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A neuron’s firing correlates are defined as the features of the external
world to which its activity is correlated. In many parts of the brain, neurons
have quite simple such firing correlates. A striking example are grid cells
in the rodent medial entorhinal cortex: their activity correlates with the
animal’s position in space, defining ’grid fields’ arranged with a remarkable
periodicity. Here, we show that the organization and evolution of grid fields
relate very simply to physical space. To do so, we use an effective model
and consider grid fields as point objects (particles) moving around in space
under the influence of forces. We are able to reproduce most observations
on the geometry of grid patterns. This particle-like behavior is particularly
salient in a recent experiment where two separate grid patterns merge. We
discuss pattern formation in the light of known results from physics of two-
dimensional colloidal systems. Finally, we draw the relationship between our
’macroscopic’ model for grid fields and existing ’microscopic’ models of grid
cell activity and discuss how a description at the level of grid fields allows to
put constraints on the underlying grid cell network.
Keywords: Hippocampus ; Grid cells ; Effective model ; Physics of 2d

systems
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1 Introduction

Grid cells are neurons that activate in correlation with the animal’s position in physical
space: they fire only when the animal crosses certain fixed locations in space. For
individual grid cells, these firing locations form almost perfect hexagonal grids (Fyhn
et al. (2004); Hafting et al. (2005)). The locations of space where a given grid cell is
active are called its ’grid fields’. It was initially thought that grid fields would form
such regular patterns throughout the accessible space (Hafting et al. (2005)), regardless
of its geometry and of the presence of salient objects such as walls, rewards or threats.
However, recent experiments refuted this view of a perfect and universal grid. When
recorded in very large environments, grid patterns display non-uniformities (Stensola
et al. (2015)) and walls can influence grid orientation and distort it from a perfect
hexagonal lattice (Stensola et al. (2015); Krupic et al. (2015); Carpenter et al. (2015)).
Also the presence of goals can modify grid patterns (Boccara et al. (2016)). Finally,

grid patterns evolve under manipulations of the environment, like stretching or squeezing
(Barry et al. (2007)). A recent experiment explored this adaptability of grid patterns.
Given that walls can fragment grids into separate pieces that do not form a coherent grid,
Wernle et al. (2018), asked what would happen if a separation wall between two such
incoherent pieces is removed. They observed that, rather than forming a totally new
grid, existing grid fields shift and adjust, as if finding a compromise between coherence
and conservation of the patterns. Grid fields located closer to the former separation wall
‘move’ more to establish coherence, whereas grid fields far away from the separation wall
remain located. This experiment provides crucial new cues about grid field dynamics.
So far, explaining grid cell properties has been attempted through models of neural

networks. These models aim at deriving a causal relationship between certain proper-
ties of neurons and the observed grid patterns. Here, we refer to them as ‘microscopic

models’, because they describe the emergence of grid patterns at the microscopic level
(neurons, synapses, firing dynamics, plasticity, . . . ). These models advanced our under-
standing of grid cells. Yet, so far no model has succeeded in accounting for all observed
phenomena—in particular the effects of boundaries and geometry on grid patterns are
scarcely described.
Here, we take a different approach, forget for a time about the neurons, and directly

consider grid fields as point objects (particles). We assume these particles to move
smoothly in space under the influence of forces, friction and noise. This picture naturally
comes to mind when looking at the time evolution of grid patterns in experiments—
particular in the merging experiment by Wernle et al. Hence, we build a model on this
impression to see how far it can represent what we see. We call this representation a
’macroscopic model’, since it takes place at the level of macroscopic observables (grid
fields, physical space) rather than microscopic elements (neurons etc.). Because of the
presence of noise and friction, we are in the framework of colloidal systems in two
dimensions—a field of physics where many results are already known. This provides
us with conceptual tools to understand and interpret our results.
This approach requires to find an expression for the motion of particles and the forces
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that act on them. This will be the object of Section 2. In Section 3, we make clarifications
on the notion of grid symmetry and its measure. Then, we present the outcome of
numerical simulations in setups that either reproduce experiments conducted on rodents
(Section 4) or predict the outcome of experiments not performed yet (Section 5).
In Section 6, we relate the macroscopic description to existing microscopic models.

Finally, we discuss the relevance of a macroscopic description.

2 The model

2.1 Grid fields from one grid cell

Let us first consider grid fields from a single grid cell. In our model, its grid fields are
seen as a system of N particles that interact with each other and with the environmental
borders, with noise and friction, as illustrated in Fig. 1. The underlying intuition is that
the fields behave as colloidal particles moving around in a substrate (Manoharan (2015)).
We describe the system by a Hamiltonian that governs the time evolution of particles

at temperature (i.e. noise level) T :

H = −
∑

i<j

Uij −
∑

i,k

Uwall
ik , (1)

where Uij is the potential between particle j and i, and Uwall
ik is the potential between

wall k and particle i. The corresponding Langevin equation, for particle i is

m
d~vi
dt

=
∑

j

~Fj→i +
∑

k

~Fwall
k→i − α~v + ~ξ(t) , (2)

where the forces derive from the potentials above and ~ξ(t) denotes Gaussian noise of
variance D = T

α
(Einstein relation at temperature T ).

We use forces with a Gaussian kernel, as detailed in the Supplementary Material. The
forces between particles are repulsive. As for the forces originating from the walls, we
will demonstrate that an attractive force describes the experimental observations better
than a repulsive force.

