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Abstract

The inability to predict the future growth rates and earnings of growth stocks (such as
biotechnology and internet stocks) leads to the high volatility of share prices and difficulty
in applying the traditional valuation methods. This paper attempts to demonstrate that
the high volatility of share prices can nevertheless be used in building a model that leads
to a particular cross-sectional size distribution. The model focuses on both transient and
steady-state behavior of the market capitalization of the stock, which in turn is modeled
as a birth–death process. Numerical illustrations of the cross-sectional size distribution
are also presented.
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1. Introduction

1.1. Growth stocks

Issuing stocks is arguably the most important way for growth companies to finance their
projects, and in turn helps transfer new ideas into products and services for the society. Although
the content of growth stocks may change over time (perhaps consisting of railroad and utility
stocks in the early 1900s, and biotechnology and internet stocks in 2000), studying the general
properties of growth stocks is essential for understanding financial markets and economic
growth.

However, uncertainty is manifest for growth stocks. For example, as demonstrated in the
recent market from 1999 to 2002, (a) growth stocks tend to have low or even negative earnings;
(b) the volatility of growth stocks is high (both their daily appreciation and depreciation rates are
high); (c) it is difficult to predict the future growth rates and earnings. Consequently, it poses
a great challenge to derive a meaningful mathematical model within the classical valuation
framework, such as the net-present-value method (which relies on current earnings and the
prediction of future earnings).

Indeed, since it appears that the only thing that we are sure about growth stocks is their
uncertainty, we may wonder whether there is much more to say about them. The current paper
attempts to illustrate that a mathematical model for growth stocks can, nevertheless, be built
via birth–death processes, mainly by utilizing the high volatility of their share prices.

One motivation of the current study comes from a report on internet stocks in the Wall
Street Journal (27 December 1999): researchers at Credit Suisse First Boston observed that
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‘there is literally a mathematical relationship between the ranking of the (internet) stock and
its capitalization’. (This observation is summarized later in a research report by Mauboussin
and Schay (2000).) In the article, it is suggested that a linear downward pattern emerges when
the market capitalizations of internet stocks are plotted against their associated ranks on a
log–log scale, with rank one being the largest market capitalization. The same article, more
interestingly, also reported that this phenomenon does not seem to hold for nongrowth stocks.
The article challenges people to investigate whether such a phenomenon happens simply by
chance or if there is certain mechanism behind it.

The model proposed in the current paper sheds light on this phenomenon. More interestingly,
the model leads us to discover and explain another new empirical observation, which has a better
goodness of fit; see (5.8), Remark 5.1, and Section 6. Roughly speaking, our result suggests
that if the market capitalization of stocks is modeled as a birth–death process, then for stocks
with high volatility (such as biotechnology and internet stocks) an almost (but not exactly)
linear curve will appear, on the log–log scale, if the market capitalizations (normalized by the
market capitalization of the largest stock within the group) are plotted against their relative
ranks; see (5.8). Meanwhile for nongrowth stocks the model implies that such a phenomenon
should not be expected, primarily because of the slow convergence of the birth–death process
to its steady-state distribution due to their low volatility. Furthermore, the model applies not
only to internet stocks (on which theWall Street Journal article focuses) but to growth stocks
(e.g. biotechnology stocks) in general.

1.2. Background of cross-sectional size distributions

Studying the stochastic relationships between some values of interest and their relative ranks
within a group, termed the (cross-sectional) ‘size distribution’, has a long history in probability,
dating back at least to Pareto (1896), Yule (1924), (1944), Gibrat (1931), and Zipf (1949). For
some more recent developments, see, for example, Woodroofe and Hill (1975), Chen (1980),
and Mandelbrot (1997).

Starting from Simon (1955), economists began to use various stochastic processes to model
cross-sectional size distributions in economics, for example the sizes of business firms (see
e.g. Ijiri and Simon (1977), Lucas (1978), Steindl (1965), Simon and Bonini (1958), Axtell
(2001)), income distribution (see e.g. Rutherford (1955), Mandelbrot (1960), Shorrocks (1975),
Feenberg and Poterba (1993)), and city-size distribution (see e.g. Glaeser et al. (1995), Krugman
(1996a), (1996b), Gabaix (1999)). However, most of the theory developed so far focuses
on the steady-state size distribution and pays little attention to the transient behavior of size
distributions.

The contribution of the current paper is twofold.

1. From a probabilistic viewpoint, we give a detailed analysis (see Section 4) of the transient
behavior of the size distribution, which is not well addressed in the size-distribution
literature. The analysis of the transient behavior is crucial to our study (see Section 5),
as it explains why the size-distribution theory can be applied to growth stocks but not to
nongrowth stocks.

2. From an applied point of view, we point out that the theory of the size distribution may
have an interesting application in studying growth stocks (see Section 5), which is difficult
for traditional methods, such as the net-present-value approach.

The paper is organized as follows. Section 2 proposes the basic model, while Sections 3
and 4 analyze both the transient and steady-state properties of the model. The model is then
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applied in Section 5 to derive the size distribution of growth stocks, and to explain why the
method can be used for growth stocks but not for nongrowth stocks. Numerical illustrations
are presented in Section 6. The advantage and disadvantage of the model are discussed in the
last section. Some proofs are deferred to Appendix A.

