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Abstract. The biomechanical modeling of growing tissues has recently become an area of intense
interest. In particular, the interplay between growth patterns and mechanical stress is of
great importance, with possible applications to arterial mechanics, embryo morphogenesis,
tumor development, and bone remodeling. This review aims to give an overview of the
theories that have been used to model these phenomena, categorized according to whether
the tissue is considered as a continuum object or a collection of cells. Among the contin-
uum models discussed is the deformation gradient decomposition method, which allows a
residual stress field to develop from an incompatible growth field. The cell-based models
are further subdivided into cellular automata, center-dynamics, and vertex-dynamics mod-
els. Of these the second two are considered in more detail, especially with regard to their
treatment of cell–cell interactions and cell division. The review concludes by assessing the
prospects for reconciliation between these two fundamentally different approaches to tissue
growth, and by identifying possible avenues for further research.
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1. Introduction. The study of growth in living organisms has been a fruitful
area of research for many centuries. As early as the sixteenth century the scientist
Galileo realized that the growth of a body must be limited by its form [15]. In the
words of D’Arcy Thompson, in his influential work On Growth and Form [250], “if
we tried building ships, palaces or temples of enormous size, yards, beams and bolts
would cease to hold together; nor can Nature grow a tree nor construct an animal
beyond a certain size, while retaining the proportions and employing the materials
which suffice in the case of a smaller structure.” Thompson made great contributions
to the field of biological growth, applying physical principles to the shape and size of
all kinds of living structures. The second half of the twentieth century saw a great
increase in research on biological growth, drawing on scientific advances in fields as
diverse as evolution, genetics, biochemistry, and mechanics.

The modern understanding of biology holds that the form and size of an organism
(or parts of an organism) are determined not only by genetic factors but also by
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environmental effects. One such environmental factor is the concentration of chemicals
in the developing tissue. Most obviously, a tissue requires nutrients in order to grow,
and a low concentration of nutrients would therefore inhibit growth. This is certainly
true of tumors, as was experimentally established as far back as 1917 [82]. Today,
it is widely known that tumor spheroids cultured in vitro fail to grow past a certain
radius, due to a necrotic core caused by a lack of nutrients diffusing to the center [221].
Aside from nutrients, concentrations of certain chemicals known as morphogens have
a strong effect on the rate of tissue growth [200], and have been extensively studied,
especially in embryonic development.

Disease and injury are further factors that can have an effect on the growth rate
of tissues. Humans have a modest ability to regrow tissue in response to injury, for in-
stance, in skin tissue. Some other organisms have a much more impressive capability;
most notably, some starfish are able to regenerate severed arms [174]. Uninjured or-
gans can also grow to compensate for injury: a study in which one of a rabbit’s lungs
was removed showed that the remaining lung had grown to compensate [53]. One
hypothesis for this is that the remaining lung was placed under greater mechanical
stress, thus promoting growth.

That mechanical stress or strain has an effect on tissue growth is common knowl-
edge to the legions of athletes who increase their muscle mass through physical exer-
cise. It has also been demonstrated experimentally time and again. One of the most
researched areas is in the study of stress-dependent changes in bone structure, or bone
remodeling [111, 198]. A commonly cited fact is that tennis players have significant
differences between the properties of the bones in their playing and nonplaying arms,
with the bone mineral content, bone strength, and cross-sectional area of bone all
higher in the playing arm [119]. To cite a small selection of the literature, studies
have demonstrated the effect on bone growth of the surrounding tissue [44], weight-
lessness due to space flight [112], immobilization in plaster casts [156], and physical
exercise [158, 204].

Bones are not the only tissue where development is affected by mechanics. Early
experiments [276, 86] showed that many of the properties of invasive tumors can
be shown to be purely mechanical phenomena. Since then there have been several
investigations into the effect of stress fields on the growth of tumors. The results
appear contradictory: in [125, 37] the researchers showed that elevated levels of stress
inhibit the tumor’s development, but in [211, 143] it is shown that tumor growth may
be promoted by elevated tissue tension. These results likely indicate that the exact
response of a tumor is a combination of many factors, any of which may be dominant,
depending on the microenvironment of the component cells.

Muscle tissue can also gain mass when its workload is increased [110, 245] and
atrophies when subjected to long periods of disuse [126]. This also holds for the
heart muscle, where abnormally high loading leaves the muscle significantly thicker—
a process known as cardiac hypertrophy [118, 94]. A similar hypertrophic effect can be
seen in arteries as a result of hypertension (high blood pressure) [271]. Other tissues
where development is affected by mechanical loading are cartilage [117], the airway
[48, 177], and the endothelial lining of blood vessels [202].

In the same way that growth can be affected by mechanical strains and chemical
concentrations, these mechanical and chemical fields can themselves be affected by the
growth process. For tissues which can be modeled as elastic solids over the typical
timescale of growth, residual stress may emerge if parts of a tissue grow at a faster rate
than others. The term residual stress is taken from the metallurgical literature, where
plastic flow in a metallic body often results in a residual stress field that remains when
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Fig. 1.1 Cross sections of a rat artery (A) in its naturally pressurized state; (B) unloaded; (C)
unstressed and cut along a radial line. Figure reproduced from [100] with permission.

external loads are removed. The idea that this phenomenon occurs in the tissues of
growing organisms was widely discussed by botanists in the nineteenth century [214].
For instance, Julius Sachs, in his Text-book of Botany [225], stated that “[growth] itself
must cause states of tension in the layers of a cell-wall or of the tissue of which an organ
is composed, if the layers, although firmly united to one another, grow unequally.”

This effect can easily be seen in a kitchen-table experiment with a stick of rhubarb
[257]. If the outer layers are removed carefully with a peeler and placed next to the
inner pith, they are found to have noticeably shrunk, indicating that the peel was in a
state of tension in the original structure, whereas the pith (which has elongated) was in
compression. The relief of these stresses allows the plant to gain a “stress-free” state.

Much of the current interest in residual stresses in animals comes from the ex-
periments of Fung and coworkers. Consider an artery that is sliced into sections by
cuts made perpendicular to its length, with the resulting annular samples cut along
a radial line. It is found [96] that, over time, the sections open up, clearly displaying
that residual stress has been relieved, as shown in Figure 1.1. The amount of stress in
the arteries can be characterized by the opening angle, which is the angle subtended
by the two lines drawn from the center of the section to the ends of the opened artery.
This was an important finding, because computations in the absence of residual stress
had shown that heart tissue and arteries, when pressurized by blood flowing inside
them, have a nonuniform stress profile across the wall, with a high stress at the inner
surface [50]. Thus, if the tissue contained no residual stress, its yield stress would
have to be high enough to accommodate the stress at the inner surface. Fung did not
approve of this implication [97] and suspected that the assumption of zero residual
stress in the unloaded state was incorrect. This was borne out by the experiments
described above, which were carried out by Fung and coworkers, and independently
by Vaishnav and Vossoughi [255]. On including residual stress in the model, the stress
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Fig. 1.2 A logged tree which has cracked due to the release of growth stresses. Picture taken from
[43].

profile across the pressurized artery wall becomes largely uniform, providing a physi-
ological “purpose” to the residual stress: to avoid the buildup of high stresses in the
artery, and thus the need for a high-yield stress. The results have been corroborated
and extended [146]; in particular, it has been shown that active contraction by smooth
muscle cells plays a similar role to residual stress.

Residual stresses have also been observed in developing amphibian embryos [19].
They are also important in tumor mechanics, where, due to the fact that the exterior
of the tumor receives more nutrient than the interior, its growth is inhomogeneous—
leading (again, if the tumor is modeled elastically) to residual stress fields. Many
researchers have taken this idea further and hypothesized that the resulting elevated
stress may be sufficient to cause collapse of blood vessels [155, 277]. Some experimental
evidence exists for this notion; see [207] for an overview of an experiment in which
relief of compressive stress causes the opening of collapsed vessels. However, further
study is necessary before this intriguing and plausible idea can be regarded as a
physiological fact.

A stress field due to differential growth—as noted by Sachs—also occurs in plants,
where it is often referred to as growth stress. The effects can be seen most clearly in
trees [14, 43], making it an important problem for the logging industry. Not only can
logs crack (as shown in Figure 1.2) due to the relieving of growth stresses, thus losing
much of their value, but difficulties can arise in the sawing process as the compressed
internal part of the log expands, trapping the blade of the saw.

Another instance of growth-determined stress in plant biology is found in the
branches of trees. If these were formed of a homogeneous material, they would sag un-
der the influence of gravity. To counter this, trees produce in their branches a type of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

56 GARETH WYN JONES AND S. JONATHAN CHAPMAN

wood known as “reaction wood” [272, 273, 83]. This wood can take two forms: In gym-
nosperms (which include conifers) the wood forms on the underside of branches and
induces a compressive stress, bending the branch upwards. Conversely, in angiosperms
(flowering trees) the wood forms on the upper side of branches, inducing a tensile stress
which also has the effect of bending the branch upwards. In this case the state of
stress of the branch does not appear to significantly affect the production of reaction
wood; the governing factor appears to be the direction of the gravitational field [272].

For tissues which do not behave elastically over the growth timescale—such as
cell ensembles (see section 2.5)—inhomogeneous growth does not lead to residual
stress, since these stresses are immediately dissipated by altering the composition of
the tissue, or by allowing parts of the tissue to flow relative to one another. The
mechanical properties of the tissue are thus a significant factor in determining its
response to growth.

We have established that the stress field applied to a growing body can alter its
pattern of growth, and that the growth process itself can alter the stress field in the
body. Therefore the stress field in a body can act as a regulator of its growth, through
a feedback mechanism. This is postulated to be a key mechanism in embryonic [201]
and tissue [229] development, and indeed mechanical stress has also been shown to
be a fundamental factor in the development of organs in embryos, from eyes [51, 52],
to the brain [70] and the heart [247]. On a smaller scale, mechanical compression
of Drosophila embryos can induce the expression of certain morphogenetic genes,
indicating that shape changes can occur as a result of previously induced strains in
the embryo [89].

The concept of a feedback mechanism has been postulated in some of the other
models that we have mentioned above. Fung hypothesized [97] that the residual
stresses in the arterial wall arise as a result of increased stress, which the cells sense
and respond to by generating more tissue, thus lowering the stress. In addition, while
the main cause of reaction wood in trees is the direction of gravity, recent evidence
has shown that, at least in gymnosperms, the stress field in the branch may be a sec-
ondary effect [83]. Feedback mechanisms can also occur through the other epigenetic
factors mentioned previously; for instance, growth due to morphogen concentration
may give rise to stress fields, and the distribution of morphogen concentration in a
tissue may be changed by tissue deformation [200]. A full description of tissue growth
must include all relevant factors, whether they be mechanical stresses, morphogens,
or nutrient fields.

The remainder of this article is devoted to describing various mathematical models
that attempt to explain or predict the interplay between growth and stress. Mathe-
matics has a long history of being able to describe aspects of biological and physio-
logical processes analytically [197]. Over the last century it has provided theoretical
explanations for such diverse phenomena as pattern formation in animals and intercel-
lular signaling due to ion currents. One of the areas in which a great deal of research
is being done is in developing mathematical models for cancer development [39]. This
includes models for the growth of tumors [221, 8], but, in general, these models do
not yet place an emphasis on the effect of mechanical stress.

The study of the mechanical properties of biological tissues, or biomechanics, is
a relatively well developed discipline. The recent textbook by Cowin and Doty [60]
gives a flavor of the field, as do the three classic texts by Fung [98, 99, 96]. Hard
tissues such as bone can be modeled effectively by (anisotropic) linear elasticity, but
softer elastic tissues such as blood vessels undergo large deformations and can only be
adequately modeled by appealing to nonlinear elasticity models. Other tissues such
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as epithelial monolayers or tumors may undergo permanent deformations and as such
require viscous or plastic effects to be included in the model. Biomechanical modeling
of tissues is by no means complete, and many open problems remain, as recently
documented by Humphrey [145]. These include issues relating to cell mechanics,
tissue engineering, muscle mechanics, and, indeed, the biomechanics of growth and
remodeling, the subject of our review.

The biomechanics of growing tissues was explored in detail in an excellent review
by Taber [245], which should be recommended reading for anybody interested in this
field. We also note the recent articles by Cowin [58], Garikipati [105], and Ambrosi
et al. [3]. Taber considered the three processes of growth (change of mass), remodeling

(change of property), and morphogenesis (change of shape). In this review we choose
to concentrate on the first two, notwithstanding the fact that stress changes in the
embryo can lead to morphogenesis, as discussed earlier. Although remodeling was
given the broad definition of a change in some property of the tissue, it has been
mostly applied to models of changing directions of anisotropy in tissues as a response
to stress stimuli, notably in bone tissue and arteries. As an effect at the level of a
single cell, growth and remodeling may be considered to be manifestations of the same
process in that cells alter their surroundings by addition or removal of material; the
difference between the two is that in remodeling the net change of mass is unimportant
in experiments and neglected in models. However, there do exist cases where the two
processes go hand in hand: in the remodeling of bone tissue, while the emphasis is
often on the changing anisotropy of the material, the density of the material may also
vary, corresponding to growth or atrophy via a change in mass.

The large-scale behavior of tissues is, fundamentally, governed by the tissue mi-
crostructure. Thus a comprehensive understanding of the growth properties of tissues
must rely upon the properties of the cells and the extracellular matrix. In this report,
we will first review in section 2 the properties of cells, especially their mechanical
properties—partly governed by the cytoskeleton mechanics—and the cell cycle, which
governs the rate of division of cells (an essential consideration for growth of epithelial
tissues and carcinomas, which consist mostly of cells).

In section 3 we review the modeling of growth in biological tissues, as seen from
a macroscale perspective. We begin by discussing how tissue is modeled macroscopi-
cally, with a focus on the application of finite elasticity to the problem. Subsequently
we present a simplified version of the deformation gradient decomposition method
with examples of applications, including a toy problem of circumferential growth in
an artery. Finally in this section we consider other elastic models that have been
applied to the problem of growth, including theories that treat the tissue as being a
mixture of several phases, and a discussion of models applied to the problem of bone
remodeling.

In section 4 we consider a different approach to modeling growth in tissues, namely
those which consider the individual cells as their fundamental units. We split these
into three main types: the cellular automaton model, which is simple but is unable to
express realistically the forces experienced by each cell; the off-lattice models, which
allow the cells to move in space subject to forces acting on them; and the vertex
dynamics models, which model the tissue as a polygonal (or polyhedral) tessellation
of cells and where the tissue deforms by specifying the positions of the cell vertices at
each time step, subject to the forces exerted by each cell. Of these we consider the
second and third in greater detail.

We thus have two classes of models, which take different approaches to the prob-
lem of tissue growth. The earlier elastic models are phenomenological, in that they
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describe the deformation or growth process, where the effect of stress on growth or
vice versa is postulated rather than derived from the cell behavior itself. The sec-
ond, cell-based, model type takes a keener interest in the way that cells respond to
stress (even if rather simplified) but the large-scale response of the tissue is due to an
aggregate response of hundreds of cells rather than by some constitutive law.

Ideally, one would apply the principle of homogenization theory to the micro-
scopic model and obtain a constitutive law for the tissue that is grounded in the best
understanding of the micromechanics of the cells. This is an exceedingly challeng-
ing task. Thus, in section 5, we consider a simpler goal: that of ascertaining how
the growth rate of a tissue might depend on the macroscale deformation. As we
will discuss, a successful outcome to this undertaking depends on the resolution of
three subproblems: determining cell deformation in a tissue, evaluating cell response
to deformation, and averaging tissue production at the microscale to produce a bulk
growth field. We investigate the feasibility of these tasks and possible avenues for
further research.

2. Tissue Biology. An understanding of the properties of biological tissues is
important before beginning the modeling process. This section is an overview of the
mechanical properties of tissues, beginning at the microscopic level—the cell. We will
examine its structure, its mechanical properties, and the cell cycle—which describes
the process of cell division (and hence tissue growth). These cell properties will be
important for the cell-based modeling of section 4. Following this we look briefly
at the structure of muscle tissue before examining the adhesion between cells in an
aggregate; this again is important in modeling cell ensembles, which is discussed in
section 4. Finally we consider the bulk mechanical properties of cell ensembles. These
are measured directly; how they arise from the microscopic adhesion and mechanical
properties is an open problem that is discussed in section 5.

Living organisms are perhaps best visualized as hierarchical structures. Large-
scale structures such as muscles, bones, and lungs are composed of smaller structures
such as muscle tissue, blood vessels, and cartilage. In turn these are compositions
of cells and extracellular matrix (ECM). The mechanical properties of biological tis-
sues are strongly dependent on the exact nature of this hierarchy, and thus on the
microstructure of these tissues. Of interest to us, given the discussion on residual
stress (or prestress) in the Introduction, is the concept of tensegrity, which provides
a fundamental structural basis for the existence of prestress.

A tensegrity (“tensional integrity”) structure is one which can conceptually be
regarded as a collection of struts undergoing compressive stress, connected by strings
which are under tension [149, 150, 151]. The compressive and tensile elements are in
mechanical equilibrium, which provides the structure with a high degree of stability.
The entire human body can be regarded as a tensegrity structure, with each subele-
ment being a tensegrity structure itself [152]. For instance, in the musculoskeletal sys-
tem the muscles apply a tensile force to the bones and their associated cartilaginous
tissue, which are under compression. In turn, the cartilage is composed of collagen,
which is under tension, and a proteoglycan matrix which applies a compressive force
to the collagen. This differential stress in the various components of the tissue is the
ultimate origin of macroscopic residual stress, and has to be taken into account in
any comprehensive model of tissue mechanics and growth.