2.2 Grid fields from several cells from the same module

The model above only considers grid fields from a single cell, regardless of other grid
cells. However, it has been experimentally demonstrated that grid cells are grouped
into ’modules’, which are ensembles of cells organized along the dorso-ventral axis of
the entorhinal cortex (Stensola et al. (2012)). Grid cells from the same module form
patterns of the same spacing, the same orientation and random phases. Between mod-
ules, phase offsets and orientations are seemingly uncorrelated while spacings increase
dorso-ventrally.
We reasoned that this coupling between cells can relate with the suggested single-cell

coupling between fields in two ways: either the effective force between fields is a network
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Figure 1 Schematic representation of the model. a: grid fields from a given cell. A
grid field (red) moves under the influence of forces coming from other grid
fields (blue), walls (gray), viscosity (brown) and noise (related to the viscosity
through the Einstein relation). b: coupling between two cells from the same
module is introduced as an attractive force from the fields of one cell (cell 1,
blue fields) on the fields of another cell (cell 2, green fields) at a certain offset
position from field of cell 1 (purple)

effect and therefore already contains the coupling between cells, or the effective force
between fields comes from another mechanism and the coupling between cells adds on
top of it. To implement the possibility of a varying degree of independence between grid
cells, we consider two grid cells and their grid fields. The dynamics of the grid fields of
the first grid cell follow the single-cell equation (2). The grid fields of the second grid
cell follow the same dynamics with an additive term of coupling:

m
d~vi
dt

=
∑

j

~Fj→i +
∑

j

~F coupl
j→i +

∑

k

~Fwall
k→i − α~v + ~ξ(t) , (3)

where ~F coupl
j→i is the force exerted by particle j from cell 1 on particle i from cell 2. We

expect that for high coupling forces, the patterns of cell 1 and cell 2 will be perfectly
aligned, whereas for weak coupling forces, the patterns will be independent.
We choose to take ~F coupl

j→i as an attractive force towards positions that correspond to
the fields of cell 1, translated by an arbitrarily chosen offset (Figure 1b).

Simulation details and parameter choices are reported in the Supplementary Material.

3 Preliminary remarks on grid symmetry and gridness scores

3.1 The classical gridness score

Before going further, we have to specify how grid symmetry is defined.
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In experiments, a given neuron is considered as a grid cell if its firing pattern has
a certain degree of hexagonal symmetry. Since the discovery of grid cells and their
hexagonality, hexagonality is usually quantified by a measure called ’gridness score’

introduced by Sargolini et al. (2006) and subsequently slightly modified by Langston
et al. (2010). A cell’s gridness score is computed from its smoothed rate map, by taking
this rate map’s autocorrelogram, extracting a sub-ring of it and comparing this sub-ring
to rotations against itself. The details of this definition are given in the Supplementary
Material. A given cell is then considered a grid cell if its gridness score exceeds a
threshold, most commonly either 0 or the 95th percentile of the distribution of gridness
scores from a shuffled dataset.
Gridness scores have been extensively used both to define grid cells and to evaluate

their quality. Here are a few remarks on the information they provide:

a. c.
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Figure 2 Illustration of some features of the gridness score. Examples of generated rate
maps (top), their autocorrelograms and gridness scores (bottom). a. Perfect
hexagonal patterns lead to gridness scores saturating around ≈ 1.5. b. Bumps
of activity scattered randomly at roughly equidistant positions lead to very
low gridness scores. c. However, very high gridness scores can be obtained by
perturbing an initially perfect grid. The perturbed grid sometimes even has a
higher gridness score than the unperturbed grid. See Fig. 3 for a systematic
exploration of this effect

1. By definition, the gridness score is a global, and not local, measure of hexagonal
symmetry.

2. Although from their mathematical definition gridness scores could range between
-2 and +2, in practice a perfect grid cannot exceed ≈ 1.5. We estimated this
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upper bound by generating ideal grid maps (putting bumps of activity on a perfect
hexagonal grid—no model involved) and computing their gridness scores (Fig. 2a).
This upper bound is due to the choice of the radius of the inner disk that leaves a
region of the autocorrelogram always correlated with its rotation, which blurs the
signal (we have checked that removing this region restores the upper bound to 2).

3. Experimental gridness scores do reach this upper limit, quite remarkably. See Fig.1
in (Sargolini et al. (2006)).

4. Does a high gridness score necessarily indicate a strong hexagonal symmetry?
To answer this question we generated artificial rate maps of different shapes and
symmetries.

• Mere equidistance between fields (without 6-fold order) is not enough to ac-
count for a high gridness score (Fig. 2b).

• However, starting from perfectly hexagonal patterns and perturbing them
randomly, we observe that gridness scores are quite robust to such distor-
tions. In particular, if these deformations are applied on the edges, gridness
scores are almost unchanged, indicating that the symmetry captured concerns
mostly the center of the box.

• In some cases where we perturb the edges, the distorted grid has a higher
gridness score than the perfect grid (Fig. 2c). The explanation is related to
point 2: what prevents gridness scores to be high is the inner ring of the
autocorrelogram that has a constant value. Some limited jitter on the edges
lowers the correlation of this area with rotations of itself while not altering the
anticorrelation of the outer ring with rotations against itself, hence increasing
the gridness score. Such a counter-intuitive effect reflects the complexity and
indirectness of the measure.

• In conclusion, decent gridness scores (> 1) can come from quite bad-looking
patterns. Yet the highest gridness scores (> 1.4) could only be accounted for
by grids that are near to perfect, at least in the center of the box (Fig. 3).

5. Experimental gridness scores are distributed along all possible values. See for
instance Supplementary Fig. 5 in (Bonnevie et al. (2013)). Yet, from a computa-
tional point of view, existing grid cell models have trouble accounting for all the
points cited above: either they produce only ’super grids’ of very high gridness
score, or they produce a wide range of gridness scores but not up to the maximum.

6. The reported gridness scores are measured in relatively small environments (boxes
of less than 2m side length). Therefore the level of symmetry they reflect regards
local order. In larger environments, global gridness scores have not been reported.
Yet, even in theses small areas, global order is broken (see Fig.4i in (Stensola et al.
(2015))). We will come back to this point in Section 4.1.
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Figure 3 Gridness scores are robust to perturbations around perfect hexagonal grids.
We generated perfect hexagonal grids of random orientations and of spacing
L = 0.5m (a) and L = 0.2m (b), in a 2m × 2m box. We then jittered the fields
randomly within a disk of varying radius (x-axis). For each jitter amplitude, we
computed the resulting gridness scores over 100 realizations (y-axis, error bars
indicate standard deviation). Green dashed lines indicate grid spacings. Black:
all grid fields were jittered. Red: only grid fields in the center of the box were
jittered (at distance > 0.3m from the walls, i.e., half of the total area.). Blue:
only grid fields on the edges were jittered (at distance < 0.3m from the walls).
Note that gridness scores remain particularly high in the latter case, and can
even increase, for very strong perturbations. See text for an explanation

7. The autocorrelogram is the standard way to characterize grid patterns, not only
to compute gridness scores, but also to define grid spacing, orientation, ellipticity,
’shearing’ (Stensola et al. (2015)), etc. However, autocorrelograms can cancel out
distortions at the border of the box. We will come back to this point in Section 4.3.