2. The model

In modeling growth stocks, instead of working on the price of a growth stock, it makes more
sense to study the market capitalization, defined as the product of the total number of outstanding
shares and the market price of the stock, because growth stocks tend to have frequent stock
splits, which immediately makes the price drop significantly but has little effect on the market
capitalization. We formulate the model as follows.

Consider at time t a growth stock with a total market capitalization M(t). We postulate that

M(t) = �(t)X(t), (2.1)

where�(t) represents the overall economic and sector trend andX(t) represents each individual
variation within the sector. Hence, �(t) is the same for all firms within the same industry sector,
and the individual variation term X(t) varies for different firms within the sector.

The individual variation term X(t) is modeled as a birth–death process: given that X(t) is
in state i, the instantaneous changes are i �→ i + 1, with rate iλ + g for i ≥ 0, and i �→ i − 1,
with rate iµ + h for i ≥ 1, where the parameters are such that λ,µ > 0, g > 0, h ≥ 0, λ < µ.
The unit of X(t) could be, for example, millions or billions of dollars.

Under the standard notation, X(t) is a birth–death process with the birth rate λi and the
death rate µi satisfying

λi = iλ + g, µi = iµ + h, i ≥ 1,

λ0 = g, µ0 = 0, (2.2)

and the infinitesimal generator of X(t) is given by the infinite matrix


−g g 0 0 · · ·
µ + h −λ − µ − g − h λ + g 0 · · ·

0 2µ + h −2λ − 2µ − g − h 2λ + g · · ·
...

...
. . .

. . .
. . .


 .

In the model, the state 0 only signifies that the size of X(t) is below a certain minimal level. It
does not imply, for example, that the company goes bankrupt.

The two parameters λ and µ represent the instantaneous appreciation and depreciation rates
of X(t) due to market fluctuation; the model assumes that they influence X(t) proportionally to
the current value. In general, because of the difficulty of predicting the instantaneous upward
and downward price movements (partly thanks to the efficient market hypothesis), for both
growth stocks and nongrowth stocks λ and µ must be quite close, λ/µ ≈ 1; in addition,
for growth stocks, both λ and µ must be large, because of their high volatility. These two
requirements will become Assumptions 5.3 and 5.4 in Section 5.2. The requirement that λ < µ

is postulated here to ensure that the birth–death process X(t) has a steady-state distribution.
The parameter g > 0 models the rate of increase in X(t) due to nonmarket factors, such as

the effect of additional shares being issued through public offerings or the effect of warranties
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Figure 1: Two sample paths of the birth–death process with (a) X(0) = 100, λ = 2.49, µ = 2.51, g = 1,
h = 0; and with (b) X(0) = 100, λ = 24.9, µ = 25.1, g = 10, h = 0.

on the stock being exercised (resulting in new shares being issued). The parameter h attempts
to capture the rate of decrease in X(t) due to nonmarket factors, such as the effect of dividend
payments. For most growth stocks, h ≈ 0, as no dividends are paid.

Remark 2.1. Although the individual stock’s variation X(t) is assumed to have a steady-state
distribution, the overall economic (and sector) trend �(t) can have a positive drift.

Remark 2.2. In general, neither X(t) nor �(t) is likely to be observed directly in the market.
Instead, only M(t) is directly observed in the market.

Remark 2.3. The model of X(t) proposed here is a variation and a generalization of the models
proposed in Simon (1955) and Shorrocks (1975) to study business and income sizes, etc. The
key difference here is that we provide a detailed analysis of both transient and steady-state
behavior, not just the steady-state analysis. The transient analysis not only presents some
mathematical challenges (see Section 4), but also is essential to understand why the theory of
the size distribution is useful for growth stocks but not for nongrowth stocks (see Section 5).

Figure 1 provides an illustration of the model by showing the sample paths of two realizations
of the birth–death process X(t) in (2.2) for about 6.5 years. In Figure 1(a), the instantaneous
jump rates, λ and µ, are small, while in Figure 1(b), λ and µ are large. The sample paths
suggest two points:

1. For reasonably large λ and µ, the jumps of the birth–death processes are almost unno-
ticeable, and the overall sample paths fit in well with our intuition of market fluctuation.

2. Although λ < µ, the sample paths of X(t) may still have some strong upward movements
if λ is close to µ; for example, in Figure 1(b), X(t) increases from about 20 to about 250
(more than 12 times) within a short period (about 2.5 years).
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3. Preliminary results

3.1. Properties of the steady-state distribution

The steady-state measure of a birth–death process is given by

π0 = 1, πn := λ0λ1 · · · λn−1

µ1 · · ·µn

, n = 1, 2, . . . .

Normalizing {πn} provides the steady-state distribution of the birth–death process:

lim
t→∞ P(X(t) = n) = πn

S
, S :=

∞∑
n=0

πn

(see Lemma 3.1 below for the finiteness of S under the setting of (2.2)). In our case,

πn =
(

λ

µ

)n
(g/λ)(1 + g/λ)(2 + g/λ) · · · ((n − 1) + g/λ)

(1 + h/µ)(2 + h/µ) · · · (n + h/µ)
, n ≥ 1.

Using the gamma function, it can be succinctly expressed as

πn = �(1 + h/µ)

�(g/λ)

(
λ

µ

)n
�(n + g/λ)

�(n + 1 + h/µ)
, n ≥ 0. (3.1)

Lemma 3.1. (Steady-state properties of X(t).) (i) The birth–death process X(t) in (2.2) is
positive recurrent; i.e. it will visit every state {0, 1, 2, . . . } with probability 1, and the expected
visiting time of any state is finite.

