepenings, hanging valleys, and steps at confluences

can be simulated in an at least qualitatively reasonable way.

The implementation in the open-source landform evolu-

tion model OpenLEM uses the fully implicit scheme for ero-

sion and sediment transport proposed by Hergarten (2020) in

the context of fluvial landform evolution. This scheme allows

for arbitrary time increments in principle, where changes in

the flow pattern practically define an upper limit. The nu-

merical effort is moderately higher than for the purely flu-

vial version and should be some orders of magnitude lower

than for models based on the shallow-ice equations such as

ICE-CASCADE and iSOSIA. Simulations even over several

million years can be performed on standard PCs.

As a main limitation, the model presented here requires

empirical relations for the width and the thickness of glaciers

as a function of their ice flux. In contrast, models that imple-

ment the shallow-ice approximation directly are able to ad-

just the geometry of the cross section according to the initial

geometry of the valley, its slope, and the parameters of the ice

flux. A detailed benchmarking against the iSOSIA model as

a reference with regard to the efficiency and to the question

of how well the stream-power-based model captures glacial

erosion will be the subject of a subsequent study.

Code and data availability. The open-source landform evolution

model OpenLEM including the extensions presented here is freely

available at http://hergarten.at/openlem (last access: 30 July 2021)

(Hergarten, 2021a). An additional package that contains all codes

and simulated data is available at the FreiDok data repository

(https://doi.org/10.6094/UNIFR/218992, Hergarten, 2021b). The

author is happy to assist interested readers in reproducing the re-

sults and performing subsequent research.
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