3.2 An alternative measure

Put together, these facts point to the utility of defining a local measure for grid symmetry,
that captures local distortions near the walls and is robust to long-range order breaking in
large environments (Stensola et al. (2015)). It turns out that such a measure has already
been introduced in the context of the physics of 2-dimensional systems (Halperin and
Nelson (1978)). It is called the orientational order and writes locally

ψi ≡
1

Ni

∑

j

e6iθij , (4)

where Ni is the number of nearest neighbors of unit i and θij is the angle of the vector
linking i to its neighbor j.
The absolute value of the complex number ψi quantifies how much i’s neighbors ar-

range hexagonally. The argument of ψi gives the local orientation of the grid. So far
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grid orientation has always been measured globally from the autocorrelogram, ignor-
ing the possibility of a non homogeneous orientation1. Weber and Sprekeler (2018b)
have recently applied this measure to spike maps from grid cells and showed local grid
distortions and changes in local grid orientation (code available at (Weber (2018))).
At the level of a whole pattern, the orientational order is the average of the local ψi:

ψ ≡ 1

N

N
∑

i=1

∣

∣ψi

∣

∣ . (5)

Having clarified the notion of grid symmetry, we can now see how our grid field model
accounts for what is observed in experiments.

4 Simulation results - verifications of experimental facts

4.1 Formation of grid patterns

The main characteristic of grid fields is that they arrange in a hexagonal pattern. We
first outline the conditions under which they do so in the single-cell version of our model
(Eq.1). We make the following observations:

• For moderate numbers of particles (N . 30, i.e. the number of grid fields
typically observed in a standard experimental recording) we only observe grid-like
patterns if we assume repulsive walls. Indeed, with the assumed repulsive force
between particles, something has to ’contain’ them in the box. When we impose
repulsive walls, the grid fields arrange with almost regular spacing and locally
form hexagons (Figure 4a). However, the grid scores are quite low in comparison
to experiments (values go up to 1.5, see for instance Refs. Sargolini et al. (2006);
Bonnevie et al. (2013)).

• To obtain higher grid scores, we use large numbers of particles. To focus on
pattern formation and not on edge effects, we first simulate the system on a large
square torus (10m × 10m, Fig. 4b) and study wall effects in the next paragraph.
We look at local grid order on a subset of the system corresponding to experimental
length scales. Here, the gridness score is computed on a sub-square of 1m × 1m.
This local gridness score is high (Fig. 4b). We conclude that hexagonal pattern
formation in our model is a large-N effect.

In the rest of this paper, when simulating grid fields in a box, we will thus always
assume that they are surrounded by a large number of fields outside of the walls.

• The observed grid order in our model is local. Global order is broken (Fig. 5).
From a neuroscience point of you, this is strongly reminiscent of the breaking of

1Grid patterns with non homogeneous orientation have been shown by Stensola et al. (2015) but, in
the absence of a local measure, could not be quantified.
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Figure 4 In simulations of our model, hexagonal grid order requires a large number of
particles. Top row: examples of patterns in the asymptotic state. The area in
which the gridness score is computed is indicated with a red square. Bottom
row: corresponding gridness score distributions over 100 simulations. a. A
moderate number of grid fields (in a 1m × 1m box) leads to evenly distributed
patterns of poor hexagonal symmetry (low gridness scores). b. A large number
of grid fields (in a 10m × 10m torus) leads to strong local order. The gridness
scores measured in a sub-box of 1 × 1m (red square) reach high values if the
area does not contain breaks in long-range order, and low values if it does

global grid order observed in large boxes (Stensola et al. (2015)). From a physics
point of view, it is known that there is no long-range positional order in two
dimensional crystals (Peierls (1935); Berezinskii (1971); Kosterlitz and Thouless
(1973)). Our results suggest that the latter may explain the former.

• If we increase the temperature T , the system enters a disordered phase. To obtain
hexagonal patterns, we will thus focus on low temperatures.

4.2 Module coherence

4.2.1 Simulation of the multiple cell model

We now present simulations of the model with two cells (Sec. 2.2) with a varying intensity

of the coupling force ~F coupl
j→i . At the end of each simulation we measured the coherence
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Figure 5 Even with large numbers of fields, hexagonal order is only local in our model.
Simulations were run on a 10m × 10m torus as in Fig. 4b. Gridness scores
(blue) and ψ scores (orange) were computed on a sub-square of increasing size.
The gridness score, which is a global measure, drops when increasing the size
of the box, while the average ψ score, a local measure, does not depend on the
size of the box. Error bars indicate standard deviations over 100 simulations

(or rather the incoherence) Imod between patterns and averaged over many simulations
(Figure 6). Imod is defined as the minimal average distance between one pattern and
any spatial translation of the other, see Supplementary Material for details.
We observe that a weak coupling (1/10 of the strength of the repulsion between fields)

suffices to align patterns.
Interestingly, almost perfectly aligned patterns emerge even for distorted grids, i.e,

hexagonal symmetry and module coherence decouple. The presence of both coherent
and distorted grids is an experimentally testable prediction of our model.
In experiments, grid patterns recorded from the same module have a degree of coher-

ence much higher than expected by chance (Stensola et al. (2012)). But small deviations
from a rigid offset occur, up to a limit that remains to be quantified. The measure Imod

we introduce here could be applied to experimental maps as an estimate of how far they
depart from perfectly coherent patterns, and draw a closer relationship with our model.