(ii) As n → ∞,
πn

∼= �(1 + h/µ)

�(g/λ)

(
λ

µ

)n

ng/λ−h/µ−1. (3.2)

Here and throughout this paper, a ∼= b means that a/b → 1 asymptotically. This asymptotic
order, in particular, implies that S = ∑∞

n=0 πn is finite.

(iii) The moment-generating function of the steady-state distribution is given by

η(θ) :=
∞∑

n=0

eθnπn

S
= F(g/λ, 1; 1 + h/µ; (λ/µ)eθ )

F (g/λ, 1; 1 + h/µ; λ/µ)
, (3.3)

whereF(a, b; c; z) is the hypergeometric function (see Abramowitz and Stegun (1972, p. 556)):

F(a, b; c; z) := �(c)

�(a)�(b)

∞∑
n=0

�(a + n)�(b + n)

�(c + n)

zn

n! .

In particular, the mean and the second moment of the steady-state distribution are

m1 := η′(0) = 1

S

g

µ + h
F

(
1 + g

λ
, 2; 2 + h

µ
; λ

µ

)
and

m2 := η′′(0)

= 1

S

g

µ + h

{
F

(
1 + g

λ
, 2; 2 + h

µ
; λ

µ

)
+ 2

λ + g

2µ + h
F

(
2 + g

λ
, 3; 3 + h

µ
; λ

µ

)}
.
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(iv) Let the tail probability of the steady-state distribution be

F(n) := lim
t→∞ P(X(t) ≥ n)

=
∞∑

k=n

πk

S
.

Then, as n → ∞,

F(n) ∼= 1

S

�(1 + h/µ)

�(g/λ)

(
1 − λ

µ

)−1(
λ

µ

)n

ng/λ−h/µ−1. (3.4)

Although some of the results in Lemma 3.1 may be known, perhaps for h = 0, to the best of
the authors’ knowledge the representations in terms of the hypergeometric functions have not
been given previously; the proof of Lemma 3.1 is deferred to Appendix A.

A careful inspection of the result of Lemma 3.1 reveals that, instead of the original parameters,
only the three ratios λ/µ, h/µ, and g/λ determine the steady-state distribution. Thus, the
steady-state properties only reflect the relative magnitude of the parameters λ, µ, g, and h,
rather than the absolute magnitude. (This contrasts with the realizations of the birth–death
process, such as in Figure 1, in which the dynamic behavior of the sample path does depend on
the absolute magnitude of λ, µ, g, and h.)

3.2. Transient mean and variance

Lemma 3.1 only provides steady-state properties of X(t), which might be relevant if the
birth–death process X(t) has been run for a long time; i.e. the stock has been traded in the
market for a long period. However, it is quite possible that the parameters λ, µ, g, and h

may have changed during the period, thus altering the steady-state distribution. Therefore,
practically the steady-state properties are relevant only if the convergence from the transient
states to the steady states is fast enough, i.e. if the convergence can be observed in a timely
fashion.

There are several ways to judge the convergence speed. In this section we shall focus on the
mean and variance of the transient distribution, which can lead to a measure of the convergence
rate; see Section 5.1. A more accurate measure (which is of course more difficult to study) is
the convergence rate for the transition probabilities, which attempts to capture the convergence
of the whole distribution rather than just the first two moments; this will be analyzed in the next
section.

Denote the transition probability at time t by

pi,j (t) := P(X(t) = j | X(0) = i),

the transient expectation at time t by

m1(t) := E X(t) =
∞∑

j=0

jpi,j (t),

and the second moment by

m2(t) := E X2(t) =
∞∑

j=0

j2pi,j (t).
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Lemma 3.2. (Transient mean and variance.) Suppose that the birth–death process starts from
X(0) = i. The first moment m1(t) at time t satisfies the following differential equation:

m′
1(t) = (λ − µ)m1(t) + g + h(1 − pi,0(t)),

whose solution is given by

m1(t) = ie(λ−µ)t + g

µ − λ
[1 − e(λ−µ)t ] + h

∫ t

0
e(µ−λ)(s−t)(1 − pi,0(s)) ds.

The second moment m2(t) satisfies the differential equation

m′
2(t) = 2(λ − µ)m2(t) + (λ + µ + 2g − 2h)m1(t) + g + h(1 − pi,0(t)),

with solution given by

m2(t) = i2e2(λ−µ)t + g

2(µ − λ)
[1 − e2(λ−µ)t ] + h

∫ t

0
e2(µ−λ)(s−t)(1 − pi,0(s)) ds

+ (λ + µ + 2g − 2h)
∫ t

0
e2(µ−λ)(s−t)m1(s) ds.

The proof of Lemma 3.2 is given in Appendix A. We note that, for the special case of h = 0,
Karlin and McGregor (1958) derived a differential equation for pi,j (t), and solved it by using
orthogonal polynomials.

4. The transient behavior of the model

As mentioned above, most of the literature on size distributions focuses on the steady-
state properties, and, except for some numerical examples (for example, Shorrocks (1975)
demonstrated through numerical calculation that, if the convergence rate is not large enough, it
may take 15 to 181 years for some birth–death processes to reach steady states), the theoretical
properties of the transient behavior are hardly addressed in the literature. In this sense, this
section constitutes the main technical contribution of the current paper to the size-distribution
literature.