In vertebrates, four major tissue types can be identified, namely, muscle, epithe-
lial, connective, and nerve tissues [60]. Of these, the first three are of primary interest
from a tissue mechanics point of view. Tissues can usually be viewed as comprising
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Fig. 2.1 A diagram of a typical animal cell, displaying various organelles and other features. The
cytoskeleton is omitted for clarity.

two ingredients, namely the cells and the extracellular matrix. Epithelial tissues are
layers in which the cells are bound together, with little ECM in between. On the
other hand, connective tissues such as cartilage, bone matrix, adipose tissue, and lig-
aments are mainly composed of matrix with relatively few cells dispersed throughout
the material.1

Clearly, tissue growth can occur either by the production of new cells (mitosis),
or the production of ECM, or both. Which of these components is most important
will depend on the tissue type. In epithelial tissues, mitotic effects make the greatest
contribution to tissue growth. Additionally, due to the fact that most of the cell
proliferation in the human body occurs in epithelial tissues, this is where around 80%
of human cancers originate [2], leading to a great deal of interest and research into
these malignant epithelial tumors (carcinomas), which retain the characteristics of
epithelial tissues.

Images of cells in epithelial tissue show that they are often arranged in polygonal
or polyhedral structures [73, 84, 187]. Further experiments have also shown that
the cells are not always confined to their position in the lattice but can move around
relative to other cells [136]. This motivates much of the work attempting to abstractly
model tissues as moving polygonal or polyhedral lattices [134], which we will discuss
in sections 4.2 and 4.3.

2.1. Cell Mechanics. A typical animal cell has a complicated structure, as de-
picted in Figure 2.1 [2]. A simplified picture is of a cell membrane which surrounds
a deformable cytoplasm. Embedded in the cytoplasm is the nucleus, which houses
most of the cell’s genetic material. The nucleus is but one of many organelles of the
cell which have specific duties. Others include the mitochondria, which generate the
ATP molecules that provide the energy for many reactions in the cell; the endoplas-

mic reticulum, in which proteins are synthesized by ribosomes attached to its surface;
the Golgi apparatus, which collects these proteins and (usually) modifies them before

1Thus, for instance, blood is generally regarded as a connective tissue, with a matrix that is fluid.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

60 GARETH WYN JONES AND S. JONATHAN CHAPMAN

(a) (b)

(c)

Fig. 2.2 A sketch of the three classes of protein filament forming the cytoskeleton: (a) actin fila-
ments, (b) intermediate filaments, (c) microtubules.

distributing them to various destinations; endosomes, which are used to transport
molecules in and out of the cell; and the lysosomes and peroxisomes, which both play
a chemical-processing role. The cytosol is the fluid substance which forms the main
part of the cytoplasm, and is also where some proteins are synthesized by unattached
ribosomes. The cell’s structural integrity is largely maintained by a cytoskeleton which
is embedded in the cytoplasm. This cytoskeleton, as shown in Figure 2.2, consists of
three types of protein filaments: actin filaments, intermediate filaments, and micro-

tubules. Actin filaments, with a diameter of 5–9 nm, are distributed throughout the
cell, but are concentrated beneath the cell membrane, in order to give it mechani-
cal strength. Intermediate filaments have a diameter of around 10 nm and are found
throughout the cytoplasm, reinforcing the cytoskeleton. Third, microtubules are hol-
low cylinders with one end typically attached to the centrosome, an organelle found
near the center of the cell. Microtubules are 25 nm in diameter and play a crucial
role in cell division by pulling replicated chromosomes apart. Here we see yet another
hierarchy in the context of tissue tensegrity. The cell is a tensegrity structure where
the microtubules are under compression and the actin filaments are under tension.
This architecture gives the cell its mechanical stability, and a residual stress.

Surrounding the cytoplasm is the cell membrane. This is a phospholipid bilayer, in
which are embedded numerous membrane proteins that have various essential func-
tions. These proteins include membrane transport proteins such as ion channels,
which allow certain solutes in and out of the cell, and cell junctions, which allow cells
to attach to each other or to the extracellular matrix.

Mechanical analysis of cell deformation has become much more precise in recent
years with the development of techniques such as atomic force microscopy, microcom-
pression, reflection interference contrast microscopy, micropipette, and magnetic and
optical tweezers [179, 1]. Early models for cells, based on the deformation of blood
cells, assumed that they were solid elastic shells surrounding a viscous interior [232].
These models, while ignoring the complexity of the cytoplasm structure, have become
widespread due to their ease of application and realistic results (assuming that the
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deformation is small). Treating the cells as elastic bodies may be more relevant to
plant cells [266], where the rigidity of the cell wall to a large degree inhibits extensive
deformation. Current mechanical models for cell deformation are of two types. The
first type models the cytoskeleton directly, incorporating ideas from tensegrity theory
[29, 244, 261]. The other type of model, which can be considered the direct descendent
of the earlier simplistic models, models the cell as a solid with exotic rheological prop-
erties [258, 178, 160]. Cell mechanics is an active field of research and the advantages
of each model are still widely debated.

2.2. The Cell Cycle. Biologically, the process of cell division is governed by the
cell cycle, which is common to all eukaryotic cells.2 This describes the sequence
of events which leads to the division of a mother cell into two daughter cells. The
processes involved are relatively well known [196], but in the following we will give a
simple overview of the components of the cycle.

M

G1 G0

S

G2

Fig. 2.3 A schematic diagram of the cell cycle, displaying the phases in order.

The cell cycle, as shown in Figure 2.3, may be characterized as having two states:
the mitotic phase, or M phase, and the interphase. The interphase may be further
subdivided into the synthetic phase or S phase, and two gap phases which lie between
the M and S phases. In the S phase, the DNA in the cell is replicated in order to
create two copies of the chromosomes. The M phase can typically be divided into two
parts: in mitosis, the “sister” chromosomes are separated and the nucleus is divided
into two, and in cytokinesis the cell itself divides, by the deposition of a new cell
membrane between the two nuclei. Typically in animal cells, this deposition occurs
from the existing cell wall inwards, leading to a gradual “pinching off” of the two cells
from each other. Once this has occurred, the cell cycle is said to be completed. The
first of the two gap phases, the G1 phase, occurs before the S phase, while the G2

phase occurs before the M phase. The most important of these is the G1 phase. It
is here that the cell “decides” whether it will proceed with division. While the other
stages of the cell cycle for a particular type of cell have different but fairly constant

2Eukaryotes include all multicellular organisms and protists.
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durations, the cell may pause for a period of time in stage G1 if the conditions for
division are unfavorable or inhibitory signals are received from other cells. It may also
enter a state, known as G0, in which it does not divide for an extended period of time.
If this is the case, the phase G1 may only be reentered with difficulty, if at all. Many
of the differentiated cells in the human body are in this state. On the other hand, the
purpose of phase G2 is to allow the cell to double in size. This size increase—during
which the organelles of the cell are duplicated—begins in phase S, but the replication
of chromosomes often takes less time than the swelling, which “catches up” during
the G2 phase, before mitosis occurs.

Numerous experiments on tissues have shown that stress fields, and mechanical
properties in general, can have a strong effect on cell division. The fundamental
mechanism which mediates this behavior is known as mechanotransduction. This
process, which is still not fully understood, is how the cells in a tissue sense the
mechanical properties of their surroundings, and alter their function correspondingly
through changes in biochemical pathways. Early experimental investigations into
mechanotransduction examined how cell division was affected by changes in the cell’s
shape [91, 67]. In particular, by varying the adhesiveness of a culture medium on
which cells are deposited, it was found that a greater proportion of cells entered the
S phase of the cell cycle if they were flattened rather than spherical [91].

As time progressed and experimental techniques improved, the focus shifted from
trying to evaluate the gross behavior of a cell being deformed to attempting to iden-
tify the actual mechanotransductive process within the cell. Beginning in the late
1980s, researchers discovered ion channels which were activated (or inactivated) by
the stretching of the cell membrane (stretch-activated ion channels) [265]. Further
investigations have uncovered a number of other possible mechanisms, including (but
not limited to) tension in the ECM being transmitted to the cell through integrin
adhesion receptors, thickness or curvature changes in the cell membrane, attachment
of the cytoskeleton or ECM molecules to the ion channels themselves, and the unfold-
ing of proteins within the cell (which could possibly expose binding sites which were
previously inaccessible) [142, 278, 120, 152]. One of the key drivers of the mechano-
transduction process is the tensegrity architecture of the cells and their surrounding
tissue [153, 154]. A mechanical force applied to an organ is transmitted through the
hierarchy of tensegrity structures to the microscopic level, thus deforming the cell.
In turn, the force is transmitted to the cell’s cytoskeleton, which—being a tensegrity
structure itself—deforms, thus distorting key molecules within the cell, leading to a
physiological response.

Much of the current investigative effort into mechanotransductive effects takes
place on the tissue scale: for instance, Farge [89] showed that morphogenetically im-
portant gene pathways in Drosophila embryos were activated by mechanical stimula-
tion of the whole embryo. The mechanotransductive pathways in certain tissues and
pathologies are better understood than others—for example, in bone growth [46] and
cardiac hypertrophy [94]—while only recently has a pathway governing the influence
of ECM stiffness (and hence stress fields) on angiogenesis (capillary growth) been un-
covered [184]. It is to be stressed that mechanotransduction in any two given tissues
is likely to be greatly different, depending on the cells’ properties and how they are
attached to each other and the ECM.

These findings into the micromechanics of mechanotransduction appear to confirm
the viewpoint that it is stretch, rather than any other mechanical field (e.g., stress or
strain) that the cells are “truly” experiencing—given that the proposed mechanisms
all essentially depend on the deformation of protein molecules. Earlier models which
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attempted to correlate cell responses with stress or strain may have been using an
experimentally convenient rather than physiologically justified measure of deforma-
tion, or may have been unconcerned with the precise definitions of these terms: in
particular, both stress and strain are only valid at the macrolevel, arising due to aver-
aged forces and deformations, respectively, at the microlevel [144]. Indeed, so-called
baroreceptors (stress receptors) in nerves are actually activated by stretching [54].

2.3. Muscle Tissue. Skeletal muscle is a strongly hierarchical tissue, formed from
bundles of muscle fibers bound together by connective tissue [245]. A muscle fiber is
in fact a single cell which can be several centimeters long. Within each fiber are many
myofibrils which extend the length of the cell and are in turn formed from arrays of
myofilaments. These are arranged as a lattice of sarcomeres, which comprise inter-
locking myosin and actin myofilaments. Muscles contract due to these myofilaments
sliding past each other in response to electrical stimuli. Heart muscle has a similar
structure to skeletal muscle, with a number of differences, such as a branching fiber
structure and a significant collagen matrix.

There has been much investigation into the micromechanics of muscle growth
[245, 256, 217]. While muscle fibers usually stop dividing after birth, they may be
regenerated in the case of injury. Moreover, fibers may grow longer in order to ensure
that the muscles grow in tandem with the bones to which they are attached. As
the stress level on the muscle increases, so does the diameter of the muscle fibers.
Conversely, muscles which are immobilized, atrophy. The lengthening or thickening
of fibers is enacted by the addition of sarcomeres to the myofibril in series or parallel,
respectively. These mechanisms also play a role in cardiac hypertrophy [245].

2.4. Cell Adhesion and the Extracellular Matrix. It is imperative for the struc-
tural integrity of many tissues (in particular, epithelial tissues) that the cells are
attached together. This is achieved by cell adhesion molecules (CAMs) which are
proteins embedded in the cell membrane [2]. There are many types of CAMs, most
notably cadherins and integrins, and each has a role in linking a cell to other cells or
(in the case of nonepithelial tissues) to the ECM.

In mature tissues, particularly in epithelia, cells more often form tighter bonds
known as cell junctions. Cell junctions can be classified as being one of three types.
Occluding junctions form tight barriers between epithelial cells that prevent fluids
from passing freely through that epithelium. Communicating junctions allow cells to
exchange chemical or electrical signals. The third type, the anchoring junction, is
the most important for structural integrity of a tissue. These junctions connect the
cytoskeleton of a cell either to the extracellular matrix or to the cytoskeleton of a
neighboring cell. The four basic types of anchoring junction are adherens junctions,
desmosomes, focal adhesions, and hemidesmosomes. The first two link cells to other
cells and employ cadherin proteins, while the second two link cells to the ECM and are
formed of integrins. As previously mentioned, these anchoring junctions are attached
to the cytoskeleton of the cell. Specifically, adherens junctions and focal adhesions are
attached to the actin filaments, while desmosomes and hemidesmosomes are anchored
to the intermediate filaments.

The extracellular matrix is a heterogeneous structure that, among other func-
tions, helps to bind cells together. It can be thought of as a combination of two types
of macromolecules [2]. The first of these classes includes the glycosaminoglycans,
which are polysaccharide chains usually found bonded covalently to proteins, forming
proteoglycans. Embedded in a fluid, these form a gel-like matrix which resists com-
pression. The second class comprises the fibrous proteins, especially collagen, elastin
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and fibronectin, which are embedded in the gel. Collagen molecules are arranged in
long fibrils, which have a high tensile strength and have a characteristic arrangement
depending on the function of the organ, for instance, as parallel bundles in tendons,
or interwoven in perpendicular directions in skin. Elastin is a macromolecule which
is crosslinked to form elastic fibers. These fibers have a structure which mimics the
polymer chains in rubber and give tissues their elastic properties. Fibronectin is one
of many molecules that link cells to the fibrous proteins embedded in the matrix. All
these macromolecules are largely created by fibroblasts, specialized cells which reside
in the ECM. These cells also assist with the alignment of the collagen fibrils in the
matrix.

2.5. Mechanics of Cell Ensembles. In embryonic tissues, cells may not have
managed to form advanced cell junctions (see above), and the coherence of the tissue
is due almost entirely to cell adhesion molecules. This allows the cells to rearrange
quite readily. As such the tissue can, on the long timescales associated with growth,
be more realistically modeled as a fluid rather than as a solid.

The nature of the adhesion between cells can further justify this idea. In any
drop of liquid, the constituent molecules form weak bonds between themselves, such
as hydrogen bonds or van der Waals forces, which are largely in balance. At the
interface between two different fluids, such as oil and water, this balance breaks down
due to the difference in bonding strength between dissimilar molecules. This manifests
itself at the large scale as a surface tension on the fluid interface. The effect of this
tension is to minimize the surface area of the interface (subject to the mechanical
properties of the fluids) leading to a separation of the two fluids into two phases, as
is commonly seen in kitchen-table experiments with oil and water.

The same aggregation of a mixture into immiscible regions is seen in cell popu-
lations. Experiments show that on dissociating an embryonic tissue made up of two
types of cells—and reforming the tissue in a random configuration—the two popu-
lations of cells gradually rearrange into the original two phases [31]. The accepted
reason for this behavior is the differential adhesion hypothesis, which posits that the
binding energy between cells of the same type is distinct from that between cells of
different types [240, 175]. While experiments have verified this assumption, recent
studies have shown that cell–cell adhesion is not the only factor in this rearrangement
of cells; tensile forces in the cortical cytoskeleton can also play a role [165].

In the next section we will examine the continuum mechanical models that have
been used to describe the behavior of biological tissues, from viscous fluid models to
mixture theories and elasticity. Following this we will describe how growth effects are
accounted for in nonlinear elastic models, before considering a number of examples of
growth in other continuum models.

3. Modeling Tissue at the Macroscale. In this section we will review the con-
tinuum models for growth in biological tissues. However, we first need to outline the
continuum models that are employed to describe tissue deformation. In general these
can be divided into fluid and solid models. While blood, for example, is obviously
modeled as a viscous fluid, this is also the case for cell aggregates over a long timescale,
justified by the evidence of section 2.5. Over shorter timescales, the aggregate behav-
ior would become more complicated: as long as the deformation remains sufficiently
small, a tissue under loading would behave elastically as the cells will not have time
to rearrange before the loading is removed. Over intermediate timescales one would
therefore expect the aggregate to deform viscoelastically, retaining the characteristics
of each type of model.
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This bulk behavior is true of most tissues in the body, as chemical bonds will
rearrange and cells will migrate over a long timescale, while remaining attached but
stretched over short timescales. To further complicate matters, one must include the
possibility of plastic deformation if the strains get too large (as bonds break), and
nonlinear constitutive models (both fluid and solid), taking into account the complex
microstructure of the tissue. A review of various rheological models for living tissue
can be found in [258].

The mechanical models described above are all single-phase models, in that all
parts of the tissue respond in the same way to applied stimuli. True tissues, however,
have a much more complicated structure and behavior, being composed (as discussed
in section 2) of different materials which obey different constitutive relations. Many
researchers have thus disregarded the single-phase model of tissue and instead consid-
ered multiple-phase or mixture models. These models work on the principle that the
material being studied is formed of n different phases, each of which may be modeled
by some continuum constitutive law.3 For instance, one type of mixture model is
the poroelastic model, which incorporates an elastic phase and a fluid phase. The
key assumption behind the mixture approach is that at any point in the body, all
phases exist simultaneously. This is, in a sense, a “smearing out” of the more realistic
situation whereby any small region of the tissue contains a certain proportion of each
phase. Mathematically one may state that the mixture model is the result of homog-
enizing the aforementioned realistic situation, although this is not, in general, how
the mixture model is derived. Instead, each phase i is presumed to have some volume
fraction φi, where for tissues the phases are usually assumed to completely specify
the material, i.e.,

∑n
i φi = 1. Then, we apply conservation of mass, momentum, and

energy to each of the phases in turn, noting how the quantities may be transferred
from one phase to another. The conservation equations governing mixture behavior
were first definitively determined by Truesdell [252].