4.2.2 Simulation of repulsing hexagons

In our effective multiple-cell model with attractive forces between grid fields of different
cells we showed that grid orientations align, as observed in experiments. Yet, in this
case the phase offset between grids is fixed and thus this model cannot reproduce the
observation that the phases of different cells in the same module are homogeneously
distributed (Hafting et al. (2005); Yoon et al. (2013)).
We now take a different approach in which the fields of different grid cells do not
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Figure 6 Incoherence Imod between patterns as a function of the coupling strength be-
tween two cells on a 10m × 10m torus. Incoherence is measured as the minimal
average distance between one pattern and any spatial translation of the other
and 0, if the two patterns are a translation of each other, see eq. (8) in Supple-
mentary Material. We can see that a saturation is reached around a strength
Rcoupl = 0.1Rrep (see the full expression of the forces in the Supplementary
Material). Error bars indicate the standard deviation across 100 simulations.
Insets show examples of the obtained patterns (zoomed on a 2×2m sub-square)
for Rcoupl = 0 and Rcoupl = 0.6 respectively

attract each other, but repulse each other. To simulate more than just two cells (with
reasonable simulation times) and to decouple the emergence of hexagonal patterns and
grid-alignment, we ask how rigid hexagonal patterns would organize if put in repulsive
interaction.
To this end, we treat recurrent inhibition between grid cells as an optimization prob-

lem. We consider a set of perfect grid cells with identical grid spacing. Each ‘cell’ is
a hexagonal arrangement of Gaussian fields. The orientation and phase of one cell is
fixed. The orientations and phases of the remaining cells are parameters that are deter-
mined such that the overlap of the firing fields of all grid cells is minimal. Details on the
simulations are provided in the Supplementary Material. We observe that the overlap is
minimized if all grids have the same orientation, but different phases, as shown in Fig. 7.
These preliminary results support the idea that the observed grid co-orientation and

phase spreading arise from mutual inhibition between grid cells of the same module.
Further work will have to quantify how much this inter-cell effect interacts with pattern
formation in individual cells.
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Figure 7 Co-orientation and phase spreading in repulsing grids: preliminary results in
simulations where perfect grids try to minimize the overlap between their grid
fields. (a) Center locations (colored symbols) of N perfectly hexagonal grids
of Gaussian fields after the overlap between all grids has been minimized nu-
merically. Dark gray dots correspond to the reference grid, which is static. (b)
Overlap (in arbitrary units) of Gaussian fields for 3 × 20 minimization trials for
the different values of N shown in a. In one set of 20 trials (dark blue circles),
all grid orientations are fixed at the same value and only the grid phases are
optimized in the sense of minimal overlap between grid fields. In a second set of
20 trials (medium blue crosses), the minimization algorithm varies not only the
phase but also the orientation of the grids and all orientations are initialized
at 0 degrees. In a third set of 20 trials (light blue triangles), again all phases
and orientations are varied, but here orientations are initialized at random. For
all N considered, the solution with minimal overlap corresponds to a scenario
of aligned grids (all orientations 0). In all trials, the phases are initialized at
random

4.3 Effect of the walls

What kind of force, if any, do the walls exert on grid fields? In Section 4.1 we have
shown that walls are not required to ’contain’ the grid fields, since grid patterns could
also emerge in our model from the interaction with a large number of grid fields outside of
the box. Therefore, walls would only perturb the already existing (and already distorted)
grids.
Experiments revealed that walls have an influence on both grid geometry (grids are less

hexagonal, more elliptic, or sometimes even break up) and grid orientation (grids tend
to cluster around an angle of roughly 8 degrees relative to the nearest wall) (Stensola
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et al. (2015); Krupic et al. (2015)).
Stensola et al. (2015) proposed that both effects originate from the same cause, namely

a ’shearing force’ exerted by the walls on an originally hexagonal grid pattern. Note
that this proposed explanation is given at the macroscopic level: it describes how walls
effectively affect grid fields.
We decided not to use a shearing force in our model, because it would mean fine-tuning

the shearing parameters in order to reproduce experimental features measured on the
autocorrelogram. Also, shearing forces do not have clear mechanisms at the cellular
level.
Instead, we assume that walls exert an orthogonal attraction on the grid fields. This

is motivated by two independent arguments:

• From a bottom-up point of view, we know that there are excitatory border cells
that fire close to walls (Solstad et al. (2008)). Intuitively, the most straightforward
guess is that these cells have a tendency to excite grid cells to fire closer to the
wall, i.e., to exert an orthogonal attraction on the grid fields. This remains to be
experimentally demonstrated, though.

• From a top-down point of view, we observed that attractive walls induce what
Hägglund (2017) have called ’barrel distortions’ of the grids in our simulations: a
dilatation of the grid in the center, accompanied by a squeezing on the edges and
a bending of the axis (Fig. 8).

The effect of walls on grid patterns still remain to be better characterized in experimental
data to test our assumption of attractive walls. The ψ score could be of help for this
purpose.

4.4 Response to wall removal

We now turn to the wall-removal paradigm described above.
Wernle et al. (2018) showed that, before the wall is removed, the initial patterns form

two grids of roughly the same spacing and orientation2 but different offset: they are thus
called ’incoherent grids’, because they do not form a single hexagonal pattern. After wall
removal, the grid fields ’merge’: they rearrange in the center of the box but remain fixed
at the edges. This persistence of the initial pattern in spite of its changes in other parts
of the box has been described as an ‘anchoring force’ 3.

How can we model this anchoring force? The attraction from the walls that we used so
far would not suffice because it is not localized enough. Here we take another approach,
inspired by our previous observation that grid fields outside the box also have to be
modeled. We make the following assumption (illustrated in Fig. 9): everything evolves
as if, before wall removal, grid fields inside the A (resp. B) compartment ’saw’ fields

2Some slight differences, either of spacing or orientation, have been reported, but we neglect them for
the present discussion.