The speed of convergence of a birth–death process can be measured by the decay parameter
(see Kijima (1997)), which is defined by

γ := sup
{
α ≥ 0 : pi,j (t) −

(πj

S

)
= O(e−αt ) for all i, j ≥ 1

}
,

where, as before, pi,j (t) is the transition probability at time t and πj/S is the steady-state
probability. For further background on the speed of convergence and rate of exponential
ergodicity, see, for example, Meyn and Tweedie (1993).

Note that the decay parameter γ affects the convergence in an exponential way. In other
words, a small difference in γ can have a remarkable effect on the speed of convergence, which
in turn suggests that the steady-state analysis of the size distribution in our model based on the
birth–death process is only relevant when the decay parameter is large. In addition, since the
infinitesimal generator of the birth–death process is an infinite-state matrix, the analysis of the
convergence rate is different from that for finite-state Markov chains.
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Theorem 4.1. (The decay parameter.) For the birth–death process in the model, if h = 0, then
the decay parameter γ is equal to µ − λ; otherwise, if h > 0, then

µ − λ ≤ γ < µ − λ + h

[
1 − min

(
λ

µ
,
λ + g

µ + h

)]
.

The derivation of Theorem 4.1 is the main technical contribution of the current paper to
the study of the size distribution. To prove Theorem 4.1, we start from the following lemma
(Lemma 5.14 in Kijima (1997)).

Lemma 4.1. There exists a sequence {ki} such that k0 = ∞, ki > 0 for all i ≥ 1, and
λi + µi+1 − λiµi/ki − ki+1 = y for all i ≥ 0 for some constant y if and only if y ≤ γ .

To derive the upper bound for the decay parameter γ , we need the following lemma.

Lemma 4.2. For any constant c > 0, consider the sequence {ki} defined by
k1 = λ + g + h − c, c > 0, h ≥ 0,

ki+1 = λi+1 + µi − λiµi

ki
− c, i ≥ 1.

(4.1)

Let li := ki − λi, i ≥ 1, so li has the following recurrence relation:

l1 = h − c, c > 0, h ≥ 0,

li+1 = li

λi + li
µi − c, i ≥ 1.

(4.2)

Then ki > 0 for all i ≥ 1 if and only if li > 0 for all i ≥ 1.

Proof. Suppose that li > 0 for all i ≥ 1. Then immediately ki = λi + li > λi > 0 for
every i. We next prove the reversed statement by contradiction.

Suppose that ki > 0 for all i ≥ 1 and lm ≤ 0 for some m. The recurrence relation of li gives
lm+1 ≤ −c and li+1 ≤ liµi/ki for all i ≥ 1. Therefore,

lm+2 ≤ lm+1
µm+1

km+1
≤ −c

µm+1

km+1
.

In general, by induction, for any M > m + 1,

lM ≤ −c

M−1∏
j=m+1

µj

kj
< 0,

which implies that 0 < kj = lj + λj < λj for all j ≥ m + 1. Therefore, replacing kj by λj in
the above equation, we have

lM ≤ −c

M−1∏
j=m+1

µj

kj
≤ −c

M−1∏
j=m+1

µj

λj

< 0.

Since µj/λj → µ/λ > 1, the above inequality implies that lM → −∞ exponentially fast.
Thus, we must have kj = lj + λj < 0 for some j ≥ m + 1, since λj → ∞ only linearly fast.
This contradicts the initial assumption.
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Proof of Theorem 4.1. The proof consists of two steps.

Step 1. We want to prove the lower bound, i.e. γ ≥ µ − λ. To do this, consider the sequence
{ki} defined by

k0 = ∞,

µ − λ = λi + µi+1 − λiµi

ki
− ki+1, i ≥ 0,

that is,

k1 = λ0 + µ1 − (µ − λ) = λ + g + h,

ki+1 = (λi+1 + λ) + (µi+1 − µ) − λiµi

ki
= λi+1 + µi − λiµi

ki
, i ≥ 1.

Let li = ki − λi for i ≥ 1. Then

l1 = h,

li+1 = li

λi + li
µi, i ≥ 1.

It is easy to see that li ≥ 0 for all i ≥ 1, which says that ki = λi + li > li ≥ 0 for every i ≥ 1.
By Lemma 4.1, we must have γ ≥ µ − λ.

Step 2. We now prove the upper bound for γ . First, note that the recurrence relationship of li
in (4.2) implies that, for any number d ≥ 0,

li+1 > d ≥ 0 if and only if li > (c + d)
λi

µi − c − d
.

In particular, for any number d ≥ 0,

if li+1 > d ≥ 0, then li > (c + d)
λi

µi

= c
λi

µi

+ d
λi

µi

.

Using it once again, we know that, if li+1 > d ≥ 0, then

li−1 > c
λi−1

µi−1
+

(
c
λi−1

µi−1
+ d

λi−1

µi−1

)
λi

µi

= c
λi−1

µi−1
+ c

λi−1

µi−1

λi

µi

+ d
λi−1

µi−1

λi

µi

.