Mixture theory has been applied to biological tissues for over thirty years [16].
A common application of mixture theory is in the modeling of tumors, where the
proportion of fluid in any region of the tumor (and hence its porosity) is important,
especially in determining the spatial distribution of the nutrients and drugs which,
respectively, aid and hinder the tumor’s growth. In these models two phases are
typically considered, namely the cells and the interstitial fluid in which they are
embedded. Not all models treat the cell phase as a solid skeleton. For instance,
Byrne and Preziosi [40] make a number of assumptions about the movement of tumor
cells as the tumor as a whole undergoes a growth process; they deduce that the cell
phase can be treated as a “fluid-like material” in that it responds to the velocity
gradient rather than the strain. This theory echoes the modeling of tissues as viscous
fluids, as explained earlier.

Single-phase models for growth using nonelastic constitutive laws have also been
formulated and can produce useful results; for example, see the paper by Basan et al.
[18], who modeled a growing population of tumor cells under pressure using a com-
pressive viscous fluid model. However, we will concentrate in this section on models of
elastic growth (with discussion of inelastic effects where appropriate). In part this is
because elastic behavior is necessary for the intriguing phenomenon of residual stress.
We will begin by recounting a short history of mathematically based tissue growth
models.

3As such, single-species models such as elastic or fluid models are subsumed into the multiple-
phase approach.
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3.1. A Short History of Macroscale Growth Models. Perhaps the first widely
recognized investigation into growth in biology was made by D’Arcy Thompson in
1917, when he published On Growth and Form [250]. This treatise contained many
original ideas, most notably Thompson’s realization that the connection between an-
imals which were closely related but physiologically different could be elucidated by
superimposing a Cartesian grid on the body of the first animal, and applying a simple
mapping which would transform the image to a form closely resembling the second
animal. This method could also be applied to differences between juvenile and adult
shapes of the same animal. He consequently realized that the differences could be ex-
plained by growth occurring at different rates in different parts of the body, causing a
noticeable change in the morphology of the animal during development. Huxley [148]
extended this work and placed it in a more mathematical setting by introducing the
concepts of “growth gradients” and “differential growth.” In particular, consider the
relative growth of an organ compared to the whole of the body in which it is contained.
If y is the length scale of the organ, and x is the length scale of the body, they can often
be related by a power law of the form y = axb, for constant a and b. This allometric

theory of growth was later expanded upon by Skalak et al. [234]. A surprising result
of this type of modeling is that the mass of an organism during its growth process
can be predicted based on metabolic processes in its cells. West et al. [269] showed
that the mass of a wide variety of animal species grew according to the equation

(3.1)
dm

dt
= am3/4 − bm,

where a, b are constants (different for each species), which are dependent on the
metabolic characteristics of the cells. The key assumption here is that the metabolic
rate B depends on the total body mass m through the power law relation B ∝ m3/4,
which is true for a wide range of biological organisms and can be shown to derive
from a consideration of the fractal nature of internal transport systems such as blood
vessels [270].

The work of Thompson was the first of many that provided a kinematic description
of growth [186, 230, 66]. However, it wasn’t until 1968 that continuum mechanics were
applied to tissue growth, when Hsu [141] investigated homogeneous growth in a class
of linear viscoelastic materials. Cowin and Hegedus [62] formulated the equations in
finite elasticity for growth by densification, which were later applied to the problem
of bone growth.

The next contribution to biological growth using finite elasticity was made by
Skalak and coworkers [233, 234]. In contrast to the densification theory, Skalak [233]
considered more general volumetric growth which could give rise to incompatible
deformations, i.e., where growth would cause the structure to lose its continuity,
were it not held together. To maintain this continuity, the body in its final state
must experience internal stresses, which are the residual stresses seen in experiments.
Skalak’s contribution was to note that this implied that the deformation under growth
could be considered to be the superposition of two deformations: a growth, after
which the structure would have a nonzero compatibility tensor, and an additional
deformation that would cause the overall compatibility tensor to become zero. This
is exactly analogous to the case of distributed dislocations in a crystal, where the
density of dislocations is specified and an elastic response is caused such that the
crystal remains continuous.

This work led to an important paper by Rodriguez et al. [218], on which much
of the current research into growth in tissues is ultimately based. The concept of a
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deformation gradient decomposition was introduced, so that growth and the elastic
response to that growth could be considered separately. This theory was further
enhanced by Klisch et al. [164] and by Lubarda and Hoger [182]. (Before proceeding
it must be noted that the genesis of residual stress may be separate from incompatible
bulk growth [105] by explicitly accounting for the different rates of growth between
various components of the tissue. This will be covered in more detail in section 3.5.)

In this section we will present a basic overview of finite elasticity theory before
explaining the deformation gradient decomposition method, including discussion of
the resulting incompatibility of the growth, extensions to the theory, applications, and
a simple example. Other theories have been proposed to study growth and remodeling
in biological tissues, and we will mention in brief some other growth laws in finite and
infinitesimal elasticity, together with an overview of bone remodeling theories. Finally
we will describe the inclusion of growth in mixture theory.

3.2. Modeling Tissue Using Finite Elasticity. The most notable feature of elas-
tic materials is that when they undergo some loading, due to body forces such as
gravity or to tractions applied to their surfaces, they deform in such a way that the
deformation disappears when the loading is removed. The most commonly known
type of elastic law is linear elasticity, which is governed by Hooke’s law: the displace-
ment in a solid is proportional to the stress field.4 However, we will consider more
general types of elastic material, namely finite (or nonlinear) elastic materials, where
the stress–strain behavior is not in general linear.

Continuum mechanics, in essence, is a combination of kinematics (the descrip-
tion of the deformation, including density changes according to local conservation of
mass), mechanics (the stress field in the material, governed by the conservation of
momentum, or Newton’s laws), and a constitutive law which links the two. In par-
ticular, for finite elasticity, the kinematics are described by the deformation gradient
(and through this the strain field), and the constitutive law is defined using a strain
energy function, through which we know the elastic energy in the material, given a
particular deformation.

In this section we will outline these concepts in more detail,5 in preparation for
a discussion of the deformation gradient decomposition method of Rodriguez et al.
[218], which incorporates growth effects.

Consider an elastic body B0 which is in an unstressed (or reference) state. This
body is then subjected to a deformation process which takes it to a new (spatial or
current) state Bt. We define a spatial variable X (the Lagrangian coordinate) in B0,
and similarly we define the Eulerian coordinates to be given by the spatial variable
x in Bt. The mapping between the two states—which describes the deformation—is
given by x = χ(X, t).

This formulation leads us to consider the deformation gradient

(3.2) F =
∂χ

∂X
.

This is a second-order tensor which must satisfy J := detF > 0 so that the described
deformation process is invertible. The deformation gradient may be used to define an
important symmetric deformation measure known as the right Cauchy–Green tensor,

4Compare with a linear spring, where the extension is proportional to the loading.
5This exposition is by necessity rather elementary; for a fuller explanation of the principles

involved in nonlinear solid mechanics we refer the reader to [132] or, from a tissue mechanics per-
spective, to [60].
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C = F
T
F . In turn this may be used to define the most common strain measure, the

Green–Lagrange strain tensor E = 1
2 (C − I).

We assume that the density of the body Bt is given by a function ρ(x, t). For a
body not undergoing growth, the rate of increase of mass is zero, so that the principle
of conservation of mass for an element V (t) ⊆ Bt reads

(3.3)
d

dt

∫

V (t)

ρ d3x = 0,

and, on using Reynolds’ transport theorem, we obtain the equation for mass conser-
vation,

(3.4)
∂ρ

∂t
+∇ · (ρv) = 0,

where v = ∂χ/∂t is the velocity field of the body and the divergence is that calculated
using the current coordinates of the body, or ∇ = ∂/∂x. Note that on changing
variables from x to X, using d3x = Jd3X, the equation of mass conservation may
be written

(3.5)
d(Jρ)

dt
= 0

in the reference configuration.
Conservation of momentum gives

(3.6) ∇ · σ + ρb = ρ
dv

dt
,

where σ(x, t) is the Cauchy stress field and b(x, t) is the body force, both defined on
the current configuration Bt. In particular σ is defined so that t = σn is the force
(referred to current axes) per unit area (defined in the current configuration) acting
on a surface with normal n. For problems of tissue deformation the body forces can
often be neglected, and the deformation process can be considered to be quasistatic,
resulting in the simplified equation ∇ · σ = 0. Sometimes it’s easier to map this
to the (known) reference configuration. A useful measure in this respect is the first
Piola–Kirchhoff stress tensor, which may be given in terms of the Cauchy stress tensor
by the expression

(3.7) P = JσF−T;

this is defined for points in the reference configuration B0.
6 In contrast to σ, P is

defined so that PN is the force (referred to current axes) per unit reference area,
acting on a surface (in the reference configuration) with normal N . This may appear
to be a complicated definition, but using P often leads to simpler equations as it is
based on the reference configuration. The equilibrium equation for P in the absence
of body forces and inertial terms is

(3.8) ∇0 · P = 0,

6We follow the same convention as Holzapfel [132]; equivalent formulations exist in which P =
JF−1

σ, such as Ogden’s nominal stress tensor [206]. Clearly, in any application the definitions
should not be interchanged.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODELING GROWTH IN BIOLOGICAL MATERIALS 69

where ∇0 = ∂/∂X is the gradient operator with respect to Lagrangian coordinates.
Other common measures of stress are often used, notably the second Piola–Kirchhoff
stress tensor S = F

−1
P . This does not have a physical interpretation [132] but

is useful computationally as it is symmetric and defined solely with respect to the
reference configuration.

The final component to this theory, at least for our purposes, is a constitutive
relation which links the stress in a body to the deformation that it experiences. This
relationship is characterized by the strain energy function W = W (F ), which may
be written—due to objectivity assumptions, where the stored energy of a body is
assumed to remain constant under rigid body motions—as a function of C, viz. W =
W (F ) = Ŵ (C). We can also write Ŵ (C) = W̃ (E). The first Piola–Kirchhoff stress
P may be given in terms of W by the relation

(3.9) P =
∂W

∂F
,

with the expression for σ following from (3.7). Equivalently one may obtain the
second Piola–Kirchhoff stress by the expression

(3.10) S = 2
∂Ŵ

∂C
=

∂W̃

∂E
.

Different forms of the strain energy function can be used to model different types of
material, from rubber to foam to biological tissue. If the material is incompressible,
a hydrostatic pressure is added to the expression for σ as a Lagrange multiplier for
the constraint detF = 1. One example of an incompressible material is the neo-
Hookean material, for which Ŵ = µ

2 (trC − 3); in the limit of infinitesimally small
deformations the constant µ is the shear modulus of the material. A number of strain
energy functions that have been applied to tissues, including Fung’s exponential strain
energy function, are described in [60].

The equilibrium equation, the constitutive relation (3.9) or (3.10), and boundary
conditions on the body that specify either the displacement or the traction, form a
closed system for the deformation χ(X, t) of the body.

3.3. Growth in Finite Elastic Models. The preceding equations are well estab-
lished and completely describe the deformation of a nonlinearly elastic solid. However,
several complicating factors come into play if the deformation of the body includes
a component due to growth of tissue. To begin with, the right-hand side of the
conservation of mass equation (3.3) is nonzero. If the rate of increase of mass per unit
current volume is given by a function γ(x, t), then

(3.11)
d

dt

∫

V (t)

ρ d3x =

∫

V (t)

γ d3x,

leading to

(3.12)
∂ρ

∂t
+∇ · (ρv) = γ,

in the current configuration, or

(3.13)
d(Jρ)

dt
= Jγ
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in the reference configuration. Note that since we have a volumetric source of mass in
(3.12) the model is implicitly multiphase. Overall, mass must of course be conserved;
the source term represents transfer of mass from a phase not explicitly treated (which
could be thought of as the extracellular fluid), and which occupies a small volume and
does not contribute to the momentum balance. In most applications of this theory,
the equation for the conservation of linear momentum remains the same (see, for
example, [182]). However, in the most general formulation this is not actually the
case, and the growth process may introduce sources of momentum other than the
mere convection of mass. This is discussed further by Epstein and Maugin [88] (for
single-species materials), by Kuhl and Steinmann [171] (in a more abstract setting),
and by Garikipati et al. [106] (for mixture models).

Simply prescribing the rate of mass increase γ is not enough to capture the full
effect of the tissue growth, however, especially when the growth occurs anisotropically
or inhomogeneously, for reasons which will become clear shortly. Instead, we introduce
the idea of Rodriguez et al. [218], namely the deformation gradient decomposition. In
this formulation, the deformation from B0 to Bt is decomposed into two steps. The
first deformation identifies with each point in B0 an arbitrarily small neighborhood of
that point, and deforms that neighborhood into a new, grown, stress-free state. The
collection of these grown states is denoted Bg and is not necessarily compatible—i.e.,
parts of the tissue may intersect. The second step applies an elastic deformation to
the incompatible state Bg, obtaining the state Bt—which may now contain residual
stresses due to the restoring of compatibility to the body.

The overall effect is a multiplicative decomposition of the deformation gradient F
into two parts:

(3.14) F = F eF g.

Here F g is known as the growth tensor and takes B0 to Bg, while F e is referred to
as the accommodation tensor or the elastic part of the deformation gradient, taking
Bg to Bt, as shown in Figure 3.1. This idea is a mathematical formulation of the
cutting experiments on (for instance) arteries or rhubarb, recounted in section 1.
The deformation F

−1
e from Bt to Bg is the “cutting” process which takes a grown,

residually stressed configuration (Bt) and results in a (possibly infinite) collection of
grown, unstressed bodies (Bg). Thus the decomposition physically corresponds to a
cutting of the body into infinitely many sections which are then grown (F g) followed
by a gluing of the sections back together (F e), resulting in a stress field.

The exposition that we will give here does not fully capture the theory behind
this method, but will serve to give a flavor of the mechanisms involved. A much more
comprehensive presentation can be found in Lubarda and Hoger’s work [182].

The decomposition of the deformation gradient was originally seen in theories
of plastic deformation. The first researchers to write down the decomposition were
Kröner and Seeger [166] and Bilby et al. [23]. However, Lee [176] often gets the credit
for the discovery. As such the decomposition is sometimes known as the Kröner–
Lee decomposition, or the unwieldy Bilby–Gardner–Stroh–Kröner–Lee decomposition
[185]. For an overview of the early history of the decomposition we refer the reader
to [185], and to [181] for an application to thermoelasticity.

There are of course limitations to the types of tissue growth that can be modeled
by multiplicative decomposition. First, the tissue undergoing growth must behave
elastically on the timescale of growth, with insignificant relaxation of stresses. Now,
most tissues undergo a certain amount of relaxation, but this is either small com-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODELING GROWTH IN BIOLOGICAL MATERIALS 71

B0

Bg

Bt

F = F eF g

F g F e

Fig. 3.1 An illustration of the deformation gradient decomposition F = F eF g.

pared to the overall deformation, or is neglected in the interest of obtaining quali-
tative results. Also implicit in the deformation gradient decomposition is that the
elastic timescale (associated with elastic wave propagation) is much shorter than the
timescale associated with growth [114]. This requirement ensures that the elastic de-
formation due to accommodation (through F e) occurs effectively instantaneously in
response to the growth F g. Finally, the growth process being modeled must be able
to be written as a deformation gradient. This is not always possible; for instance,
growth due to accretion on a surface is not a bulk process but rather one which is
only valid on the domain boundaries.

Thus there are some types of growth which cannot be modeled using this decom-
position, but it remains valid for a wide range of applications, especially for those
exhibiting a degree of residual stress. The advantage of the multiplicative decomposi-
tion is that growth and elastic response may be treated separately. The growth tensor
F g can be specified as a function of stress, position, density, nutrient concentration,
or any number of other quantities that may have an effect on the growth rate of
the tissue. Then the elastic response tensor F e is chosen so as to make the overall
deformation compatible. How this is achieved in practice will be summarized later.

To see how this decomposition can simplify the equations describing the growth
process, take the equation (3.13) for conservation of mass. We have

(3.15) J = detF = detF e detF g = JeJg,

where Jg and Je are, respectively, the determinants of the growth and accommodation
tensors. Then (3.13) becomes

(3.16)
d

dt
(JeJgρ) = JeJgγ.

Consider a small region dV0 of B0, with mass dm0 = ρ0dV0. Under the transformation
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F , this region will have mass dm = ρdV in Bt. If we apply the assumption that all
the mass production takes place from B0 to Bg only, then the aforementioned small
region will have the same mass in Bg and Bt, i.e., dm = ρgdVg = ρdV , where ρg is the
density with respect to Bg. Since dV = JedVg, we have ρg = Jeρ. Then, from (3.16),

(3.17)
dρg
dt

+
ρg

Jg

dJg
dt

= Jeγ.

However,

(3.18)
dJg
dt

=
d

dt
detF g = (detF g)F

−T
g : Ḟ g = Jgtr(F

−1
g Ḟ g).

Using this identity and (3.17) gives us

(3.19)
dρg
dt

+ ρgtr(F
−1
g Ḟ g) = Jeγ.

In applications, this expression is often simplified by introducing assumptions
on the nature of the growth. In particular, the two assumptions most commonly
applied are of constant-density growth and constant-volume growth. In the former,
we suppose that the density is unchanged by the growth process, so that ρg = ρ0 and
hence dρg/dt = 0. Then (3.19) becomes

(3.20) γ = ρ tr(F−1
g Ḟ g).

This can now be treated as a definition for γ; in other words the rate of mass increase
can be determined if F g is specified. In this case the equation for conservation of
mass (3.17) is

(3.21) ρ
dJg
dt

= Jgγ.

Note also that dρg/dt = 0 can be rewritten

(3.22)
dρ

dt
+ ρ tr(F−1

e Ḟ e) = 0.