3A question not answered by this experiment is whether this position is fixed with respect to the walls
or with respect to something else, e.g., distal cues.
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Figure 8 Examples of the effect of attractive walls on grid patterns, reminiscent of the
distortions observed in experimental grid patterns, for ranges Lrep = 0.5m (a.)
and Lrep = 0.7m (b.) in a 2m × 2m sub-box surrounded by a large number
of fields (see Supplementary Material for the full expression of the forces). For
clarity we represent only a fraction of the total 10m × 10m torus. Blue: some
of the fields outside the box. Red: fields inside the box. Pink lines serve as a
guide to the eye. Note the bending grid axis and the tendency of grid fields to
stick to the walls, both due to the attractive force coming from the walls

outside the box that are arranged on a perfect grid with offset OA (resp. OB). After
wall removal, fields rearrange inside the box but still see the same fields outside the box.
Indeed, this is a very simple way to model the anchoring of grids, consistent with the
idea that anchoring probably comes from distal cues. Of course, this approach is one
among many. In particular, it neglects many aspects (wall effects, the irregularity of the
grid, the occasional merging of two nearby fields, etc.) for the sake of simplicity.

a. b. c.
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y
 (

m
)

top part before wall removal bottom part before wall removal full box after wall removal

0 2 0 2 0 2
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1
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Figure 9 Implementation of the wall-removal setup. Before removing the wall (a-b), the
fields in compartment A find their positions consistently with a grid of a certain
orientation, spacing and offset (a); while the fields in compartment B do the
same with a grid of same orientation and spacing but different offset (b). After
removing the wall, the fields from both compartments ’see’ each other, while
they keep the anchoring of the former grids across the remaining walls (c)

Fig. 10 shows how the patterns evolve after removing the wall: grid fields in the central
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part of the box move more (Fig. 10b) than grid fields close to the boundaries (Fig. 10a).
This evolution of fields is such that a local grid order is found (Fig. 10c). Qualitatively,
our simulations lead to similar results as observed experimentally. Tn terms of hexag-
onality (measured indirectly as the standard deviation of neighbor distances; Fig. 10c),
we get more regular grids because of our simplifying assumptions that leave aside many
possible grid distortions. However, in terms of pattern correlation and normalized field
displacement (Fig. 10a and b), the qualitative agreement is good, without fine tuning of
parameters (we only choose a grid spacing comparable to experiments).
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Figure 10 The model in the merging setup, averaged over 100 simulations. a: aver-
age correlation of the grid pattern after wall removal with the one before
wall removal, showing that the grid fields rearrange in the center of the box
while being ’anchored’ on the borders far from the former separation wall.
b: average displacement of each grid field as a function of its initial position,
normalized by the grid scale. c: The motion of grid fields is such that grid
coherence increases near the separation wall. Standard deviation of the dis-
tances of each grid field’s neighbors as a function of its position, both before
and after wall removal

In conclusion, the experimental observations can be accounted for very simply. Impor-
tantly, note that in this particular case we do not even need interaction with the walls
(we can neglect the grid deformation) nor additive forces on the fields: the simple pres-
ence of the grid outside the box is sufficient to keep the memory of the grid inside. This
is reminiscent of the hypothesized role of distal cues as a reference in grid alignment.
These fixed outside grids are an effective—and efficient—way to model anchoring.

5 Simulation results - predictions

5.1 Local and global grid order

Our results from paragraph 4.1 allow us to derive several predictions regarding experi-
mental grid patterns.
First, in very large environments, global order is broken, therefore the gridness score

measured in a subpart should be a decreasing function of the size of this subpart (Fig. 5).
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Second, the breaking of global grid symmetry is a consequence of its two-dimensionality;
it is not an effect of the walls4. Therefore, if our model is correct, all the results on global
order breaking in large environments should be independent of the geometry of the box.
For instance, a large circular enclosure and a large square enclosure should lead to the
same decrease of the gridness score as a function of the size of the portion on which it
is measured.

Third, the local order should be high. This is easily verified by applying local orien-
tational order ψ to experimental grid maps (Weber and Sprekeler (2018b)).

5.2 Module coherence

Our model predicts that hexagonal order and module coherence are two independent
features. Therefore, one should find in experiments:

• examples of quite regular grids from the same module that are not well aligned to
each other (in particular near the walls, whose force can overcome the alignment
force),

• examples of poorly hexagonal grids from the same module that nevertheless are
well aligned.

This prediction requires to be able to quantify both the local hexagonality and the grid
alignment: this could be done by the two measures ψ (see also Weber and Sprekeler
(2018b)) and Imod, which we have propose above.

5.3 Density of grid fields

In paragraph 4.3, we assumed that walls exert an attractive force on grid patterns. A
direct consequence would be a higher average density of grid fields along the walls than
in the center of the box.

5.4 Insertion of a wall

Our assumption on the origin of anchoring in the wall-removal experiment has the con-
sequence that the reverse experimental paradigm (inserting a wall in a familiar open
field) would not lead to the reverse results, i.e., grid fields would not reorganize into
two incoherent grids. Instead, we predict that the insertion of the wall would introduce
grid distortions close to the wall, maybe up to the formation of new fields due to the
excitatory aspect of the wall.

4Near the walls some grid distortion could come into play as we have shown, but let us assume here
that the box is big enough so that we can neglect such edge effects.
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6 Relationship between microscopic and macroscopic levels

Here we propose a macroscopic description, in the sense that we directly model firing
patterns in physical space and not the underlying neurons. So far, with the notable
exception of the study by Krupic et al. (2014) (see Discussion), all grid cell models were
microscopic. It is thus crucial to bridge the gap between both levels of description. So
we ask: (1) what is the outcome of microscopic models when looked at macroscopically?
(’bottom-up’ direction) And, conversely, (2) how can our macroscopic interactions be
implemented in a neural network? (’top-down’ direction).