In general, simple induction gives that, if li+1 > d ≥ 0, then, for any j ≤ i,

lj > c

{
λj

µj

+ λj

µj

λj+1

µj+1
+ · · · + λj

µj

λj+1

µj+1
· · · λi

µi

}
+ d

λj

µj

λj+1

µj+1
· · · λi

µi

. (4.3)

Next, suppose that γ = µ − λ + c, with c > 0. Then Lemma 4.1 implies that there exists a
sequence {ki} such that k0 = ∞, ki > 0 for all i ≥ 1, and

µ − λ + c = λi + µi+1 − λiµi

ki
− ki+1, i = 0, 1, 2, . . . .
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According to Lemma 4.2, ki > 0 for all i implies that lj > 0 for all j . Thus, we can set d = 0
in (4.3). Letting j = 1 and i → ∞ and using the fact that

λi

µi

= iλ + g

iµ + h
≥ ρ := min

(
λ

µ
,
λ + g

µ + h

)
for any i ≥ 1

yields that l1 > c{ρ + ρ2 + · · · } = cρ/(1 − ρ). But, by the definition (4.2), l1 = h − c.
Therefore, h − c > cρ/(1 − ρ), which implies that

c < h(1 − ρ) for all h ≥ 0. (4.4)

Finally, consider the two cases h = 0 and h > 0. If h = 0, then (4.4) leads to a contradiction
as c is assumed to be positive. Thus, when h = 0, γ must be equal to µ − λ. If h > 0, then
(4.4) yields that

γ = µ − λ + c < µ − λ + h(1 − ρ) = µ − λ + h

[
1 − min

(
λ

µ
,
λ + g

µ + h

)]
,

from which the conclusion follows.

5. The size distribution for growth stocks

In this section we shall apply the results on both the steady-state and the transient behavior
of the model to study the size distribution of growth stocks. Since, for most growth stocks,
there is no dividend payment, we shall assume from this section on that

h = 0. (5.1)

5.1. Basic transient and steady-state properties for h = 0

Under the assumption (5.1), Lemma 3.1 implies that the steady-state measure for X(t) is

πn = 1

�(g/λ)

(
λ

µ

)n
�(n + g/λ)

n! ,

and

F(n) =
∞∑

k=n

πk

S
= πnF(n + g/λ, 1; n + 1; λ/µ)

S
, n ≥ 0.

In addition,

S =
∞∑
k=0

πk = F

(
g

λ
, 1; 1; λ

µ

)
=

(
1 − λ

µ

)−g/λ

,

thanks to the following property of the hypergeometric function: F(a, b; b; z) = (1 − z)−a .
This, together with (3.4), yields that

F(n) = lim
t→∞ P(X(t) ≥ n) ∼= 1

�(g/λ)

(
1 − λ

µ

)g/λ−1(
λ

µ

)n

ng/λ−1. (5.2)

By (3.3), the moment-generating function of the steady-state distribution, under h = 0, is

η(θ) =
(

µ − λeθ

µ − λ

)−g/λ

.



Modeling growth stocks via birth–death processes 651

Thus, for the steady-state distribution, the first two moments are

m1 = η′(0) = g

µ − λ
,

m2 = η′′(0) = g(µ + g)

(µ − λ)2 ,

(5.3)

and the variance is
m2 − m2

1 = µg

(µ − λ)2 .

For the properties of the transient behavior, first note that, by Theorem 4.1, the decay
parameter, which measures the speed of convergence to the steady state in an exponential way,
is given by

γ = µ − λ.

Secondly, by Lemma 3.2,

m1(t) = ie(λ−µ)t + g

µ − λ
[1 − e(λ−µ)t ],

m2(t) = i2e2(λ−µ)t + i
λ + µ + 2g

λ − µ
(e2(λ−µ)t − e(λ−µ)t )

+ g

2(µ − λ)
[1 − e2(λ−µ)t ] + g(λ + µ + 2g)

2(µ − λ)2 (1 − e(λ−µ)t )2.

The exponents in m1(t) and m2(t) are all related to λ−µ, which also points out, from a different
viewpoint, that µ−λ should affect the speed of convergence in an exponential way. In addition,
it is easily seen that

lim
t→∞ m1(t) = g

µ − λ
= m1,

lim
t→∞ m2(t) = g(µ + g)

(µ − λ)2 = m2.

5.2. The size distribution

Consider N growth firms within a particular sector, whose market capitalizations are gov-
erned by the model (2.1) (here N is an unknown quantity). Suppose that, among these N

firms, we observe the K largest (in terms of their market capitalization). Denote the market
capitalization of the K observed stocks by Mi(t), 1 ≤ i ≤ K . Since all these K firms are from
the same sector, we have

Mi(t) = �(t)Xi(t), 1 ≤ i ≤ K,

where�(t), the overall economic and sector trend, is the same for allK stocks, but the individual
variation terms Xi(t) are different.

Now suppose that we rank the market capitalizations such that M(1)(t) > M(2)(t) > · · · >

M(K)(t), where M(1)(t) denotes the largest firm, M(2)(t) the second largest firm, etc. Then we
have

log M(j)(t) = log �(t) + log(X(j)(t)), (5.4)
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where X(j)(t) are the ranked values of Xj(t), 1 ≤ j ≤ K . Since the first term � in (5.4) is
common for all firms, the plot of log M(j)(t) versus log j and the plot of log X(j)(t) versus log j

will display similar patterns. Therefore, we first focus on the relationship between log X(j)(t)

and log j .
As X(1)(t), X(2)(t), . . . , X(K)(t) are the ordered realizations of X(t), the empirical tail

distribution F̃ (x) (the empirical version of F ) evaluated at X(i)(t) is simply F̃ (X(i)(t)) = i/N ,
i = 1, . . . , K . Next we make two assumptions.