Constant-density growth is usually coupled with the assumption of an incom-
pressible tissue, so that additionally Je = 1 and hence ρ = ρg = ρ0 = constant. For
constant-volume growth, the change in volume from B0 to Bg is assumed to be zero,
so that dV0 = dVg, or Jg = 1. Then the tissue growth occurs by densification only,
with

(3.23)
dρg
dt

=
d

dt
(ρJe) = Jeγ.

This is an approach which is valid for tissues such as bone, where little volume change
accompanies mass growth; an implementation is briefly discussed in section 3.4.

While the mass production is assumed to occur only between the states B0 and
Bg, the elastic response occurs only between Bg and Bt, as the state Bg is assumed to
be unstressed. Thus, if the strain energy function W is assumed to be the elastic strain
energy per unit grown unstressed volume, (i.e., in state Bg), then the second Piola–
Kirchhoff stress tensor referred to the state Bg is given, with reference to (3.10), by

(3.24) Se =
∂W̃

∂Ee
,
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where the subscript “e” refers to the fact that the quantity is formed using the elastic
deformation gradient F e rather than F . We can then form the Cauchy stress tensor
by using the expression σ = J−1

e F eSeF
T
e .

3.3.1. Incompatible Deformations. We have stated that if the deformation F g

related to growth creates an incompatible deformation, then the tissue generates a
residual stress by enforcing the compatibility of the deformation. But how do we know,
simply by analyzing the growth tensor, whether a deformation is incompatible?

This was a question discussed by Skalak et al. [235], who looked at the problem
by analogy with the situation in linearly elastic materials. For simply connected
materials experiencing an infinitesimal strain field eij , the compatibility condition
can be written η = 0, where η = ∇ ∧ ∇ ∧ e, i.e., εilmεjknemn,lk = 0, where εijk
is the Levi-Civita tensor.7 On the other hand, for multiply connected domains, an
additional condition must be satisfied, namely,

(3.25)

∮

C

(
eij + (x0

k − xk)(eij,k + ekj,i)
)
dxj = 0

for each closed curve C in the body, where x0
k is a point on C. An (incompatible)

elastic deformation satisfying η = 0 but not (3.25) is termed a Volterra dislocation.
Thus we may identify two possible sources for an incompatible deformation: a lo-

cal incompatibility, where for any point in the material such that η &= 0, an arbitrary
region around that point is taken to an incompatible configuration by the deforma-
tion; and second, a geometric incompatibility where any subregion of the material is
transformed to a compatible state under the growth, but the geometry of the body
as a whole causes the overall deformation to be incompatible.

Analogous compatibility conditions may be found for finite deformations. Natu-
rally, they are much more complicated. For instance, in Cartesian coordinates if the
Cauchy–Green tensor is given by Cij , then the local compatibility condition is the
requirement that the Riemann–Christoffel tensor is zero, or Rijkl = 0, where

(3.26) Rijkl = Γjli,k − Γjki,l + C−1
pq (ΓjkpΓilq − ΓjlpΓikq)

and Γijk = 1
2 (Cjk,i + Cik,j − Cij,k) are Christoffel symbols. Less is known about

Volterra dislocations (geometric incompatibility) in finitely deformed elastic materi-
als, but Casey [42] has made a recent investigation into these. Thus, for any residually
stressed biological material, the nature of the incompatibility is determined by calcu-
lating the Riemann–Christoffel tensor of the deformation between the reference state
and the stress-free state: if this tensor is zero, then the residual stress in the body can
be relieved by some cutting and unloading; otherwise the body needs to be divided
into infinitesimally small parts to relieve the stress.

Further analysis of the Riemann–Christoffel tensor with application to residual
stress in tissues can be found in [249, 161, 103].

3.3.2. Further Extensions of the Theory. In the deformation gradient decom-
position method, one of the key issues is to determine the elastic part of the defor-

7The Levi-Civita tensor is given by

εijk =







+1 if (ijk) = (123) or (231) or (312),
−1 if (ijk) = (132) or (213) or (321),
0 otherwise.
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mation gradient F e. The definition given was to choose F e so that the overall de-
formation described by F eF g was compatible. Thus we could identify the Riemann–
Christoffel tensor Rijkl associated with this deformation, and solve Rijkl = 0 (together
with mass and momentum conservation and the constitutive relation (3.24) ) for F e.
However, even with a simplified geometry the equations are certainly nontrivial [103],
and solving them would seem to be an impractical approach.

This is not, however, how the system of equations is solved in practice. If F g is
given, then the accommodation tensor is given by F e = FF

−1
g from (3.14). Thus,

the stress field Se = Se(F e) in the material, given by (3.24), can be found as a
function of the overall deformation gradient, i.e., Se = Se(FF

−1
g ), and the system of

equations can be solved for the overall deformation gradient F . The same process can
be followed if the tissue growth is to be solved for numerically as a time-dependent
problem, using incremental elasticity embedded in standard finite element codes. The
elastic tensor Cijkl is found from the strain energy function and the accommodation
tensor FF

−1
g , and is used to update the overall deformation according to standard

procedures, giving the overall deformation gradient F at the next time step. More
details and a specific application of this approach can be found in [128].

As an example of another situation in which the deformation gradient decompo-
sition could be used, Garikipati et al. [107] set up a model for a nongrowing tissue
in which the deformation gradient was multiplicatively decomposed into a config-
urational change modeling the underlying deformation of the microstructure, and a
mechanical response (or accommodation). In this formulation the intermediate config-
uration (corresponding to Bg) was compatible. Equilibrium equations were found by
appealing to a variational formulation and extracting the Euler–Lagrange equations.

Chen and Hoger [47] realized that the deformation gradient decomposition was
somewhat speculative, and endeavored to place it on a sound kinematic footing. This
was achieved by treating the current (Eulerian) configuration as the reference config-
uration, thus sidestepping the issue that certain points in the body Bt did not exist in
B0. Other researchers have tried to make the model more physical, such as Ambrosi
and Guillou [5], who took the thermodynamical inequalities underlying the theory and
incorporated the effect of chemical transport, which is important when considering
nutrient uptake by growing tissues such as tumors.

It should be noted that there are still open questions regarding the modeling of
growth [105]. Apart from the obvious matter of the choice of growth tensor (some
examples of which are noted below), a comprehensive understanding of the thermody-
namical aspects of growth is still elusive [105]. However, in simulations of growing tu-
mor spheroids, Narayanan et al. [199] have investigated the effects of cell proliferation
on the rates of change of free energy, providing a basis for further study in this area.

3.3.3. Applications. Due to the nonlinear nature of the governing equations, the
applications of this theory have largely been limited to simple geometries such as
spheres and cylinders. These include investigations into the residual stress in tumor
spheroids [6, 7] and arteries [248, 246], the latter studies motivated by the cutting
experiments of Fung and others, as mentioned in the introduction. Other situations
where this theory has been used include a study into the buckling of spherical shells
that are undergoing growth [113, 20], a finite element model of a skin growth experi-
ment [238], and the growth of atherosclerotic plaque in arteries [169].

While the geometries in the investigations above may be simplified, a wide variety
of growth tensors F g has been proposed. Clearly, the simplest form of growth tensor
that can be imposed is a constant tensor. This was one of the examples proposed
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by Rodriguez et al. [218], which we will summarize in the next section. However,
the growth tensor may be prescribed to be functions of other physical quantities.
Ambrosi and Mollica [6] took their growth tensor—as an illustration of residual stress
genesis—to be isotropic and a certain function of Lagrangian position. Goriely and
Ben Amar [114] compare the results of defining the growth tensor to be functions of
either Lagrangian position or Eulerian position. A significant difference was found
between the two formulations, whereby the growth was exponential in the Lagrangian
case but quadratic or linear in the Eulerian case.

Alternatively, it may be preferable to formulate an equation for the rate of growth
Ḟ g. In their theory of stress-modulated growth of the aorta, Taber and Eggers [248]

took the principal stretches λgi associated with F g and proposed that the λ̇gi were
proportional to the Cauchy stress field in the artery wall. Later [246], this theory was
adapted so that the λ̇gi were proportional to the difference between the stress field and
a reference stress state; this had the effect that the artery grew in order to maintain
a stress field which was at this reference state. Shear stresses due to fluid flow were
also considered in this model. A comparable model was proposed by Rodŕıguez et al.
[219], which incorporated the anisotropy of the arterial wall. Socci et al. [238] applied
a similar law in their finite element study of skin growth, although the state to which
the tissue tended to grow was defined by a given deformation gradient rather than a
stress field.

Following up on their original model of tumor growth, Ambrosi and Mollica [7]
modified their growth theory, choosing an isotropic growth tensor F g = gI, where
the rate of growth was given by

(3.27) ġ ∝ e−(s/s0)
2

(n− n0)g;

here s = trP and n is the nutrient concentration. Lubarda and Hoger [182] posited
an isotropic stress–growth law which had a different behavior depending on whether
the stress was tensile or compressive; if F g = gI, then ġ = k(g)trSe, where

(3.28) k(g) =





k+0

(
g+ − g

g+ − 1

)m+

, trSe > 0,

k−0

(
g − g−

1− g−

)m−

, trSe < 0,

where k±0 , m
± are constants, and g± are, respectively, the highest and lowest values

of the growth tensor that can be achieved through the mass addition (or removal)
process. This form was chosen in order to avoid runaway growth or resorption in
the model, and was applied to arterial mechanics by Menzel and coworkers [129,
188, 169, 189], including analysis not only of growth but also of remodeling, i.e., the
stress-induced changing of the direction of anisotropy in the artery wall.

Ambrosi and Guana [4] applied a result of DiCarlo and Quiligotti [71] which
showed by thermodynamical arguments that if the growth process is governed by
some external forces, and that the work done by these forces supplies the energy
which drives the growth process, then the growth law for F g can be derived as a
rate equation involving those external forces. It was shown [4] that, under certain
assumptions, the growth law of Taber [246] described previously is a simplification of
this thermodynamically derived rate equation.

We should note that all these growth theories are phenomenological in that they
are not derived from the microscopic behavior of the tissue but rather by the plausible
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tissue behavior that results from their adoption. The lack of such biologically derived
growth laws is a deficiency of the current theories [105], although ensuring consistency
with thermodynamic principles would go some way towards furnishing us with realistic
behavior.

B0 Bg
Bt

F

F g F e

Fig. 3.2 A simple example of the deformation gradient decomposition method.

3.3.4. A Simple Example. To illustrate the process described above and to show
that residual stresses can arise from anisotropic growth, we will present a simple
example, one which was originally discussed by Rodriguez et al. [218]. We take an
incompressible tissue formed from a cylindrical tube, and assume that growth occurs
in the circumferential direction only, as depicted in Figure 3.2. So if the state B0 has
coordinates (R,Θ, Z), the intermediate state Bg has the coordinates (R∗,Θ∗, Z∗), and
the final state Bt has the coordinates (r, θ, z), then we have a growth field of

(3.29) R∗ = R, Θ
∗ = KΘ, Z∗ = Z,

which gives rise to a growth tensor

(3.30) F g =




1 0 0
0 K 0
0 0 1




with respect to cylindrical coordinates. We then specify a displacement from Bg to Bt,
which by symmetry arguments—and restricting any deformation in the z-direction—
can be given by

(3.31) r = r(R∗), θ = ηΘ∗, z = Z∗.

This gives us an accommodation tensor in the form

(3.32) F e =




dr

dR∗
0 0

0
rη

R∗
0

0 0 1




.
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The deformation F g, as shown in Figure 3.2, is incompatible. One way of ensuring
that the overall deformation is compatible is to set Θ = θ, or η = 1/K.8 Furthermore,
the incompressibility constraint gives us the form of r(R∗) = r(R):

(3.33) detF e = 1 ⇒
dr

dR

r

R
= K ⇒ r =

√
KR2 + α

since R = R∗, and for some arbitrary constant α. For incompressible materials, the
first Piola–Kirchhoff stress tensor is given by (3.9), modified by the addition of a
hydrostatic pressure term p:

(3.34) P =
∂W

∂F e
− pF−T

e ,

where as before the stress field arises due to the deformation between Bg and Bt.
The equilibrium equation (3.8) gives us a first-order differential equation to solve for
p(R) and the constant α, which must be solved numerically with appropriate traction
conditions on the inner and outer boundaries of the annulus.

3.4. Other Growth Models in Elasticity. Prior to the formulation of the defor-
mation gradient decomposition, the adaptive elasticity model of Cowin and Hegedus
[62] was an alternative description in a finite elasticity framework of growth in a tis-
sue, in this case bone. The main assumption made in this theory was that for any
unstrained region of the body, an increase in mass does not change the volume or
strain field, corresponding to a densification of the tissue. This theory was later ex-
tended by Kuhl and Steinmann [171], and implemented in numerical investigations of
bone densification [170, 173] and wound healing [172]. In this constant-volume growth
theory, following the reasoning of section 3.3 leads to (3.23) and detF g = 1. In fact,
we may set F g = I and then Bg becomes the reference configuration, with F = F e.
The form of γ chosen in these models is based on the work of Harrigan and Hamilton
[121], and is given by

(3.35) γ ∝

(
ρg

ρ∗g

)−m

W −W ∗,

where W ∗ and ρ∗g are reference values, and m is a positive real number. Thus, for
instance, if W = W ∗ and ρg < ρ∗g, then the mass will increase, thus increasing the
density until it reaches the reference value ρ∗g. The theory also includes in (3.23) a
mass flux term which is neglected in most other models. The form chosen for W
allows the material to become stiffer as it densifies; i.e., W = (ρg/ρ

∗
g)

nW elast, where

W elast is a standard elastic strain energy, in this case a (compressible) neo-Hookean
model. Changes in density are thus coupled to the elastic deformation problem.

A different type of growth considered by Skalak and coworkers [233, 234] was sur-
face growth, where the surface on which growth occurs is not necessarily the boundary
of the structure, but could be an internal surface which splits the growing body into
two parts which grow away from the surface. Later, Tözeren and Skalak [251] proposed
a theory of growth in fibrous tissues such as muscle and skin, and suggested a number
of phenomenological relationships between the state of stress and fiber growth.

8We note that the incompatibility in this particular case is due to the geometry of the body
rather than a local incompatibility; the latter generally arises due to different rates of growth in
different parts of the body, as discussed in section 3.3.1.
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Other authors have developed models for growth in tissues described by nonlinear
constitutive laws. Drozdov and Khanina [81] modeled isotropic growth in a viscoelas-
tic material which is characterized by a system of parallel (nonlinear) elastic springs.
On the other hand Volokh [260] compared a tissue to a toy model where cells were
represented by an array of balls. By introducing a source of new material to the
toy model, a number of principles are noted, which are incorporated into a model of
volumetric growth in a solid tumor. Kuhl and coworkers [167, 168] have examined
the related problem of remodeling in soft tissues under the influence of an applied
stress field. The microstructure of the tissue is represented by a characteristic cell
(not a biological cell) in which the collagen fibers are modeled by “worm-like” chains.
The orientation of the characteristic cell is gradually brought into alignment with the
direction of principal strain in the tissue under the influence of applied stress fields.

A survey of theories of growth in elastic materials would not be complete without a
discussion of theories based on linear constitutive models. The description of growth
in such infinitesimal-strain theories may be derived from the deformation gradient
decomposition described in section 3.3. Consider the displacement gradient W =
F − I. The infinitesimal theory assumes that ‖W ‖ ) 1. Thus the strain tensor
E = 1

2 (F
T
F − I) can be approximated by the linear strain tensor e = 1

2 (W +W
T).

One can describe growth and accommodation displacement gradients W g = F g − I,
W e = F e − I. From (3.14) we have

(3.36) F = F eF g = (W e + I)(W g + I),

and thus we may form the strain tensor

(3.37) E =
1

2
(FT

F − I) ≈
1

2
(W g +W

T
g +W e +W

T
e ) + o(‖W ‖),

so that e = eg + ee, and thus in infinitesimal elasticity the multiplicative decompo-
sition of the deformation is represented by an additive decomposition of the strain
tensor. The constitutive relation in infinitesimal elasticity is Hooke’s law, which may
be written ee = Kσ, where K is the compliance tensor. By performing the decom-
position into growth and elastic parts the total deformation experienced by the tissue
is governed by the equation

(3.38) e = eg +Kσ.

This equation has recently been used to analyze the genesis of residual stresses
in tumors, where the growth strain was assumed to be isotropic [157] and—to allow
steady-state stress distributions—anisotropic [9]. This latter theory was applied to
the study of blood vessel collapse in tumors [10] and to elucidate the effect of the
surrounding tissue [13].

An additive decomposition also emerges naturally from the multiplicative decom-
position if the thickness of the tissue is small, i.e., for membranes, plates, and shells
[69]. Here both the strain measures (change of metric and change of curvature) are
decomposed additively into growth and elastic components.

The reader may be familiar with equations of the form of (3.38) from extensions
of linear elasticity to include thermoelastic, plastic, and viscoelastic effects [140].
In linear thermoelasticity the thermal expansion is assumed to vary linearly with
temperature T , i.e., eij = α

3 (T − T0)δij , where α is a constant of proportionality.
This expression plays the same role as the growth strain eg in (3.38), giving us the
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well-known constitutive law for thermoelasticity,

σ = K
−1

(
e−

α

3
(T − T0)I

)
(3.39)

= Ae− α

(
λ+

2µ

3

)
(T − T0)I,(3.40)

where A = K
−1 is the elasticity tensor and λ+2µ/3 is the bulk modulus. We can see

that, kinematically speaking, thermal expansion and isotropic biological growth are
equivalent, even if the constitutive form of eg and the effects on the material density
are very different.