6.1 From microscopic to macroscopic

6.1.1 Attractor mechanisms

This class of continuous attractor network models (McNaughton et al. (2006); Fuhs and
Touretzky (2006); Guanella et al. (2007); Burak and Fiete (2009); Pastoll et al. (2013);
Couey et al. (2013); Widloski and Fiete (2014)) is based on the collective behavior of a
large number of interconnected cells. A specific connectivity between neurons arranged
on a 2-dimensional ’neural sheet’ allows the emergence of activity patterns—called Tur-
ing patterns—that form a hexagonal grid on this neural sheet. These patterns have to
be translated into physical space. The models therefore incorporate a mechanism that
translates the activity on the neural sheet according to the motion of the animal in
physical space (‘path integration’). This way, up to some noise correction, each cell has
a hexagonal firing pattern in physical space.
We take the following reasoning: under the assumptions that periodic Turing patterns

form in the neural space and that the path integrator is reliable enough (i.e. assuming
the model actually works), we can directly convert the multi-cell / single-time description
of the microscopic model into its single-cell / across-time equivalent at the macroscopic
level. The reasoning is sketched hereafter.

In neural space Monasson and Rosay (2014) have demonstrated formally that, in a
1-dimensional continuous attractor network with short-range excitation and global in-
hibition, the bump of activity that forms moves like a quasi-particle, thus validating a
macroscopic description. More precisely, in the large N limit and in the presence of
neural noise, across time the bump undergoes little deformation (scaling as 1/

√
N) and

its center diffuses (with a diffusion coefficient scaling as 1/N).
Though it would require a rigorous demonstration, we assume that at least the quasi-

particle behavior remains true in the case of a 2-dimensional continuous attractor net-
work with connectivity leading to grid patterns. Moreover, the large N limit is bio-
logically plausible: from estimates of the number of neurons in the rodent entorhinal
cortex (Merrill et al. (2001)) and the number of modules (Stensola et al. (2012)), one
can deduce that N is of the order of 104.
When forces (here, external inputs of velocity) are applied to the bump, Monasson

and Rosay (2014) have observed that it keeps its quasi-particle aspect as long as the
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intensity of the input is not too large. So we expect it to hold also in the presence of
path-integration forces moving a multiple-bump pattern.

In physical space We argue that this description holds as soon as the model forms
stable grids (see Supplementary Material). Moreover, there is a correspondence between
the stable states of the neural network and the single-cell grid patterns, hence we can
directly derive an approximate effective single-cell Hamiltonian at the macroscopic level.
For instance, in the inhibition-based model by Couey et al. (2013), at the macro-

scopic level grid fields from the same grid cell repulse each other while their density is
maintained by a chemical potential.
Here we are in the case where the effective forces between grid fields are a network

effect, hence grid fields from another cell from the same module would be directly given
by a translation of the grid fields from the previous grid cell.
In the merging setup, attractor models have not been simulated yet. We predict

intuitively that after removing the wall a perfect grid would form that is an extension of
the grid in the compartment where the rat is when the wall is removed. Therefore, some
ingredient is missing to account for the observed merging of incoherent maps. More
generally, an open question for attractor-based mechanisms is how specific grid patterns
are selected that do not correspond to the ’perfect and universal grid’ framework. This
is not only necessary to explain the merging experiment, but also for error-correction,
retrieval of the same grid maps upon re-entering the same environment, effects of walls
and in general all cases of grid anchoring and distortion. Hardcastle et al. (2015) have
shown that border cell-like excitatory inputs succeed in error-correction in an attractor
model. Their assumption remains yet to be tested in grid-distortion paradigms.

6.1.2 Adaptation mechanisms (and other competitive learning mechanisms)

Let us now turn to the class of models initiated by Kropff & Treves in 2008 (Kropff and
Treves (2008); Si et al. (2012); Si and Treves (2013); Stella et al. (2013); Urdapilleta
et al. (2015); Stella and Treves (2015)). Here, grid patterns are not a consequence
of recurrent connectivity between a large number of cells, but come from a single-cell
mechanism (adaptation), combined with a competition between place-modulated inputs.
Adaptation tends to make the cell self-inhibit while the external inputs maintain its
average level of firing and anchor the firing fields. Excitatory recurrent collaterals can
be added on top of this system to account for module coherence (Figure 11a).
In the original paper from 2008, Kropff & Treves argued that their model could be

simplified by considering that each cell’s firing rate minimizes a cost function:

L =

∫

dx (∇f(x))2 + γ

∫

dxdx′f(x)K(x− x′)f(x′) , (6)

where f(x) is the cell’s firing rate at position x and K(x− x′) is an inhibitory kernel on
a distance scale equal to the adaptation time constant times the average velocity of the
animal. Moreover, f has to satisfy a constraint of constant average value.
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feed-forward input +

competitive learning
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a.

A|B AB at t=2 hours AB at t=72 hours
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Figure 11 Adaptation-based models in the merging experiment. a: General principle:
each grid cell tends to self-inhibit on a certain lapse of time, while receiving
place-modulated inputs. When averaged over many trajectories, this results
in an effective spatial kernel of repulsion between fields (Kropff and Treves
(2008)). b: Example of a simulated grid cell of the model by Si et al. (2012)
in the wall-removal setup. Left: Rate maps after 3 days of exploration in
boxes with the separation wall. Center: Rate map of the same grid cell in the
open field after 2 hours of exploration. Right: Rate map of the same grid cell
in the open field after 72 hours of exploration

Although this relationship was not formally derived in the paper—but the calculation
was sketched by (Sprekeler (2008))—it basically boils down to a macroscopic effective
version of the microscopic model. It is expressed in terms of firing rate instead of
particle positions, but as soon as we know the solution is multipeaked (as shown in
Kropff and Treves (2008)) we can replace the bumps by point particles with only a minor
loss of information, and remove the irrelevant continuity term in the cost function. K
corresponds to a repulsion between particles and the constant global activity constraint
is the equivalent of our fixed number of particles. We therefore, here again, obtain an
effective model with short-range repulsion and global excitation.
Nevertheless, this cost function description is valid in a limited domain only. First, it

concerns only the simplest version of the model (without recurrent collaterals). Second,
the presence of the walls is not taken into account while they do influence patterns by
constraining the animal’s motion during learning. Finally, it only describes the asymp-
totic state of the firing pattern, and not its dynamics before equilibrium is reached.