Assumption 5.1. The birth–death process has reached the steady state.

Assumption 5.2. For each stock included in the group, the market capitalization is large; that
is, even X(K)(t) is large.

According to (5.2), in the steady state, for large capitalization n,

log F(n) ∼= log

{
1

�(g/λ)

(
1 − λ

µ

)g/λ−1}
+ n log

(
λ

µ

)
−

(
1 − g

λ

)
log(n).

Therefore, under Assumptions 5.1 and 5.2 empirically with n = X(i), we shall expect that

log F̃ (X(i)(t)) = log

(
i

N

)

≈ log

{
1

�(g/λ)

(
1 − λ

µ

)g/λ−1}
+ X(i)(t) log

(
λ

µ

)
−

(
1 − g

λ

)
log(X(i)(t)).

Rearranging the terms above yields that

log X(i)(t) ≈ C − 1

1 − g/λ
log i + 1

1 − g/λ
X(i)(t) log

(
λ

µ

)
, 1 ≤ i ≤ K, (5.5)

where the constant term

C = 1

1 − g/λ
log

{
1

�(g/λ)

(
1 − λ

µ

)g/λ−1}
+ log(N)

1 − g/λ
. (5.6)

Since N is unknown, C is essentially a free parameter.
Equation (5.5) provides a link between the ordered values of X(t) and their relative ranks.

However, since it involves a nuisance parameter C, a better equation can be obtained by
eliminating C first, as is typical in many standard statistical procedures. To do this, observe
that when i = 1 we have

log X(1) ≈ C − 1

1 − g/λ
log 1 + 1

1 − g/λ
X(1) log

(
λ

µ

)
. (5.7)

Taking the difference between (5.5) and (5.7) cancels out the nuisance constant C and gives

log
X(i)(t)

X(1)(t)
≈ − 1

1 − g/λ
log i + 1

1 − g/λ
(X(i)(t) − X(1)(t)) log

(
λ

µ

)
, 1 ≤ i ≤ K.

Now substituting it into (5.4) we have, for 1 ≤ i ≤ K ,

log
M(i)(t)

M(1)(t)
≈ − 1

1 − g/λ
log i + 1

1 − g/λ
(M(i)(t) − M(1)(t)) log

[(
λ

µ

)1/�(t)]
. (5.8)
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Equation (5.8) is the key cross-sectional empirical implication in this paper. It will lead to
an ‘almost’ linear curve if the third term in (5.8) is small. This can be achieved if we make two
more assumptions.

Assumption 5.3. For both growth stocks and traditional stocks, λ/µ ≈ 1.

Assumption 5.4. For growth stocks, both λ and µ must be large.

Assumption 5.3 is postulated because, generally, it is hard to predict instantaneous upward
and downward price movements for both growth stocks and nongrowth stocks; thus, λ and
µ must be quite close. Assumption 5.4 reflects the high volatility of growth stocks. Indeed,
Kerins et al. (2001) show empirically that the volatility of internet stocks may be at least five
times as high as that of traditional stocks. With Assumptions 5.3 and 5.4, we have the following
lemma.

Lemma 5.1. Suppose that ξ := λ/µ → 1 and g/λ → 0. Then, in the steady state, the second
term on the right-hand side of (5.8) goes to zero inL1. In other words, under these conditions,
(5.8) is asymptotically a linear relationship.

Proof. It is enough to prove that

1

1 − g/λ
E(X(i)(t) − X(1)(t)) log

(
λ

µ

)
→ 0, 1 ≤ i ≤ K.

Since 0 ≤ X(i)(t) ≤ X(1)(t), we only need to show that

1

1 − g/λ
E[X(1)(t)] log

(
λ

µ

)
→ 0.

Noting that E[X(1)(t)] ≤ N E[X(t)], the problem is further reduced to showing that

1

1 − g/λ
E[X(t)] log

(
λ

µ

)
→ 0.

In the steady state, using (5.3), this becomes

1

1 − g/λ

g

µ

log(ξ)

1 − ξ
→ 0,

which is true because log(ξ)/(1 − ξ) → −1 as ξ → 1.

As we shall see in Section 6, g/λ indeed tends to be small in the numerical examples, ranging
from 0.08 to 0.36. It is worth mentioning here that, even if g/λ is not small, the cross-sectional
equation (5.8) still holds.

In addition, note also that Assumption 5.4 implies that the decay parameter γ = µ − λ

(which affects the convergence in an exponential way) may also be large for growth stocks,
thus leading to a fast convergence to the steady-state distribution and justifying Assumption 5.1.

With Assumptions 5.1–5.4, we note that the cross-sectional equation (5.8) postulates a
relationship between the logarithm of the normalized (by the largest value) market caps and
the logarithm of the ranks of ‘large-cap’ growth stocks (those satisfying Assumption 5.2). The
term ‘large-cap’ here is used in a loose sense, and should not be confused with similar words
used in stock exchanges; more precisely, it means that the market capitalization is large enough
so that the asymptotic result (5.2) holds.
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Equation (5.8) also implies that the same cross-sectional phenomenon should hold not only
for large-cap internet stocks (as reported in the Wall Street Journal article) but also for other
large-cap growth stocks, such as large-cap biotechnology stocks, with large λ and µ.