While thermoelasticity is the most analogous theory to growth, we note that
linear elastoplasticity also admits an additive strain decomposition, e = ee+ep. Here
ee = Kσ as before and the plastic component is chosen to satisfy a flow rule such
as the Levy–von Mises flow rule [140], which states that ∂ep/∂t is proportional to
the deviatoric part of σ. Similarly, in Maxwell viscoelasticity one sets e = ee + ev,
where ėv = Lσ and L is the inverse of the viscosity tensor. This gives rise to the
constitutive relation

(3.41) ė = K
dσ

dt
+Lσ.

One may include growth in this relation by setting e = eg + ee + ev, leading to

(3.42) ė = ėg +K
dσ

dt
+Lσ.

This was the model used by Hsu [141] to analyze volumetric growth in a viscoelastic
body, which was later extended by Strauss [242] and Nowinski [205]. However, for the
most part the examples covered in these papers were limited to cuboids of the material,
the exception being Nowinski’s treatment of a pressurized circular tube. Another class
of models to consider the growth law encapsulated in (3.42) apply the law to a growing
rod [87, 239]. Applications of this theory range from growing plant stalks to human
spine development; the use of buckling theory in the latter application may provide
an insight into the onset of scoliosis, or abnormal curvature of the spine. Models with
a growth law similar to (3.42) have also been applied to tumor growth [183].

3.4.1. Bone Remodeling. The earliest attempts to explain the remodeling pro-
cess in bone are recounted in a comprehensive review by Roesler [220]. Beginning
in the nineteenth century, researchers such as Meyer [191] examined the structure
of cancellous bone, and discovered that a pattern could be discerned in the network
of trabeculae which form the fabric of this part of the bone, as depicted in Figure
3.3. Meyer related an encounter with the engineer Culmann, who noted the similar-
ity between the patterns of trabeculae in the upper femur and the stress trajectories
(that indicate the directions of principal stress) in a crane that he was designing, as
depicted in the now-famous drawing reproduced in Figure 3.4. Later, Wolff [274, 275]
took this resemblance and formulated what has become known as Wolff ’s law : that
there exists a mathematical correspondence between the stress trajectories in Cul-
mann’s crane and the trabecular structure in the femur, and that the density of bone
is directly related to the density of the trajectories, corresponding to thicker bone
where the stress is greatest. The existence of such a mathematical law has been
questioned, however [28, 57], and today the term “Wolff’s law” usually refers to a
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Fig. 3.3 A photograph of trabeculae in the upper femur, reproduced from Wolff ’s 1870 paper [274].

Fig. 3.4 A drawing comparing stress trajectories in Culmann’s crane (left) with the pattern of tra-
beculae in a human femur (right), as reproduced in Wolff ’s 1870 paper [274].
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general correspondence between the bone structure and past loading. While Wolff
apparently thought originally that the bone structure had evolved such that it was
strongest at the regions of higher stress [57], a different approach (which Wolff later
adopted) was to assume that the bone tissue itself stiffened in response to loading,
namely the functional adaptation principle promulgated by Roux [222]. This idea has
now become part of Wolff’s law.

Research into bone remodeling had been largely dormant since the late nine-
teenth century, until in the 1960s, contributions by Pauwels [213], Frost [95], and later
Gjelsvik [108, 109] began the search for biomechanical explanations for the remodeling
process. Pauwels decided that shear stresses stimulated the growth of collagen fibers,
hydrostatic pressure gave rise to cartilage production, and bone was formed on these
preexisting structures. On the other hand Frost thought that the cells would respond
to strain fields rather than stress fields. Third, Gjelsvik devised a remodeling process
which was based on the piezoelectric properties of bone tissue; as the stress fields
changed, this changed the direction of the electrical polarization, which was assumed
to govern the direction in which bone material is deposited or resorbed.

These analyses led to the first comprehensive mathematical theory for bone re-
modeling, namely, the adaptive elasticity theory of Cowin and coworkers mentioned
previously. Using rigorous thermodynamical methods, Cowin and Hegedus [62] de-
veloped a nonlinear theory of elasticity using certain constitutive assumptions that
were appropriate to describe bone remodeling. In this model, the material is consid-
ered to be a porous elastic solid, with a given zero-stress reference state regardless
of its porosity. Then the porosity in the reference state is governed by the equation
for the conservation of mass, which assumes that the mass of bone in a represen-
tative volume of material increases (or decreases) at a given rate. These equations
were later specialized to the case of small-strain elasticity [124], since bone may be
regarded as a linearly elastic material. Further simplifications were made for the
case of small changes in porosity, and the conditions for stable solutions were iden-
tified; this led to simple solutions to the remodeling problem in a material of this
type when the (homogeneous) stress or strain fields are changed instantaneously and
kept at their new values. This theory was later adapted to the problem of how bone
remodels in response to the insertion of a metallic pin into the medullary cavity of a
bone [64].

Later—with the same application in mind—Cowin and Van Buskirk introduced
a new theory of surface remodeling [65], where in contrast to the internal remodeling
described previously, the remodeling process results in a change of shape of the bone.
The theory is essentially an extension of linear elasticity in which the external surfaces
of a body have a velocity which is proportional to the strain tensor. This work was
later extended in order to investigate the change in thickness of the shaft of a long
bone, modeled as a cylinder of the proposed material [61]. While Cowin and Van
Buskirk’s work was phenomenological and did not consider observed cell behavior, it
was shown by Hart [122] that a simple constant cellular activity law was consistent
with the model proposed by Cowin and Van Buskirk.

The preceding theories can be considered to be theories for growth of bone in the
sense that mass is added to (or removed from) the system. Models for predicting
the change in anisotropy of bone due to mechanical loads—which are in one sense a
modern reformulation of Wolff’s ideas—have been put forward, beginning with work
by Cowin and coworkers [55, 63], who proposed a measure of the microstructure known
as the fabric tensor and suggested an evolution equation for it that depended on the
state of strain in the material. Further research into remodeling theories, including
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some phenomenological models which consider other measures of loading than the
strain and stress fields, is documented by Cowin [56] and by Hart [122].

3.5. Mixture Theory. In the introduction to this section we introduced mixture
models, which enhanced the material modeling to include the effect of several phases:
one notable example is the poroelastic model, which includes an elastic phase and a
viscous fluid phase. Such models are also able to incorporate the effects of growth.
In fact the concept of growth in these models is more intuitive, with the growth term
which was so important in the open elastic systems described in section 3.3 becoming
a term which describes the transfer of mass from (for instance) the fluid phase to the
solid phase. We note that in order for residual stress to arise from the theory, an elastic
component must form at least one of the phases in the mixture. In this section, we
will not describe the derivations of the equations for mixture theory, since the details
become quite technical, especially when applying thermodynamical principles. For
this we refer the reader to, for example, [180, 11].

One of the first studies into the addition of growth effects into mixture theory
was that of Humphrey and Rajagopal [147]. Their approach was based on the the-
ory of evolving natural configurations, which models the apparent phenomenon that
different components of the tissue will have different natural configurations (i.e., the
state of the tissue once all stresses are relieved; the natural configuration in Figure
3.1 would be the state Bg). The physiological evidence for this is that newly produced
tissue components may be stressed, but that their stress state may not match that of
the existing surrounding tissue. Thus Humphrey and Rajagopal suggest that residual
stress is due more to the differences between these “deposition stresses” than to in-
compatible growth patterns. In the model this assumption manifests itself by giving
each phase in the mixture its own natural configuration.

However, determining these natural configurations is as much an open question
as choosing the growth tensor F g in the single-species approach. Humphrey and
Rajagopal postulate that each constituent would have a “preferred state” (not nec-
essarily stress free), and also speculate that thermodynamical considerations would
place limits on the permitted natural configurations. As is usual in mixture models,
several simplifying assumptions need to be made to make the equations tractable;
these notably include not allowing the elastic phases to move relative to the mixture
as a whole.

As an example of this approach, Baek et al. [17] applied the theory to the de-
velopment of brain aneurysms. Simplifying the geometry of the blood vessel to a
cylindrical two-dimensional structure, they considered the tissue to have only two
components, namely, collagen fibers aligned in two different directions. By specifying
an initial local decrease in the mass of the tissue, the evolution of the vessel shape
was determined (assuming a linear dependence between the constituent growth rate
and the current stress field). Physiologically relevant results of aneurysm growth were
obtained; however, the authors cautioned that further experimental data are required
in order to validate the model.

Another way of simplifying the governing equations of a mixture model is by
choosing simple constitutive relations for each phase. Araujo and McElwain [11, 12]
take a two-phase model of a growing tumor, and choose the cell and fluid phases
to be linearly elastic and inviscid, respectively. Furthermore, the growth and elastic
parts of the deformation are separated, which in linear elasticity (as shown in section
3.4) corresponds to an additive decomposition of the infinitesimal strain tensor. The
growth is chosen to be anisotropic; cells in the (spherical) tumor are conjectured
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to divide in such a way that growth occurs in the direction of least stress. This
anisotropic and inhomogeneous growth law gives rise to a residual stress field.

The aim of Loret and Simões [180] was to formulate the growth law for a growing
tissue that was thermodynamically consistent. They reasoned that mixture theory
would account for the mass increase of the tissue in terms of a transfer from the fluid
phase. However, unlike the infinitesimal-strain theory of Araujo and McElwain, the
authors used finite elasticity for the solid phase, and performed a decomposition of the
deformation gradient, as described in section 3.3. This decomposition allowed them
to separate the contributions of growth and mechanical deformation to the thermody-
namically derived Clausius–Duhem inequality, thus motivating physically consistent
growth laws. Garikipati et al. [106] developed a similar model with application to
engineered tendons.

Klisch and coworkers [162, 163] applied mixture theory to cartilage, which is a
tissue composed mostly of extracellular matrix. As described in section 2.4, the main
components of this tissue are a fluid matrix, in which are distributed proteoglycan
molecules, and collagen fibers. The authors treat these three constituents as the three
phases of a mixture model for cartilage. The deformation gradients of the two solid
phases (proteoglycans and collagen) are assumed to be the same, but their decom-
position into growth and elastic parts (according to the theory of section 3.3) are,
in general, different. This is philosophically equivalent to the “natural configura-
tions” approach of Humphrey and Rajagopal described above. Thus a growth process
in which only proteoglycan is produced can be analyzed separately to a collagen-
production process (setting the growth tensor of the nongrowing component to be
the identity tensor). Representative but phenomenological constitutive relations are
chosen, and in the second paper the theory is specialized to infinitesimal strains in
order to produce numerical results for canonical cartilage-growth examples.

Finally we mention the more recent work of Ateshian [16]. This study included a
consideration of electrical charge distribution within the mixture, allowing an evalua-
tion of how osmotic pressures (due to the inhomogeneous distribution of proteoglycan
molecules) contribute to the overall residual stress field in the mixture. Addition-
ally, if the mixture contains interfaces over which certain field variables (e.g., void
fraction) were discontinuous, then interface conditions would be needed, which are
derived from the basic conservation laws in the mixture. Such interface conditions
are included in Ateshian’s model, and can account for surface growth as described
briefly in section 3.4.

3.6. Postscript. In section 3 we have examined various continuum models for
growth in tissues. We have concentrated on elastic models, as an elastic component is
essential for residual stress to appear. This elastic component may be a single-species
model, like the elastic theories of section 3.3, or may appear in a multicomponent
model such as the mixture theories of section 3.5.

The mixture approach may be seen as a generalization of the single-species mod-
els, and also as more biologically relevant due to the explicit consideration of the
different components of biological tissues. In a sense, mixture theory is a form of
homogenization, which forms a macroscopic continuum theory from the material’s
behavior at the microscopic level. Traditionally, homogenization (or upscaling, or av-
eraging) develops a continuum model by explicitly solving the microscopic equations
and averaging the result to form a macroscopic theory. This is in contrast to the
mixture approach, where the microscopic equations tend not to be solved.

In the next section we will look at growth models at the microscopic level, con-
sidering specifically tissues which are mostly ensembles of cells.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

84 GARETH WYN JONES AND S. JONATHAN CHAPMAN

4. Modeling Growth at the Cell Level. In section 3 we have studied a number
of models which treat the tissue (largely) as a continuum. For certain types of tissue
this is an acceptable hypothesis. For instance, in connective tissues (see section 2)
the mechanical properties of the material are largely those of the ECM of which the
tissue is comprised, the cells being dilutely dispersed throughout the tissue. However,
in epithelial tissues and other instances in which the cells are packed closely together,
the properties of the material emerge from the interactions between neighboring cells
in the tissue, and are much harder to elucidate. In such circumstances an agent-based

model is often much better suited to the task of analyzing the overall deformation of
the tissue.

In such models, individual cells are modeled separately, and their properties (e.g.,
shape, chemical, kinematic) are governed by interactions with other cells in the model.
The large-scale behavior of the tissue is analyzed by aggregating the responses of each
of the cells, giving rise to characteristic properties of the tissue that would be hard to
predict when setting up a continuum model. For instance, cell rearrangement is very
simple to incorporate into an agent-based model, but the result of this rearrangement
on a large scale is much more complicated: most likely a combination of viscous and
plastic effects.

Such cell-based models have been used widely to model the behavior of cell ensem-
bles. These include two-dimensional epithelial monolayers (for instance, in embryos
[35] and in the colon [187]), multicell spheroids (i.e., early stage tumors) [227], and
the slug stage of the slime mould Dictyostelium discoideum [68]. One particular
achievement is the validation of the differential adhesion hypothesis in cell sorting:
the separation of a mixture of two types of cell discussed in section 2.5. Agent-based
modeling has helped to verify the hypothesis that the differing strengths of adhesion
molecules on the surface of each cell is a contributing factor [240]. Such a result would
be hard to obtain using a continuum model due to the inherently cell-based nature of
the hypothesis.

Ease of model validation is another strength of cell-based models. Continuum
models do not provide any information about the behavior of individual cells in the
tissue, so comparison with experimental data is quite difficult. In comparison, agent-
based models specifically model the cells and as such it is a simple matter to compare
the results of a simulation to real data from in vivo and in vitro experiments. Due to
the simplicity of modifying behavioral rules for individual cells, it is also easy to use
agent-based models to test hypotheses on a population of cells [101].

However, agent-based models do have their drawbacks. Simulations must be per-
formed using computational methods [237], and as such the results obtained are often
limited by the available computational power. In spite of the vast growth in comput-
ing power over the last few decades, some simplification of the problem is inevitable:
one may limit the number of cells in a simulation and consider more complex interac-
tions, or take a larger cell ensemble and simplify the interaction rules; in either case
the effort required to simulate the model is reduced.

Additionally, one of the key advantages of the continuum models of section 3 is
that they are (largely) equation based and, as such, key parameters of the problem
can often be identified using analytical mathematical techniques. This is much harder
to achieve using cell-based models, as the key parameters are “hidden” inside the
multitude of interaction rules between individual cells.

Nevertheless, the advantages of cell-based modeling outweigh the disadvantages
for small cell ensembles. This section will review the three main classes of models
that have appeared in the literature. The first of these, the class of cellular automaton
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Fig. 4.1 A simple cellular automaton model. Some lattice sites are occupied by a cell (denoted by a
black dot); others are sites that cells can move into at a subsequent time step.

models, is the simplest, and has been employed for many years on biological problems.
Models in this class usually assume that cells are arranged in a grid pattern.

The second class of models which we will consider are known as off-lattice models.
These do not confine the cells to be arranged in any pattern, but allow them to
take any position in a predefined domain. We can subdivide this class into two
subclasses. The first of these can be named overlapping sphere models, since in this
setup cells are modeled as spheres (or ellipsoids in some cases), which are allowed
to overlap, which is a simplification of their deformation on contact. The second off-
lattice class of models that we consider consists of those known as the center dynamics

tessellation models. In this formulation cell centers are defined as points in space.
The configuration of points sets up a unique Voronoi tessellation, and the cells are
identified with the polygons (or polyhedra) in the tessellation. The common property
of these two subclasses is that the motion of the cells is determined by interactions
between neighboring cells, often given in terms of the distance between the cell centers.

The third class of models which we will present are the vertex dynamics tessella-

tion models. In these models the tissue is a polygonal tessellation, but in contrast to
the center dynamics models, the emphasis in these models is on how the vertices in
the tessellation move, rather than the cell centers themselves.

Finally in section 4.4 we will evaluate these cell models and how well suited they
are to model growth in cell ensembles.

4.1. Cellular Automata. As stated above, perhaps the simplest models that can
be used to simulate biological processes at the cell level are cellular automaton models.
In these models the region of space being modeled is subdivided into a number of lattice
sites, whose properties are tracked as the simulated time progresses. For models of
cell population, the main property to be tracked is whether the lattice site is occupied
by a cell or not. A square lattice is shown in Figure 4.1 as an example.

Cellular automata were introduced by von Neumann and Ulam (see von Neu-
mann [262]) in order to examine self-reproduction in discrete systems, and have since
become commonplace in many other disciplines. A well-known example of a cellular
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(a) (b)

Fig. 4.2 Two examples of cellular automaton models. (a) From Düchting and Vogelsaenger [85],
growth of tumor cells around a capillary network. (b) From Turner and Sherratt [254],
invasion of “fingers” of tumor cells into the ECM, using the extended Potts model. Both
images reproduced with permission.

automaton model is Conway’s Game of Life [104], which entered the public conscious-
ness due to its ability to exhibit complex behavior from a few simple rules. One of
the main biological applications of cellular automata is in models of tumor growth
[194] such as the early model of Düchting and Vogelsaenger [85], which will serve as
our archetypal cellular automaton model. In this model (depicted in Figure 4.2(a))
the two types of cells which may occupy a lattice site are normal cells and tumor
cells. Each cell is assigned a position within the cell cycle (see section 2.2), which will
vary as the simulated time increases. At each discrete time step, a cell will undergo
mitosis in stage M if the conditions are favorable. In mitosis of a normal cell, the cell
looks in the six directions comprising the (three-dimensional) Cartesian basis of the
lattice, and determines whether a free space exists in any of these directions. If so,
all the cells in the chosen direction are shifted outwards by one cell and a daughter
cell is placed in the freed space. If not, the cell enters the resting stage G0. Tumor
cells do not obey this rule, and undergo unrestricted growth, unless they are placed
more than a certain number of cells from a nutrient source, in which case they enter
a necrotic state.