Notably, in the case of manipulations of the environment’s shape, like wall removal,
the adaptation model takes a very long time to stabilize because it is strongly anchored
to the old configuration by the feed-forward inputs. We verified this aspect by simulating
the model by Si et al. (2012) in the wall-removal setup (Figure 11b). Simulation details
are provided in Supplementary Material.
The first thing we notice is that the evolution of the rate maps looks qualitatively

very similar to the experimental ones: two nice-looking but incoherent grid maps before
wall removal, then an evolution of the central fields towards more coherence. However,
the durations do not match. Stabilization times vary from one simulation to the other,
but are generally of the order of tens of ’rat-equivalent hours’ (Figure 11b). In contrast,
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in experiments the merging process takes place within a few minutes (Wernle et al.
(2018)). The inertia in the model due to the place-modulated input does not match the
fast evolution of the grid patterns observed experimentally.

Recently, Weber and Sprekeler (2018a) introduced a model for grid cells based on an
interaction of excitatory and inhibitory inputs through synaptic plasticity. Both types
of inputs are place-modulated. Periodic patterns arise if the spatial tuning of inhibitory
inputs is broader than that of excitatory inputs. In this case also, grid fields behave as
if they repulse each other. Although different regarding its hypotheses at the cellular
level, it is interesting to note that this model shares common points with the adaptation
model. Its simulation in the wall-removal experiment also shows a local rearrangement
of grid fields towards a more coherent pattern, although on a faster timescale than the
adaptation model (around 5 hours).

6.1.3 Oscillatory-interference models

In oscillatory-interference models, grid cells are modeled with membrane potential oscil-
lations (theta rhythm) modulated by running speed in specific directions (Burgess et al.
(2007); Giocomo et al. (2007); Blair et al. (2007); Hasselmo et al. (2007)). These models
have the advantage to naturally explain phase precession, while other grid cell models
do not.
At the macroscopic level, grids emerge as the intersection of three stripe-shape inter-

ference patterns, and would therefore be better described as waves rather than particles.
The derivation of such a macroscopic equivalent is not straightforward, though.

It is unclear how module coherence, anchoring, grid distortions and response to wall
removal could be accounted for by oscillatory-interference models without additional
ingredients.

6.2 From macroscopic to microscopic

We now ask the reverse question: assuming that our macroscopic description is correct,
what can we infer about the underlying microscopic system? The full derivation of a
microscopic model is out of the scope of the present study, however, we can sketch the
constraints that such a model would have to fulfill.

Existence of a description as interacting particles If the dynamics of grid fields can
be accurately described as interacting particles, this highlights that not only do grid
cells have astonishingly simple firing correlates but also the relationships between them
have very simple spatial expressions.
In a sense, this was already assumed in the framework of the perfect universal grid,

where the relationship between grid fields from the same cell was a rigid triangular
lattice; and the relationship between grid cells from the same module was given by a
rigid offset. What we have shown here is that this view extends beyond perfect grids to
distorted patterns. These distorted grids are not just noisy hexagons. Instead, they can
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be approximated by a system where forces only depend on spatial distances. This points
to a remarkable conversion mechanism between distances and angles on the one hand,
and neuronal dynamics on the other hand. This mechanism should be stable enough to
cope with erratic trajectories, permissive enough to let other inputs distort the grids,
and simple enough to be implemented in a neural network.

Grid symmetry We have seen in Section 3 that some experimental grid patterns have
extremely high levels of order, while others do not. In our macroscopic model, we could
account for this by a quasi-crystalline state of a large number of interacting particles.
But how is this implemented at the microscopic level? What kind of neural network
produces all gridness scores ranging from -0.5 to 1.5, virtually their theoretical upper
bound?
High gridness scores are an argument in favor of a many-cell effect: intuitively, crys-

talline orders can easily emerge when a lot of units are interacting together; while if there
are only a few of them the order is much less robust to noise in the parameters. And
indeed, the existing attractor-based models do produce high gridness scores (Bonnevie
et al. (2013)).
Conversely, concerning the rest of the distribution of gridness scores, the roles are

switched. So far only adaptation-based models have accounted for low gridness scores:
from what has been reported, attractor-based models seem to produce only very high
gridness scores. 5

These considerations guide us towards attractor-based models that incorporate local-
ized inputs. Such inputs could suffice to distort the grids and explain the full range
of observed gridness scores, the same way as local forces from the walls do lead to grid
distortions in our macroscopic model. Such a ’hybrid model’ remains to be implemented.

Repulsion between grid fields The repulsive force between particles is the main in-
gredient behind grid pattern formation in our model. The fact that repulsion leads to
hexagonal patterns is a quite general phenomenon in physics, see for instance Abrikosov
vortices in superconductors materials (Abrikosov et al. (2012)). Many different micro-
scopic mechanisms could lead to an effective repulsion between fields: recurrent con-
nectivity in a neural sheet, adaptation, inhibition from other non-grid place-modulated
inputs, etc. On this aspect, the macroscopic approach does not put much constraint on
the microscopic level.

Inter-cell coupling We have shown in Section 4.2 that grid cells of the same module
can be described by introducing a weak coupling between grid fields of different cells
(including an offset). We also have shown that, if cells form their patterns indepen-
dently (simplified as perfect hexagons) and those patterns repulse each others, then
the orientations align and the phase are evenly dispersed. This again points towards
a hybrid-model: either a single-cell pattern formation model on top of which coupling

5Maybe noise could account for lower gridness scores in adaptation models, but to our knowledge this
possibility has not been investigated yet.
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between cells is added, or an attractor network model on top of which local inputs are
added. Further quantitative measures of grid distortion and module coherence would
help to distinguish between them.