Remark 5.1. It may be worthwhile to point out the connection between the new cross-sectional
implication (5.8) and the empirical puzzle reported in theWall Street Journal, which amounts
to

log M(i)(t) ≈ a(t) + b(t) log i,

where a(t) and b(t) do not depend on the index i. The new cross-sectional implication (5.8)
appears to have a better fit to the data, as judged by the high R2 statistic (see Section 6). There
are two reasons for the improvement: (i) we eliminate the nuisance parameter by using the
relative market caps M(i)/M(1); (ii) we do not require the third term in (5.8) to be zero or small
when we fit the model in Section 6, thus leading to a better fitting.

5.3. Why the model does not apply to nongrowth stocks

There are at least two reasons why the cross-sectional relationship in (5.8) between the
logarithm of the market capitalization and the logarithm of the ranks should not be expected for
nongrowth stocks. First, the birth–death process model may not be valid for nongrowth stocks.
Secondly, even if the model is valid for nongrowth stocks, in order to empirically observe a
phenomenon such as that implied by (5.8), several conditions must be satisfied, as (5.8) is based
on the steady-state distribution.

Condition 5.1. In terms of time, the convergence from the transient states to the steady state
must be fast enough. This in turn depends on the magnitude of the decay parameter γ ; in other
words, γ must be large.

Condition 5.2. In terms of market capitalization, X and, hence, M must be large enough, as
required by the asymptotic results in (5.2) and (5.5).

For large-cap growth stocks (thus satisfying Condition 5.2 above), by Assumption 5.4, both
λ and µ are large. So, if µ − λ is large, then the decay parameter γ is also large, thus resulting
in a fast convergence to the steady state.

For nongrowth stocks, the volatility parameters, which in our model areλ andµ, are generally
not large. As a consequence, the decay parameter γ = µ − λ (which affects the convergence
in an exponential way) cannot be large in general. In other words, although in the steady state
plotting the logarithm of the market capitalization against the logarithm of the relative ranks may
display a certain relationship, the relationship may not emerge at all within a reasonable amount
of time, due to the slow convergence from the transient state to the steady state. Furthermore,
if the convergence rate is slow, many factors can lead the process to depart from the original
steady state, e.g. changing of λ and µ, etc.

5.4. Further remarks about the cross-sectional implication

As is common for many cross-sectional studies, (5.8) should only be viewed as an under-
standing of growth stocks as a whole rather than as a trading tool, because we did not provide
dynamics of the relative ranks for growth stocks. However, cross-sectional implications may
lead to some useful economic models. In fact, it can be shown that a dynamic equilibrium model
can be built as a result of the model proposed in the current paper, and the model is also linked
to endogenous stochastic growth theory in macroeconomics; the details of the macroeconomic
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justification of the current model, being too long to be included here, are given in Kou and
Kou (2002).

The size distribution in (5.8) is quite different from that observed for the city-size distribu-
tion. In the city-size distribution, the exponent of the power law (i.e. the slope of regressing
log-city-size on log-city-rank) is very close to −1 (see, for example, Krugman (1996a), Gabaix
(1999)). But here the exponent −1/(1 − g/λ) is less than −1, as we shall see in Section 6.
Furthermore, as pointed out in Gabaix (1999) and Krugman (1996b, pp. 96–97), it could take
a process too much time to converge to the steady-state distribution (which is the power law),
if the volatility of city-growth rates is not large; this, consequently, poses a serious problem
for using birth–death processes to model the city-size distribution. However, in our case the
volatility of growth stocks tends to be much higher than that of nongrowth stocks and that
of city sizes. Therefore, the growth stocks tend to converge to the steady state much faster,
resulting in a clear pattern of the size distribution (as shown in Section 6). This also underlines
the importance of studying the transient behavior of the size distribution.

The regression using (5.8) is robust against possible truncation errors, thanks to the fact that
the relative ranks are used. For example, if there are 200 growth stocks in total and only the
top 100 stocks with large market capitalization are included in the estimation, then (5.8) will
not alter.

Equation (5.8) is almost scale invariant: if the unit of X(t) scales up by a factor of A, then
g/λ in (5.8) remains the same, while λ/µ becomes (λ/µ)A. However, since λ/µ ≈ 1, the
difference between λ/µ and (λ/µ)A is generally insignificant unless A is extremely large.

6. Numerical illustrations of the cross-sectional size distribution

To illustrate the cross-sectional size distribution for biotechnology stocks, we plot in
Figure 2 the logarithm of their market capitalization relative to the largest biotechnology stock
versus the logarithm of their ranks. In other words, log(M(i)/M(1)) is plotted against log i. This
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Figure 2: Size distribution of the biotechnology stocks.
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Figure 3: Plot for the 20 stocks of the Dow Jones Transportation Average.

can be viewed as choosing M(1) as the unit of measurement. The six graphs, which involve 139
biotechnology stocks, display results for 2 January 1998 and every 150 trading days thereafter.
The 139 stocks include most of the stocks listed in the Nasdaq® biotechnology index and the
Amex® biotechnology index (BTK). See Appendix B for a description of all the stocks used in
the paper.

In each panel, the total market capitalizations of these 139 stocks are first computed by
taking the product of the number of outstanding shares and the share price; then the stocks
with market capitalization not smaller than 0.5% of that of the largest stock are plotted. The
relationship (5.8) requires large market capitalization, and here ‘large-cap’ is taken (ad hoc) to
be stocks having market capitalization at least as large as 0.5% of that of the largest stock. One
advantage of categorizing ‘largeness’ relatively is that it automatically takes into account the
fact that different groups of stocks could have different sizes (for example, even within growth
stocks, internet stocks tend to be larger than biotechnology stocks).