This simple cellular automaton model has a number of shortcomings, apart from
the small space that was simulated (due to the computational facilities available at
the time). First, the imposition of a cubic lattice can introduce symmetries into the
solution which are not justified physically. Second, cells are restricted to a particular
lattice site: changes of shape and size are assumed to be irrelevant. Finally, the
mechanical properties of each cell are completely ignored.

Despite these shortcomings such models remain popular and have been extended
to include numerous biological effects. The basic structure is always to allow each cell
to make a decision on how it will behave at each time step. These decisions include
whether to proliferate, die, move, or mutate. The decision may be deterministic or
stochastic, and may depend on external cues such as the number of neighbors or the
concentration of messenger chemicals. The ability to study mutation and natural
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selection (for example due to acidosis [236]) is one of the attractions of such models.
However, despite the biological complexity of these models, the physical or mechanical
aspects of them are still rudimentary.

Some of the more recent models have attempted to address aspects of this problem
while still adhering to a cellular automaton framework. Hawboldt et al. [123], in their
model of cell growth on the surface of a sphere (a microcarrier), dispense with the
Cartesian grid by considering an irregular lattice where each cell site is assumed to
have five neighbors. The topology of the lattice is determined by a neighbor table,
where all sites are numbered and the neighbors of each site are tallied. This allows
for an algorithmic approach to determining which sites are occupied by cells, with
the exact structure of the lattice unimportant. This unstructured lattice removes the
artificial anisotropy due to the Cartesian lattice, but the lattice is still fixed in space,
with sites either occupied or free, and there is no treatment of mechanics.

Some attempts have been made to include the effects of mechanics on cellular
automaton models by including an ad hoc measure of the pressure, and inhibiting cell
division if this pressure is too great. Sometimes, as in Kansal et al. [159], pressure is
simply taken to be a known function of position within a tumor (increasing towards
the center). In other models the local value of the cell density is taken as an indirect
measure of the local pressure [215, 72].

While in most cellular automaton models each lattice point consists of one (or
more) biological cells, in the (extended) Potts model approach [116] each biological
cell is made up of several lattice points and the movement of each cell is determined
by some form of energy minimization. This allows changes in cell shape and size
to be modeled, and effects such as cell-membrane tension, cell–cell and cell–matrix
adhesion, chemotaxis, etc., to be included in a rudimentary way. The Potts model was
originally developed in order to simulate cell sorting by minimizing the total surface
energy of an aggregate of cells, but has since been used by Turner and Sherratt [254]
to model the invasion of a tumor through a region of extracellular matrix (see Figure
4.2(b)). Some of the mechanical properties of cells can be modeled in the extended
Potts model by including an additional ad hoc mechanical term in the expression for
the total energy, which has the effect of prescribing to each cell a target volume to
which it would relax in the absence of external forces.

While the preceding examples have shown that it is possible to resolve some of
the difficulties of cellular automaton models while keeping their basic simplicity, none
have satisfactorily dealt with all of the issues, and in particular the implementation
of stress effects is a major difficulty and has not been achieved in a systematic or
theoretically satisfactory way. Many researchers have therefore chosen to look at
other forms of agent-based models, such as the off-lattice models described below.

4.2. Off-Lattice Models. In off-lattice models, the requirement that cells are
restricted to a predetermined lattice is removed. As such, the state of the cell ensemble
is entirely determined by the position of the cells. Interactions between cells give rise
to forces which alter the cells’ positions, thus deforming the tissue. In this manner
the limitations of the cellular automaton models (described above) are dispensed with
and a more realistic model should result. Some applications of this method include
intestinal epithelia [187], stratified epithelia [195], tumor spheroids [227], and slime
mould migration [68]. Figure 4.3 shows four examples of off-lattice models in action.

We will now describe a canonical center dynamics model for a cell ensemble. This
will contain most of the salient features of the models appearing in the literature; we
will describe the important differences in detail later.
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(a) (b)

(c)

(d)

Fig. 4.3 Examples of off-lattice models in the literature. (a) A growing population of tumor cells
(white) overcomes an epithelial barrier (black), from Drasdo et al. [79]. (b) Cell division
in a growing colonic crypt leads to buckling of the structure, from Drasdo and Loeffler [80].
(c) A population of proliferating colonic crypt cells, from the Voronoi tessellation model
of Meineke et al. [187]. (d) A population of slime mold cells is compressed between two
plates, from Palsson [209]. All images reproduced with permission.

Our canonical model describes a collection of cells distributed on a three-dimen-
sional domain. The model characterizes these cells as spheres that are allowed to
overlap, and as such (if the radii of the cells are kept constant) the only parameters
characterizing the cell ensemble are the positions of the cell centers. Cells that are
overlapping are assumed to be in contact, and as such they experience a repulsive
force. The degree of repulsion is governed by the amount of overlap, and thus the
force can be written as a function of the cells’ positions. The aggregation of all the
forces on a particle will result in a differential equation of motion for the particle (see
section 4.2.1) with the force dependent on the positions of its neighbors. A system
of equations for each particle can thus be established. This system may be solved
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numerically by discretizing the time domain, with the result that at each time step
the state of the system, governed by the cell positions, is updated. The cell ensemble’s
deformation may therefore be analyzed as a function of time.

We will review the minor differences between incarnations of this theory in sec-
tion 4.2.1, but we will first mention a closely related approach, which treats the cells
not as overlapping spheres but as a Voronoi tessellation. This latter approach was
developed to take advantage of the fact (as noted in section 2) that epithelial tissues
may be visualized as tessellations of polygons. Once again the tissue is characterized
purely by the positions of the cell centers (justifying the model’s classification as a
center dynamics model), but in the Voronoi model the cells are the polyhedra formed
from the cell centers in a Voronoi tessellation of the domain.9 In the Voronoi model
the forces on a cell are again determined by the distance between neighboring cell
centers, and may also depend on the size of the Voronoi cell. Figure 4.4 depicts the
same collection of cells as they would be modeled in both the overlapping spheres
model (assuming a constant cell radius), and the center dynamics tessellation model.
This comparison shows that a common property of both models is that the positions
of the cells are primarily determined by the cell centers.

(a) (b)

Fig. 4.4 A depiction of the same configuration of cells in (a) the overlapping spheres model, and
(b) the center dynamics tessellation model.

Although the Voronoi model is more computationally expensive it has the attrac-
tion that the pictures look more like real tissues. For these reasons the results of even
the overlapping spheres models are sometimes visualized as a Voronoi tessellation.
As a further move towards realism, a recent study extended the Voronoi model to
account for curved cell boundaries [24].

In section 4.2.1 we will review the various interaction rules that have been used in
center dynamics models. Following this, in section 4.2.2 we will analyze how growth
(i.e., mitosis) may be incorporated into the model. Finally we will evaluate the various
aspects of off-lattice models and determine their effectiveness in modeling collections
of cells.

9A two-dimensional Voronoi tessellation takes a collection of points on a plane and tessellates the
plane with polygons; each polygon is the set of all points that are closer to a particular cell center
than any other. This also holds for three dimensions where a tessellation of polyhedra is formed.
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4.2.1. Cell Interactions. The key aspect of off-lattice modeling for our purposes
is the interaction between cells, because it is through these interactions that the
mechanical property of the tissue manifests itself.

Some models of cells’ influence on each other are rather simplistic. For example,
cell interactions are sometimes described as collisions [224, 264]. Bodenstein’s model
[25] (later enhanced and released as the proprietary package Nudge++ [26]) formu-
lated an algorithm for the motion of cells where, at each time step, if a (circular) cell
was moved such that it overlapped with a second cell, the latter was displaced at the
next time step by an amount proportional to the degree of overlap. This is also the
behavior of Grabe and Neuber’s model [115], which also included an attractive dis-
placement if the separation between cells was positive but small. While the behavior
of these models can be realistic, it is not based on mechanical principles and thus has
less physical relevance.

Most other models approach the problem from a more mechanistic point of view.
In this formulation, if the position of the center of cell i is given by ri(t), the equation
of motion of the center is given by

(4.1) mi
d2ri

dt2
= F i − γi

dri

dt
−
∑

j

γij

(
dri

dt
−

drj

dt

)
,

where mi is the mass of the cell, γi is the drag coefficient between the cell and the
intercellular medium, γij is the drag coefficient between cells i and j, and F i is the
net (nondrag) force on the cell. In most applications, the γij are chosen to be zero
(but not always; see [130]) and γi is presumed to be a scalar quantity (theoretically
the drag could be nonisotropic, in which case γi is a second-rank tensor). A common
expression for γi is the Stokes relation for the drag on a sphere of radius Ri in a
medium of viscosity η [227], given by

(4.2) γi = 6πηRi.

Usually the overdamped limit is taken in which the inertia of the cells is neglected,
to leave

(4.3) γi
dri
dt

= F i.

Solutions to this system can be found by discretizing time with a time step ∆t:

(4.4) γi
ri(tn+1)− ri(tn)

∆t
= F i(tn).

The forces are calculated at each time step tn, and the equation will then give us the
positions at time tn+1.

The main difference between the models that we will consider in this section is
the form they choose for the force F i. We will concentrate on the forces that arise
due to interactions between cells, although other factors have been included by many
authors in the definition of the force.10 Consider cell i, and let j1, j2, . . . , jk be its
nearest neighbors. Whether two cells are designated as neighbors depends on the
model: for the center dynamics tessellation models, two cells are considered neighbors

10These include the influence of a substrate on which the collection of cells are placed [80], and
chemical gradients in the tissue causing the cells to move in one particular direction [241].
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if they share a boundary; in the overlapping spheres models it is generally the case
that two cells are neighbors if they either overlap or are separated by less than a given
distance. Then the total interaction force is given by

(4.5) F i =

k∑

n=1

F i,jn ,

where F i,j is the interaction force between cells i and j. In the cell models this force
is always directed along a line linking the two cell centers, so that if ri,j = |ri − rj | is
the distance between cell centers and

(4.6) ni,j =
rj − ri

ri,j

is the unit vector in the direction from cell i to cell j, we can write

(4.7) F i =

k∑

n=1

Fi,jnni,jn .

It is in developing an expression for the scalar interaction force Fi,j that most off-
lattice models differ.

Some authors, especially Drasdo and coworkers [79, 78, 102], prefer to consider
an interaction potential Wi,j . This is related to the force Fi,j by the relation

(4.8) Fi,j =
∂Wi,j

∂ri,j
.

This approach comes into its own when the equation of motion (4.3) is modified by
the addition of a stochastic term on the right-hand side. This models the observed
behavior of isolated cells undergoing a random walk. The system of equations, thus
modified (in which case they are often referred to as Langevin-type equations), can be
solved by discretization as before, but if we have a formulation in terms of potentials,
the Metropolis algorithm can be used. This is a Monte Carlo approach which was
originally applied to a system of interacting molecules [190]. At each time step we
choose a cell and make a trial displacement. If this trial displacement causes the total
energy (or potential) of the system to decrease, the trial is accepted and we proceed
to the next time step. If the energy is increased by an amount ∆W > 0, the trial
is accepted with probability e−∆W/f . In this expression, f is an effective energy and
may be viewed as equivalent to the expression kBT which is encountered in fluids11

[22]. If D is a diffusion coefficient for the cells, then f may be related to γi by f = γiD.
Drasdo et al. [76] compared the results of a Metropolis simulation with the numerical
solution of the Langevin system of equations and found them to be in agreement, thus
justifying the use of the method for this application.12

The interaction forces or potentials between cells are usually characterized by
two quantities, namely, the difference between the separation of the cell centers and
the equilibrium spacing (which in the case of overlapping spheres is the separation
between the cells’ surfaces), and the contact area between cells. In the overlapping

11Here kB is the Boltzmann constant and T is the absolute temperature of the fluid.
12The Potts model, mentioned earlier in connection with cellular automaton methods, is also a

Monte Carlo method of this type, and is widely used in cell-based simulations [116, 226].
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spheres case, the separation and contact area are depicted in Figure 4.5. Note that
the separation is negative when the spheres are overlapping, and that the contact
area is a circle in the three-dimensional case where cells are spheres. Where cells
are represented by tessellated polyhedra, the contact area is simply the area of the
polyhedron face which lies between the cells.

(a) (b)
Ai,j

−di,j

ri,j

di,j

ri,j

Fig. 4.5 The characteristic properties of neighboring cells: (a) overlapping cells, (b) nonoverlapping
cells. The quantities are the separation of cell centers, ri,j; the separation of cell surfaces,
di,j (negative in the overlapping case); and the contact area, Ai,j (only in the overlapping
case).

The two physical properties of cells that are modeled by the interaction forces
are adhesion, caused by adhesion molecules on the cell’s outer surface, and repulsion,
caused by the cell’s resistance to deformation. All models include an element of
repulsion, while the influence of adhesion in the models vary. Some models assume
that adhesion only occurs if the cells are in contact (or have negative separation)
while the other models prescribe an attractive force between cells which are not in
contact. While this may sound strange we must remember that by “not in contact” we
mean simply that the cells are separated by a distance greater than their equilibrium
separation.

We will now describe the interaction forces that different authors have employed
previously. Many of these are summarized in Table 4.1. The diagrams are illustrative
only; in particular, where the contact area is used, we have supposed that the cells
are of equal size for the purposes of these plots.

The simplest type of interaction between cells is a linear spring, and this is the
assumption of Drasdo and Loeffler [80] in their model of intestinal crypts (see Fig-
ure 4.3(b)). The same interaction between individual cells was used in the Voronoi
polygon-based model of Meineke et al. [187] (see Figure 4.3(c)) and the overlapping
spheres model of Walker et al. [263]. In the latter two papers only cells which are
bonded to each other experience an adhesive force. In some ways this corresponds to
a “cutoff” for attraction, as shown in Table 4.1. A slightly more detailed interaction
force was employed by Stekel et al. [241]. Their repulsive force was proportional to the
contact area, while the attractive force was again linear until some critical separation,
when it reduced to zero.

Palsson and Othmer [210, 209], in their model of an aggregation of slime mold cells
(see Figure 4.3(d)), also preferred a nonlinear force acting between the (ellipsoidal)
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Table 4.1 Force separation and potential separation diagrams for some off-lattice models.

Model Force separation Potential separation

Linear spring [80, 187, 263]

Linear spring with cutoff

Repulsion ∝ contact area
[241]

Palsson’s model [209]

Drasdo’s model [79, 74, 75]

Adhesion and Hertz repulsion
[227]
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cells. This force was such that touching cells had no interaction force; overlapping cells
repelled each other and neighboring cells exerted an empirical attractive force on each
other that had a maximum at some critical separation distance, and decreased to zero
as the separation decreased to zero or increased to infinity. This model also assumed
that the ellipsoids could deform viscoelastically, the three axes being modeled as
spring–dashpot systems. A more complicated model for this cell aggregate was given
by Dallon and Othmer [68], using the same basic principles, but where the repulsive
force emerged by considering the deformation of the viscoelastic ellipsoid axes.

As mentioned previously, Drasdo and coworkers [79, 74, 75, 77] solved their equa-
tions of motion by considering a Monte Carlo approach which was based on the inter-
action potential. Apart from the advantages in terms of computation, this approach
also allows for cells to be rigid, which is difficult to prescribe if the force approach is
used. The rigidity is encoded in the method by prescribing the interaction potential to
be infinite if the overlap becomes too great. Apart from this simplistic repulsion mech-
anism, their model only accounted for the attraction due to cell adhesion molecules
on the cells’ surfaces. This was achieved by prescribing the interaction potential to
be zero for a separation greater than some critical parameter. The remaining section
of the potential was given by some function, which was usually taken to be (a nega-
tive) constant, although a parabolic well was also chosen, which is depicted in Table
4.1. Corresponding models for epithelial sheets (or strings) of cells replace the zero
potential for far-apart cells by infinity, which is an artificial mechanism of keeping the
cells in contact.13 More recently, Drasdo and Höhme [78] employed a more physically
realistic interaction potential, known as the Johnson–Kendall–Roberts (JKR) model
[49]. This describes the interaction between two elastic adhesive spheres and includes
an element of hysteresis due to the adhesive properties of the cell.

Finally there are those models in which there is only an interaction force when
cells are in contact. Galle et al. [102], in their model of an aggregate of cells, assumed
that the interaction potential was given by combining three potentials, namely, an
adhesion potential which was proportional to the contact area, a compression potential
which modeled the resistance of cells to compression, and a repulsion potential which
modeled the resistance of cells to deformation by Hertz’s theory of elastic contact.
Schaller and Meyer-Hermann [227], while writing the interaction in terms of forces
rather than potentials, also assume that repulsion is given by Hertz’s theory. However,
they model adhesion by assuming the force is proportional to the contact area, rather
than the potential, as was proposed by Galle et al. In a potential-based formulation,
Drasdo et al. [76] assumed that cells had a rigid core, together with an interaction
potential whose attractive part was proportional to the contact area and a repulsion
part that was quadratic in the separation. Höhme et al. [130] used a similar interaction
potential but where the repulsion was Hertzian, without a rigid core.

Clearly, researchers have used a wide variety of different approaches to model
interactions between cells in off-lattice models. However, do the various interaction
laws have a noticeable effect on the macroscale behavior of the tissue? This is the
key question regarding these models, and one which we will analyze in section 4.2.3,
following a discussion on growth in off-lattice models.