Interaction with the walls Excitatory border cells could implement the orthogonal
attraction we used. However, that attraction is not the only possibility. We expect up-
coming experiments to shed more light on what walls do to grids, notably by performing
local measures.

Discussion

Summary of results A growing body of experimental evidence shows that the idealized
view of perfect and universal grids has to be abandoned. For the same reason, the
gridness score measure—that was based on this idealization—is not the optimal way to
characterize grid patterns that are prone to distortions, inhomogeneities and absence of
long-range order. Taking inspiration from the rich field of Physics of two-dimensional
systems and colloids, we have proposed both an alternative measure for grid patterns
that is simple and local and a macroscopic model for their formation. We have shown
that this model, although very simple, reproduces most of the observed features of grid
patterns.

One of our main results is that both local hexagonal order and long-range breaking
are necessarily a large-N effect. Simulating a large number of grid fields creates grid
patterns that share many aspects with experimental recordings.
We then turned to the multiple-cell case. Remaining agnostic about whether or not

the module’s recurrent connectivity is already contained in the effective interaction be-
tween grid fields, we have shown that a relatively small force is enough to align two
patterns. We have also seen that in this model, hexagonal symmetry and module co-
herence are two independent features that can be separated, a prediction that could
be tested experimentally. We then tested the assumption that inhibition between grids
would lead to both orientation alignment and phase dispersion in a simplified setup by
simulating repelling hexagonal patterns. We did observe the expected phenomena. The
interaction with pattern formation remains to be tested in simulations combining both
large numbers of particles and large numbers of grid cells.
The force that walls exert on the grid pattern is not fully understood, both at the

experimental level and in our effective model. We have preliminary indications that
attractive walls lead to patterns that qualitatively resemble experimental recordings,
with phenomena such as bending of grid axes and barrel distortion. Hopefully, future
experiments will clarify those phenomena.
In the case of the wall-removal setup, we drastically simplified our assumptions and

showed that even a minimal implementation captures the main features of the exper-
imental observations. Notably, it is not necessary to assume a force coming from the
walls to account for Wernle et al ’s results.
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Significance The use of effective, macroscopic models is not common in neuroscience.
The reason is probably that computational neuroscience aims at explaining brain ob-
servables from the neurons themselves, and therefore places itself at the level of neurons.
Our point here is that both approaches are complementary. A macroscopic model de-
scribes rather than explains, but an accurate description is a prerequisite to any attempt
of an explanation. Note that almost all characterizations of grid cells have been done
at a macroscopic level: ratemaps, autocorrelograms, gridness scores, shearing, grid field
displacement, etc. Grid cells even take their name from their macroscopic features. Here
we refined and systematized a natural approach to describe grid patterns.
This way, we have sketched the correspondence between microscopic and macroscopic

levels of description. We have seen that the microscopic mechanisms previously proposed
are either incomplete (for the attractor-based and oscillation-based models) or too slow
(for the adaptation-based). A hybrid model between attractor mechanisms and single-
cell effects seems a good candidate. We argue that a good description at the macroscopic
level is useful to guide the design of a microscopic model.
Moreover, working on the macroscopic level is fast to simulate, requires few parameters

and allows to make testable experimental predictions. We provided some of them here,
but extensions like curved spaces, higher dimensions, fancy geometries, etc., would be
straightforward to implement.

Criticisms As any simplification, our model misses some features. For instance, the
reduction of bumps of activity to point particles cannot account for different peak firing
rate that, as Dunn et al. (2017) recently showed, could be crucial in terms of coding.
This aspect could nevertheless easily be added to the model by assigning different po-
tential weights to the different particles. We also lose the information on timescales of
the dynamics, as illustrated by our simulations of the wall-removal experiment in the
adaptation model. We do not account for the merging of two grid fields observed in some
cases by Wernle et al : this could be corrected by adding a short-range attractive force
between grid fields, a creation / deletion process and some chemical potential controlling
the total number of particles. We chose to stick to simplicity by discarding this aspect.

Comparison with the model by Krupic et al (2014) Krupic et al (2014) also suggested
a model of interacting grid fields. They assume a force between grid fields that is derived
from a Lennard-Jones potential (i.e., long-range attraction, short-range repulsion). The
walls exert a repulsion on the fields, orthogonal to the walls with an exponential decay.
Even if similar in spirit, the two models have a crucial difference: while we see pattern
formation as a self-organized, emerging feature of a large number of grid fields, in the
model by Krupic et al it is the result of fine-tuning on a small number of particles: the
range of the Lennard-Jones potential, of the repulsion from the walls and the number
of particles has to be carefully chosen ad hoc to produce hexagons. As a result, either
only very good grids or very poor grids are observed (see their Fig.2), but not the whole
distribution. At the microscopic level, Krupic et al sketched an implementation based
on repulsion between CA1 place cells and inhibitory border cells—in contrast to our own
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conclusions.

Extensions The approach of a macroscopic model opens the way for several lines of
future research.
The first concerns data analysis. The ψ score introduced above is a promising way to

characterize grid patterns, but it still remains to be extensively tested on experimental
data. First encouraging results have just been reported by Weber and Sprekeler (2018b).
It would be interesting to fit our model’s parameters and to compare the best fit

with other versions of the model (e.g. other shapes of the interactions). From this,
two paths could be taken: making more precise predictions on the outcome of future
experiments, and refining our inference on the underlying microscopic system by a better
discrimination between the candidate mechanisms.
Our effective approach could also be extended to other spatially tuned cell types, or

in studying the still mysterious relationship between grid modules. More generally, the
spirit of an effective model is not limited to the hippocampal formation and could be
fruitful in the study of many other brain areas.
Finally, since we still want to understand what grid cells—rather than grid fields—

do, developing a complete microscopic model is the ultimate step. We have seen that
the question is not so much how to get good grids, but how to get both excellent and
poor grids. We stressed that a hybrid mechanism combining ingredients from the dif-
ferent existing models is a good candidate. We hope that the hindsight provided by the
macroscopic point of view will be of help when diving in the intricate complexities of
the microscopic world.
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