13This assumption is often made in one-dimensional atomistic models, where the role of the cells is
taken by atoms and the potential is an interatomic potential well such as the Lennard–Jones potential.
The modified potential tends to infinity as the separation increases so that the line of atoms remains
continuous. This assumption can be justified: see [208], which derives a one-dimensional model from
a two-dimensional lattice undergoing shear.
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4.2.2. Cell Division and Growth. Recall from section 2.2 that there are two main
features of the cell division process. The first of these is the growth of a cell from a
given volume to twice that volume, and the second is the actual division of an enlarged
cell into two cells of the original volume. We can categorize cell division models
according to how these two phenomena are modeled. In particular we consider two
basic types of mitotic steps (the second phenomenon described above). Of these two
types, the first, which we denote mechanism 1, involves a daughter cell being placed
instantaneously next to the mother cell. Mechanism 2 was introduced by Drasdo et al.
and is a more faithful model for cell division as observed experimentally. We will now
investigate in more detail the models which employ each division mechanism.

Mechanism 1 is perhaps the simplest model of cell division, and involves a daugh-
ter cell being placed at a certain distance from the mother cell instantaneously. This
mechanism was employed by Bodenstein [25]. In this model the position of the daugh-
ter cell was assigned randomly, with subsequent cell–cell interactions due to overlap-
ping determining whether this position was reasonable. This model also assumed that
both mother and daughter cells would be of the same size, with no expansion of the
mother cell occurring before division. Stekel et al. [241] also assumed this model of
division, but the angle of placement was biased so that cells divided away from the
stem cells that were considered in the model. The later model of Bodenstein and
Stern [26] allowed a cell to double in size by fixed volume increments during the G1
phase, and formed two daughter cells instantaneously, both half the size of the mother
cell.

Introduced by Drasdo et al. [79], mechanism 2 is a more physically realistic model
for cell division, and can be seen in practice in Figure 4.3(a),(b). This model consid-
ered the cell cycle as consisting only of the mitotic phase (M) and interphase (I). The
reason for this is that the three phases comprising the interphase are indistinguishable
from the point of view of the mechanics of cell division, the difference being internal to
the cell. The modeling of the process, as depicted in Figure 4.6, assumed that during
the interphase, the volume of the cell increased from a given initial value (correspond-
ing to a radius R0) to twice the value (corresponding to a radius Rmax = 21/3R0 in
three dimensions). Then, during the mitotic phase, the cell forms a dumbbell shape as
shown in Figure 4.6(c); the centers of the spheres forming the dumbbell move apart,
while the radii R of the spheres decrease to keep the overall volume constant. When
the spheres are finally separated with d = 2R0, the mitotic phase is finished and the
cells reenter state I. This model is not wholly faithful to the cell cycle, because as
mentioned previously this model proceeds by trials (small increases in cell volume,
or separation d) which succeed if the energy is reduced (or succeed with a certain
probability if the energy is increased by a little). The growth phase in I and the
parting phase in M are both structured as these trials, whereas physically one would
expect that once a cell has left phase G1, growth and cytokinesis are certain to occur.
Nevertheless, this mechanism remains one of the most realistic yet relatively simple
in the literature. It is also to be noted that the direction of cell division is not speci-
fied; however, all cells have a chance of undergoing a rotation trial, which again will
succeed if the energy of the system is lowered.

The division mechanism used in Schaller and Meyer-Hermann’s analysis [227]
is a hybrid of mechanisms 1 and 2. Cell expansion occurs in the G1 phase, with an
amalgamated S/G2 phase inserted before division occurs in the M phase. In this stage
cell centers are instantaneously placed a certain distance apart, with a corresponding
decrease in cell radius to keep the partly divided cell at the same volume. Further
parting of the cell centers is achieved by now considering the cells as separate, while
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(a) (b)

(c)(d)

R0
Rmax

RR d
R0R0

Fig. 4.6 The mitosis process as portrayed in the model of Drasdo et al.

the radii are decreased correspondingly until the cells are far enough apart to be
treated independently.

In general, cell division in the center dynamics tessellation models can be consid-
ered as a specialization of mechanism 1. By splitting the cell center instantaneously
into two centers and placing them at a certain distance from each other, a new mem-
brane between the cell centers is automatically introduced as part of the Voronoi
tessellation process. In the model of Meineke et al. [187], cells divide according to
their position in the cell cycle, with the cell center being displaced in a random di-
rection. The daughter cells rearrange later if the chosen direction turns out to be
energetically unfavorable. This is in contrast to Honda et al. [138], where the direc-
tion of the cell center’s division is chosen parallel to the long axis of the cell, which
is found by analyzing the shape of the cell and identifying the direction in which the
cell is longest.

In section 4.2.3 we will evaluate the various aspects of off-lattice modeling, includ-
ing the question of whether using the more realistic cell division mechanism (mecha-
nism 2) has a noticeable effect on the large-scale dynamics of the cell population.

4.2.3. Evaluation. The preceding sections have given an overview of the wide
range of problems that have been studied using off-lattice models, and the variations
in their implementation. What is less clear is the importance of these various mod-
ifications of the underlying theory, and which variation should be used for a given
biological problem. We hope that this section will at least partly answer these issues.

Perhaps the most obvious question to ask regarding the different off-lattice models
is whether the form of the cell–cell interaction, as depicted in Table 4.1, is of any
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importance. After all, the profiles are all qualitatively similar, with a repulsive profile
if cells are too close and an attractive profile for detached but neighboring cells. Thus
we should not expect the qualitative large-scale behavior of the cell ensemble to change
on varying the exact form of the interaction law. Indeed, recent simulations comparing
these models indicate that the bulk behavior is broadly similar for all these force laws,
although there can be problems with stability if the repulsion is not strong enough as
cells approach each other [212] (for example, with a linear law, the attraction from
next-nearest neighbors can overcome the repulsion from nearest neighbors leading to
an “implosion”; see Figure 4.7).

Fig. 4.7 A simulation of a growing population of cells modeled by the overlapping sphere method.
The birth of cells (light gray) leads to a nonphysical “implosion” solution as attractions
from next-nearest neighbors overcome repulsion from nearest neighbors. Figure reproduced
from Pathmanathan et al. [212] with permission.

However, accurate models of cell–cell interactions do have their place: on the cell
scale. Different amounts of overlap correspond to different degrees of cell deformation,
and this may become important if cell mechanotransduction (the influence of cell
deformation on intracellular signaling) is taken into account, as this could play a
key role in the mitotic rate of a particular cell. Thus the overall growth rate of a
growing cell colony may be affected by a different interaction law, even if the bulk
mechanical response remains largely unaffected. We should note here that only simple
mechanotransductive effects are incorporated in the cited models. For instance, the
Metropolis simulations of Drasdo et al. assert that cells only undergo a division trial if
the cells are sufficiently separated. As biological understanding increases, we believe
that there is scope to expand this mechanotransduction modeling within the off-lattice
framework.

In a similar manner to the different interaction laws, one could ask whether the
various cell division mechanisms have an effect on the bulk growth properties. This
is a question that has not received much interest in the literature. Drasdo et al. [76]
compared mechanism 2 as depicted in Figure 4.6 to a slightly modified version, where
no expansion occurred before division, and where the dividing cells were considered
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as two completely overlapping spheres whose center-to-center distance increased from
zero until they were fully separated. No great qualitative difference was observed be-
tween the large-scale simulations of cells employing these two mechanisms for mitosis.
However, to our knowledge no one has critically compared mechanisms 1 and 2. We
hypothesize that allowing a gradual separation of cell centers, as in mechanism 2,
would provide a smoother response, as the orientation of the dividing “dumbbells”
would be allowed to vary during the process, whereas in mechanism 1 the instanta-
neous placement of the daughter cell may not be in an energetically favorable position,
leading to a sudden rearrangement of the cells soon after mitosis.

Some of the off-lattice models studied are modeled using Monte Carlo simula-
tions, which implicitly include a stochastic component for the cells’ displacement. Is
the inclusion of stochasticity relevant here? Experiments show that isolated cells are
affected by Brownian motion [193]. However, we would expect that in closely packed
cell ensembles, the magnitude of the interaction forces would outweigh the stochastic
component. Thus, for practical purposes, whether or not to incorporate stochastic
terms should depend on the type of tissue being modeled.

Finally we consider the deformability of the cells modeled in this framework. For
many of the models the shape of the cells remains unchanged during their motion, de-
formation being simulated only through the repulsion component of cell interactions.
We note that the models of Othmer and coworkers [210, 209, 68] allow the cells to
deform, and this gives rise to a more realistic repulsion profile. Some models, how-
ever, have gone further and dispensed with the center dynamics assumption in order
to directly model the changing shape of the cells. We mention here in brief a paper
by Rejniak [216], who considered the growth of cells in a two-dimensional tumor by
the immersed boundary method, essentially modeling the cell walls computationally
as deformable elastic membranes and the cell cytoplasm and surrounding medium
as incompressible viscous fluids. Cell division is accomplished in the theory by plac-
ing fluid sources in each cell, allowing the cells to double in size before dividing as
the nuclei separate and the cell membrane contracts normally to the line connecting
the separating nuclei. Adhesion is modeled by positing an attractive force between
elements of the cell membrane, which is linear in the separation distance.

We should also note the contribution of Newman [203], who adopted the idea
that cells could be modeled as a collection of interacting subcellular elements, each of
which behaves as a cell center would in the canonical off-lattice model. If there were
N cells, with each cell being composed of M subcellular elements, then we obtain a
system of size M×N for the centers of the subcellular elements. This would allow the
cell’s mechanical properties to be determined by interaction potentials between the
subcellular elements, while another potential would exist between subcellular elements
belonging to different cells, reflecting the cell membrane properties and the influence
of the ECM.

For the tightly packed cell ensembles which are modeled using Voronoi tessellation,
while the configuration of the system (and hence the deformation of the cells) is
exactly defined by the positions of the cell centers, many of the interaction profiles
use components related to cell shape, such as the area of contact between two cells.
However, many authors have taken the view that it is more realistic to model such
cell packings by recording the vertex positions rather than the cell center positions,
which have no biological relevance. This would also have the advantage of recording
more information about the cells’ deformation, yielding more physiologically accurate
cell deformations. Such an approach gives rise to the vertex dynamics model, which
is reviewed next.
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4.3. Vertex Dynamics Models. As the name suggests, vertex dynamics models
are a form of agent-based modeling where, rather than the cell centers, it is the
vertices of a polygonal tessellation of the cells that are allowed to move during a
simulation. Clearly they are suitable for modeling tightly packed cell ensembles, where
the intercellular space is negligible. In order to give an overview of this method, we
will describe the vertex dynamics model of Weliky, Oster, and coworkers [268, 267].

The model sets up equations of motion for the vertices of a lattice formed from the
edges of each polygonal cell. The equation of motion for a vertex is the same as (4.3)
for the center dynamics models, but in this case the forces are tension and pressure
terms, as depicted in Figure 4.8(a). Each cell has a tension directed along its edges,
proportional to the cell perimeter, and a pressure term, inversely proportional to the
cell area/volume, and directed such that it bisects the internal angle at the vertex.
Now, at any vertex in the lattice, three cells meet and as such we have six tension
terms and three pressure terms at each vertex. The resultant force is calculated and
substituted into the equation of motion (4.3). Thus a system of equations is built up
and solved in the same manner as for the center dynamics models. The results can
be seen in Figure 4.9(a).

Much as for off-lattice models, researchers have proposed many variations of this
paradigm vertex dynamics model. Some of the earliest (two-dimensional) investiga-
tions into this model were made by Honda and coworkers [135, 136, 134, 139] investi-
gating how cells undergoing rearrangement, i.e., changing neighbors, might minimize
their surface area while retaining a constant volume: this was termed the boundary

shortening method. Rudge and Haseloff [223] applied the vertex dynamics approach to
model a problem of mitosis in plant cells, which are also generally polygonal in shape
and thus perfectly suited to analysis of this type. In this model the cell walls are mod-
eled as linear springs with a given stiffness and natural length (which increases with
time to model cell growth). The mechanics of the system are modeled quasi-statically:
the mechanical response to a cell growth event is assumed to be instantaneous.

In the models of Brodland and coworkers [45, 33, 34, 32], the only forces acting
on each node were assumed to be directed along the cell wall. (Thus, with reference
to Figure 4.8, in these models the force P is absent.) This force was assumed to be
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Fig. 4.8 (a) The forces acting at each node of a cell according to the theory of Weliky et al. In
the model the forces in a given cell have the same magnitude at each node. (b) The forces
acting at each node of the mesh, indicating the contributions from each cell.
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(a) (b) (c)

Fig. 4.9 Examples of vertex dynamics models. (a) Cells rearrange as a sheet of epithelial tissue
extends, from Weliky et al. [267]. (b) A similar situation from Brodland et al. [32], with
different forces assumed to act on the vertices compared with image (a). (c) Steady-state
configurations of cells using an energy-based model, with different parameter values, taken
from Farhadifar et al. [90]. All images reproduced with permission.

constant, although a number of possible contributions were identified, including the
influence of the cytoskeleton, tension in the cell membrane, and cell–cell adhesion.14

Figure 4.9(b) depicts the results of a numerical experiment using this hypothesis. This
model was adapted [33] to account for the phenomenon of cell sorting, by considering
the value of the force connecting two vertices to be dependent on the types of cell on
either side of the connecting line.

Another difference between these models and those of Weliky et al. is the con-
nection between the forces acting on each vertex and the vertex displacements. The
motion in Brodland et al.’s models was calculated using a finite-element-based formu-
lation. The centroid of the cell was identified, and a triangular mesh was formed by
linking the vertices of each cell with the corresponding centroids. The velocities of the
nodes of each triangular element were determined by using a finite-element implemen-
tation of overdamped motion of the element. The elements were not assumed to be
incompressible; the cell’s incompressibility was accounted for by a separate constraint
on the area of each polygonal cell. Later work by Brodland et al. [35] modified the
model so that the viscosity of the cytoplasm—accounted for by the damping term in
the equation of motion for each node—was replaced by a system of dashpots in each
cell, which better reflected the cell’s eccentricity. This work was extended to three
dimensions [259].

The previous models have all been force based in their descriptions of the mechan-
ics of the vertices. A more mechanically relevant approach which has emerged in more
recent models is the approach based on energy minimization. The advantage of this
method is that it avoids having to determine the force on a vertex corresponding to a
mechanical principle. For instance, in the model of Weliky et al. the response to cell
compression is encoded in the pressure terms P , and the response to cell stretching
in the tension term T . A more mechanically correct method would be to evaluate the
stored energy in both the cell body and cell membrane, and sum this over all cells.
This total stored energy W (rk) is a function of all the vertex positions, and then the

14Cell adhesion molecules would cause two isolated cells, in the absence of other mechanical effects,
to maximize their contact area. In this formulation, therefore, cell–cell adhesion can be regarded as
a force which pushes vertices further apart.
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force term Fi in the equation of motion (4.3) for vertex positions will be given by
Fi = −∂W/∂ri.

One of the more comprehensive energy functionals is that of Farhadifar et al. [90]:

(4.9) W =
∑

α

Kα

2
(Aα −A(0)

α
)2 +

∑

i,j

Λij lij +
∑

α

Γα

2
L2
α
.

In this expression α indexes the cells and (i, j) the nodes. The first term represents

the energy associated with cell compression, Aα being the area of the cell, A
(0)
α being

a “target” area, and Kα being a bulk modulus equivalent. The second term represents
the energy associated with line tension in an interface between cells. Λij is the “ten-
sion” in the interface linking vertices i and j, and lij is the length of that interface.
Increased cell adhesion may be modeled by decreasing Λij . The third term embodies
the energy stored by the cell boundary. The perimeter of cell α is Lα and Γα is an
associated elastic constant. Example calculations are shown in Figure 4.9(c).

In order to model the geometric properties of cone cells in Drosophila eyes, Hilgen-
feldt et al. [127] chose a vertex dynamics model mediated by an energy functional
consisting only of the perimeter term (modeling cell membrane stiffness) and cell–cell
adhesion, which—similarly to the cell sorting model of Brodland and Chen described
previously—incorporated a different cell adhesion strength between cells of different
type. Honda et al. [137] formulated a three-dimensional energy-based version of the
vertex dynamics model in order to model multicellular aggregates. In this case the po-
tential comprised two parts, representing compression energy and surface energy—the
first two terms of (4.9).

All of the vertex dynamics models that we have studied above must be solved
computationally, in the same way as for off-lattice models. Recall that in that case
the models could be solved either by discretizing the system of differential equations
or by using a Monte Carlo method. In the vertex dynamics case the former approach
appears to be dominant, which is in agreement with our conclusion from the previous
section that in closely packed cell aggregates the stochastic motion of cells is mitigated
by the strong interactions between cells.

In the computational solution of the system of equations for vertex motion, it
must be noted that cell rearrangement implies that the topological state of the vertex
network changes over time. The canonical example of vertex rearrangement in two
dimensions is shown in Figure 4.10 and is called a T1 process in the literature [90].
The computational scheme must be carefully configured so that such rearrangements
are accounted for properly.

Finally we consider cell division. The mechanisms for mitosis in the vertex dynam-
ics models are similar to those of the off-lattice models. Honda et al. [139] incorporate
cell division by identifying the “long axis” of the cell and introducing a new membrane
normal to this axis, splitting the cell in two. This method was also used by Brodland
and Veldhuis [34]. None of these three models used the cell cycle to identify when
cells divided; in particular, Brodland and Veldhuis assumed a constant rate of cell
division. Additionally, most models of cell division assumed that cells halved in size
when divided, then grew back to their original size. However, Rudge and Haseloff
included in their model the growth of a cell before mitosis, by allowing the natural
length of the springs in their cell-wall model to increase until the cell volume had
doubled, at which point the cell was made to divide.

Of the many variations of vertex dynamics model in the literature, which ones
best capture the behavior of cell aggregates? A key question is whether to prescribe
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(a) (b) (c)

Fig. 4.10 Rearrangement of cells in a two-dimensional vertex dynamics model.

forces at a vertex or to follow the energy-based approach. Our instinct would be to
opt for the latter approach. While the energy terms can easily be made to depend on
physical parameters such as the cell area, perimeter, or boundary length (and, indeed,
it is the energy that one would expect to depend on these physical attributes), setting
up a force term from cell wide attributes such as cell area is difficult. Compare the
simplicity of the compression energy term in (4.9) to the ad hoc way in which the
pressure term P is introduced in the model of Weliky et al. (Figure 4.8).

The other issue to be debated here is which mechanical processes to include.
Should one opt for a comprehensive approach—as in (4.9)—or opt for the simpler
option as did Brodland and co-workers, who only consider cell adhesion? Partly
this is a question of computational complexity—one can model a larger cell ensemble
or more experiments if the interaction laws are simplified. However, the mechanics
of cell deformation are still a little mysterious, and so more complicated behavior
such as that described by the energy functional (4.9) is rather speculative: describing
how we expect a cell should behave. Such an approach can still yield useful results:
by performing several numerical experiments using (4.9) with varying parameters,
Farhadifar et al. [90] could analyze the resulting cell configurations and find a region
of parameter space which would result in realistic tissue behavior. Three example
configurations are shown in Figure 4.9(c).

4.4. Evaluation of Cell-Level Models. We have now reviewed a number of cell-
based models that describe the deformation of ensembles of cells. In this section we
will evaluate these models, and in particular establish which models are best suited
to modeling growing ensembles.

We begin by examining cellular automaton models. The chief advantage of these
simulations is their simplicity. If one is only looking for the qualitative effect of some
biological principle, cellular automata are the simplest to set up and computationally
the least intensive. Placed against this is the realization that the model may not
uncover subtle results due to its simplistic approach, and in particular mechanical
effects are unsatisfactorily incorporated.

Mechanical effects are included by design in the other two models, the off-lattice
and vertex dynamics simulations. As such they are a more realistic approach to
modeling cell ensembles. However, one must still make a choice between the two
methods. Our instinct would be to model more dilute cell ensembles by using the off-
lattice model, and tightly packed ensembles using the vertex dynamics model. The
justification for this is that in dilute collections of cells, the interactions between cells
can realistically be regarded as normal forces acting at the region of contact between
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the cells. In the more tightly packed cell ensembles, other mechanical principles come
into play, notably the resistance of cells to compression, which is difficult to prescribe
satisfactorily in an off-lattice model, yet is routinely included in the overall energy in
vertex dynamics models.

Thus, for more dilute cell ensembles, where the cells retain a more rounded char-
acter, we believe that the overlapping sphere method is the most appropriate, whereas
if the cells are tightly attached together, the vertex dynamics approach is better suited
to incorporate the more complicated mechanical interactions between cells. For tis-
sues which lie between these two extremes—such as tumors—one may choose either
approach and so the mechanical interactions need to be carefully examined before
settling on a simulation framework.

Growth in such cell ensembles occurs by cell division, and can be modeled in the
cell-based approach either as the instantaneous appearance of a new cell (correspond-
ing to mechanism 1 of the off-lattice models) or as a gradual process, involving a slow
doubling of the cell’s size before gradually separating (as in mechanism 2). Simu-
lating the second mechanism involves more computational complexity, so is it really
required? We suspect that it depends on the size of the cell ensemble under consider-
ation. If we have a comparatively small cell collection, the instantaneous appearance
of new cells would result in a noticeable jump in the deformation of the cell ensemble.
Conversely in a large cell ensemble the addition of a new cell would barely make any
difference to the overall deformation, the jumps being smoothed out in the same way
that Brownian motion on a molecular scale will give rise to a smooth diffusion rate on
the macroscale. The choice of cell division model will therefore depend on the scale
of tissue being modeled.

In the next section we will elaborate further on the notion of smoothing out the
microscopic (cell-scale) solution to see how one may develop a tissue-scale model from
cell-based interaction rules.

5. Connecting Tissue-Level and Cell-Level Models. In the two previous sec-
tions, we have looked at different models for growth in tissues, from both a macroscale
(tissue) and a microscopic (cell-based) viewpoint. However, few of the theories have
attempted either to reconcile the macroscopic equations with the mechanics at the
cell level, or indeed to determine how, for instance, mitotic activity would depend on
the overall state of stress in the tissue. Such relationships may be analyzed by the
mathematical theories of homogenization and localization. Given a body composed
of some heterogeneous material, where the body’s characteristic length scale is much
greater than the typical length scale of the variation in material properties, one may
approximate the behavior of the body under external loads by that of a homogeneous
body, whose properties are in some sense an average of those in the original speci-
men. The process of obtaining these effective properties is known as homogenization.
Mathematically speaking, we define the ratio of the heterogeneity length scale to the
typical body scale to be ε ) 1, so that a material property of the body (for instance,
elastic moduli, permeability, thermal conductivity, etc.) can be denoted by k(x,x/ε).
Homogenization gives us an effective material property keff(x), which can be thought
of as the quantity that emerges when the original problem is analyzed asymptotically
in the limit ε → 0. Conversely, localization is the theory that, given a homogenized
material with a known (or presumed) microstructure, extracts a representation of the
state of the material at the microscopic level.

Homogenization and localization are more easily achieved when the heterogeneous
material has some regular structure, which is often true for biological materials [93].
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Thus the microstructure may be replaced by a representative periodic lattice, for
which homogenization is a relatively well understood process [21]. This assumption
of periodicity lies behind many of the biomechanical applications of homogenization,
from bone tissue [131] to heart muscle [41]. When the microstructure does not have
such regularity, often the best that can be done analytically is to find variational
bounds on the effective properties [192]. On the other hand one can take a compu-
tational approach and study the mechanical behavior of a tissue by averaging the
deformation of the microstructure over some representative volume element (RVE).
One such volume-averaging study, by Stylianopoulos and Barocas [243], in modeling
the mechanics of collagenous material, took the microstructure to be a network of
interconnected fibers. Note that this method, unlike homogenization, does not ex-
tract effective material properties and hence the averaging process must be carried
out separately for each macroscopic deformation one might wish to consider.

There has been very little investigation into the properties of materials whose mi-
crostructure is a collection of cells, as exemplified by the models of section 4. Turner
[253] modeled a collection of deformable elastic cells and, with a crude measure of the
stored elastic energy due to contact, derived a fourth-order equation for the evolution
of the cell density. We also note a paper by Bodnar and Velazquez [27], who take
a one-dimensional collection of cells evolving according to (4.3), with and without a
stochastic term, and under the influence of a number of different potentials. Taking
the continuum limit, the density of particles was found to satisfy some partial dif-
ferential equation, which (in the case of repulsive potentials) is a nonlinear diffusion
equation. Mitotic effects were not included.

In an effort to discover the large-scale behavior of a collection of cells behaving
according to the center dynamics approach, Pathmanathan et al. [212] found that
a two-dimensional aggregate under compression would behave elastically up to some
critical point, at which cell rearrangements would kick in, causing a permanent plastic
deformation. Under unloading, the tissue again behaves elastically. In tension and
in simple shear, however, the behavior is more akin to a brittle elastic material, with
elastic deformations interrupted by sudden jumps, where collections of cells break
from each other.

Considering the vertex dynamics models for epithelial cells, Brodland et al. [32]
set out to obtain a model in the continuum limit which would have the same properties
as the collection of cells. Given a cell tessellation, the average shape of a cell can be
represented by an ellipse, parametrized by the three properties of size, elongation,
and orientation. Knowing these three parameters allows the stresses in the material
to be found [36], which in turn gives rise to a strain rate by the assumption of a linear
viscous constitutive law for the material. Thus the motion of the material under
growth may be found by a timestepping routine, where the stresses at each time step
give rise to the strain rate, thus giving the new average cell properties and therefore
the new stresses. Mitosis and cell annealing (reducing the elongation) may also be
incorporated into the model. On a different note, Fozard et al. [92] recently derived
a homogenized equation for the behavior of a one-dimensional vertex dynamics cell
model. The properties of the cells were allowed to vary, but mitosis was not included.

These investigations indicate that particle rearrangement in the cell-based models
leads to fluid-like behavior at the coarse-scale continuum level, with cell rearrange-
ments leading to plastic flow. In this respect it may be useful to take some ideas from
granular medium theory, where the aggregate response of many interacting particles
(cf. cells) gives rise to a continuum law which contains elements of plastic flow, among
others. However, the granular flow models tend to assume no cohesion between parti-
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cles, in contrast to cellular aggregates. Tissues which aren’t primarily cell aggregates
behave much more elastically, due to the absence of large-scale tissue rearrangement.

The difficulty in obtaining constitutive mechanical models for tissues by homog-
enization is obvious. However, one can create models for tissue which are inspired
by, rather than derived from, the microstructural characteristics. For instance, Kuhl
and Holzapfel [168] used a representation of collagenous tissue which assumed that
the collagen fiber phase could be represented by a “worm-like chain model.” Another
notable model [133] accounted for the anisotropy of arteries—characterized by heli-
cal fibers embedded in the vessel walls—by a strain energy function whose principal
directions were aligned with the fibers.

Obtaining the effective material properties of tissues by homogenization—
especially mechanical properties such as the strain energy function—would be a break-
through in biomechanics. However, in this section we ask whether it is possible for
growth phenomena to be homogenized without solving the full homogenization prob-
lem for the tissue. Essentially, we investigate the feasibility of obtaining from micro-
scopic processes an effective growth tensor F g (in the language of section 3.3) while
assuming that the strain energy function which gives rise to F e is the correct effec-
tive function for the tissue under consideration. This question is motivated by the
need to uncover the biological basis for the form of F g, which—as we have argued
previously—requires an analysis based on the behavior of the cells themselves. To
this end, we identify three challenges, whose resolution would greatly enhance our
understanding of tissue growth mechanics:

1. Deformation localization: Given a deformation field in a tissue, what can we
say about the deformation or forces experienced by a cell embedded in that
tissue?

2. Mechanotransduction: Given that a cell is deformed in a certain way, how
does this affect the cell cycle or the rate of ECM production?

3. Growth averaging: How does the rate of mitosis or ECM production at the
microlevel correspond to the growth tensor F g in the overall tissue?

The satisfactory resolution of 1–3 would give rise to a dependence between stress and
growth, as depicted schematically in Figure 5.1. Other factors which affect growth
rates, such as morphogen concentration, can also be incorporated into this framework:
the morphogen concentration field will be determined at the macroscale, and will
affect microscopic (cell-level) behavior such as mitotic rate. For the remainder of
this section we will review the progress which has been made in meeting the three
challenges enumerated above.

5.1. Deformation Localization. This concept is important in connecting the
growth field to the tissue deformation, since the cells embedded in the tissue are
likely to experience a substantially different deformation from the tissue as a whole.
As noted previously, localization is the theory that predicts microstructural properties
from the equivalent quantities at the macroscale. Clearly the configuration of the
microstructure is crucial, so the deformation experienced by the cell for a given tissue
deformation will be different depending on the type of tissue in which it is embedded.

There have been few investigations which examine this issue directly. We note
in particular work by Breuls et al. [30]. In this study the deformation of cells in an
engineered tissue construct was considered, where the microstructure was assumed to
be periodic. Both the matrix phase and the cells were assumed to be neo-Hookean
materials. The periodicity allowed the (nonlinearly elastic) deformation of the tissue
at the macroscale to be determined by a standard homogenization method. This
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Fig. 5.1 Schematic diagram illustrating the steps required to characterize a stress–growth relation-
ship in a tissue.

involved solving a microstructural cell problem, so the deformation of a cell in the
tissue was found as a by-product of the homogenization process.

In fact, although this paper was one of the few to explicitly consider the cell
deformation, any homogenization or volume-averaging theory that involves solving a
microstructural problem as part of the macroscale calculation will produce a typical
state of deformation at the microscale. Thus, for instance, the typical deformation
of a network of interconnected fibers in a tissue can be found using the averaging
theory of Stylianopoulos and Barocas [243]. Similarly, in the vertex dynamics model
of Brodland et al. [36], the dependence of the stress in the tissue on the average shape
of the cells could conceivably be inverted in order to produce the cell deformations as
a function of the tissue stress.

Thus, we observe that deformation localization is intimately linked with the ho-
mogenization or volume averaging of tissues. Further progress in localization must
therefore go hand in hand with efforts to apply ever more realistic models of the
microstructure to tissue deformation problems.

5.2. Mechanotransduction. The concept of mechanotransduction, in which the
cell changes its behavior in response to a mechanical stimulus, was introduced in
section 2.2. Models for this process should form a key part of any theory of tissue
growth. Such models have so far concentrated on mechanical aspects. For instance,
Shafrir and Forgacs [228] considered the cell cytoskeleton to be an interconnected
network of rods, and evaluated how a force on the membrane of a model cell would
be transmitted through this network towards the cell nucleus. With an application
to bone growth in mind, Cowin [59] reviewed models for evaluating the deformation
due to fluid motion of fibers connecting osteocytes (bone cells) to the bone matrix.

These examples illustrate a key requirement for models of mechanotransduc-
tion, namely that a close collaboration between theoreticians and experimentalists
is required. New discoveries are continually being presented, identifying hitherto-
disregarded pathways and enhancing the understanding of the micromechanical and
biochemical aspects of mechanotransduction. On the other hand, models which in-
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clude every plausible mechanism may be impractical if not impossible to formulate;
thus there is a need for an identification of the key components of the (often bewilder-
ingly large) system of chemical interactions, offering a simplified model which may be
subjected to meaningful analysis. Recent theoretical work into ion channels (see, for
instance, [38] and references cited within) may also be incorporated into this effort.

5.3. Growth Averaging. Having ideally determined the cell response to applied
deformations through localization and mechanotransduction, all that remains is to
link the production of new tissue material at the cell level to a global macroscopic
growth field, which may be characterized (for elastic tissues) by the growth tensor
F g, as shown in the theory of section 3.3.

Taber [245] identified four mechanisms by which new tissue could be produced.
These were

• cell division (hyperplasia),
• cell growth (hypertrophy),
• production of new ECM,
• accretion of material on internal or external surfaces.

Cell division (and the associated doubling in cell volume during the cell cycle) is
largely responsible for growth in epithelia and tumors. Growth in mature skeletal and
cardiac muscles generally takes place by hypertrophy, through elongation or thickening
of the muscle fibers. Connective tissues such as tendons are largely composed of ECM
proteins, so new ECM production is the primary mechanism of growth here. Accretion
of minerals on internal surfaces leads to the densification of bone.

While this classification of tissue growth is useful in distinguishing conceptually
different mechanisms, the full details involved in the growth process are inevitably
much more complex. Tendons, for instance, grow by production of long collagen
fibers by fibroblast cells. In reality, however, the cells secrete short protein molecules
which subsequently self-assemble into the hierarchical rope-like structure from which
the tendon is formed [231].

We now consider how the growth process at the cell level, described by processes
such as those above, may be averaged. For each point in the material, the growth
field F g, as noted in section 3.3, describes the growth-induced deformation of an in-
finitesimally small neighborhood Ω of that point. This motivates the following simple
averaging approach. The neighborhood Ω in the macroscopic description would be
identified with an RVE in the microscopic description (using the averaging terminol-
ogy discussed on page 104). This RVE should be large enough that the characteristic
length of the cells (or the microstructure in general) is small compared to the RVE
dimensions. Simultaneously, the RVE should be small enough that the rate of growth
is constant over its whole volume. This RVE would be placed in a stress-free en-
vironment and allowed to grow at the rate and in the direction indicated by the
mechanotransductive step. By approximating the (stress-free) RVE by ellipsoids pre-
and post-growth, one may then characterize the growth tensor F g.

If it is clear that the growth is isotropic and does not change the tissue’s density,
all that is required for the averaging process is the rate of mass increase per unit
volume, γ. Then, since F g = gI, we have from (3.20) that γ = 3ρġg−1, which gives
us an evolution equation for the growth function g. However, one must be wary of
imposing isotropic growth without justification. For instance, while the mitosis rules
for some of the off-lattice or vertex dynamics models of section 4 are indeed isotropic,
others impose a directionality based on the state of deformation of the tissue.

Ultimately, of course, whether the growth tensor is a faithful representation of the
tissue growth will depend mainly on the microscopic model of growth, or how exactly
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material is added to the tissue. To this end, we again stress that collaboration with
experimentalists is needed in order to obtain realistic models which accurately capture
the tissue behavior.

6. Conclusion. In this review article, we hope that we have managed to convey
an overview of the research that has been carried out into modeling tissue growth,
while stressing the distance yet to be traveled before the mechanisms involved can be
fully understood. Nevertheless, the prize is great: as noted in the introduction, the
interplay between stress and tissue growth has a strong bearing on many pathologies;
being able to play a part in reducing their burden on humanity is a laudable task.

Clouding this vision of the future is the realization that the human body is no
simple machine. With each new insight into the workings of cellular processes, an
extra layer of complexity is added to the picture. This has been the motivation for
experimental biologists and physiologists to collaborate with applied mathematicians,
an approach which has borne many important results, as discussed in this article.
This collaboration should continue, with theories being based on the best current
knowledge of the physiology, motivating new experiments to confirm or refute the
theoretical predictions.

Of course, while there may be similarities between the methods used to analyze
growth in different tissues, and while their biophysical properties may be superficially
similar, each tissue is likely to be significantly different in how growth interacts with
stress.15 Nevertheless, with improved experimental and theoretical techniques, we are
convinced that research into the biomechanics of growth will maintain its current pace,
with exciting consequences for the fields of mathematics, engineering, physiology, and
medicine.
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