It is worth noting that the six days shown in Figure 2 include days when the biotechnology
stocks were performing well, as well as days when the biotechnology stocks were grounded
heavily. Nevertheless, in all six graphs there is clearly an almost linear trend. In contrast, in
Figures 3 and 4, for the same six trading days, the logarithm of the market capitalization of
the 20 stocks of the Dow Jones Transportation Average and 88 saving and loan stocks relative
to the largest one is plotted against the logarithm of their ranks. We include the saving and
loan stocks because, based on the data of a single day, Mauboussin and Schay (2000) later (but
not in theWall Street Journal) stated that saving and loan stocks may show ‘strong power-law
characteristics’ as well; so we want to investigate the issue.

Among the 20 transportation stocks, the smallest has a market capitalization about 2% of
that of the largest. The 88 saving and loan stocks are described in Appendix B. The plot of the
transportation stocks is far from linear. For the saving and loan stocks, based on the data of
three years, from 1998 to 2000, it is fair to say that, although on some days there may be a linear
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Figure 4: Plot for the saving and loan stocks.

pattern, the pattern disappears on other days and is not at all consistent. This is again expected
from the model, since the convergence of nongrowth stocks to the steady-state distribution
(governed by the decay parameter) is generally too slow to be observed in practice.

For the biotechnology stocks in Figure 2, the parameters can be estimated by fitting the
model (5.8) to the data. More precisely, at any time t , the estimates ĝ/λ and β̂ can be simply
obtained by minimizing the squared errors for log(M(i)/M(1)):

(ĝ/λ, β̂)

= arg min
(g/λ,β)

K∑
i=1

[
log

M(i)

M(1)
−

{
− 1

1 − g/λ
log i + 1

1 − g/λ
(M(i) − M(1)) log β

}]2

,

(6.1)

with the constraints that g/λ > 0 and 0 < β < 1, where β = (λ/µ)1/�. Equation (6.1)
is considered here mainly because (a) it is easy to implement; and (b) the focus here is an
illustration of the cross-sectional size distribution, rather than an empirical test of the model.

We shall point out that there are other ways, such as likelihood-based methods, to estimate
the parameters, which might be more efficient. The parameter 1 − g/λ is also related to the
tail index for power-law distributions. In the above procedure we estimate g/λ by fitting a
parametric model in (6.1). An alternative way to estimate g/λ is to use the nonparametric Hill
estimator or its extension such as the Hill ratio plot; see, for example, Hill (1975), Lo (1986),
Embrechts et al. (1997), Adler et al. (1998), Drees et al. (2000). However, our numerical
experiment suggests that the Hill ratio plot may be too volatile to give a reliable estimator of
g/λ, mainly because here the sample size (about 70 internet stocks and 139 biotechnology
stocks) is too small for the nonparametric method to be effective. This seems to be consistent
with the observation in the literature that a large sample size (in the magnitude of thousands
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Table 1: The R2 and estimated g/λ and β for biotechnology stocks.

ĝ/λ 1 − β̂ R2

2 January 1998 0.080 1.38 × 10−9 97.8%
7 August 1998 0.165 1.25 × 10−9 98.2%

15 March 1999 0.295 1.06 × 10−9 98.3%
15 October 1999 0.272 1.09 × 10−9 99.2%
19 May 2000 0.197 1.20 × 10−9 98.6%
21 December 2000 0.265 5.65 × 10−9 97.5%
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Figure 5: Empirical and estimated size distribution for biotechnology stocks.

or more) may be needed for the Hill ratio plot to produce reliable estimates; see, for example,
Resnick (1997) and Heyde and Kou (2002).

Table 1 reports the estimates ĝ/λ and β̂ as well as R2, which measures the goodness-of-fit
for all six graphs in Figure 2. Similar to the linear regression, here R2 is simply defined as
1 − (variance of the residuals)/(variance of the observed responses). Note that the ĝ/λ are all
small. Furthermore, the β̂ are all very close to 1; this hints that � might be quite large.

Using the estimated values of g/λ and β, the dashed lines in Figure 5 show the relationship
between the log-market capitalization and the log-rank, as suggested by the model. They agree
well with the empirical observation.

As a further illustration, Figure 6 shows the cross-sectional size distribution for internet
stocks. The six graphs represent 4 January 1999 and every 100 trading days onward. In total,
70 internet stocks are involved. See Appendix B for details. The plot starts from 4 January
1999 because there were not many internet stocks before 1999. Again the expected pattern
emerges. Table 2 reports the estimated parameters and R2 for the internet stocks.
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Figure 6: Empirical and estimated size distribution for internet stocks.

Table 2: The R2 and estimated g/λ and β for internet stocks.

ĝ/λ 1 − β̂ R2

4 January 1999 0.365 1.47 × 10−6 97.3%
27 May 1999 0.298 1.60 × 10−6 96.8%
19 October 1999 0.211 1.18 × 10−9 99.0%
13 March 2000 0.135 1.12 × 10−7 94.0%

3 August 2000 0.234 1.15 × 10−9 99.5%
26 December 2000 0.315 4.51 × 10−7 99.4%

We conclude this section by presenting a picture of the recent market. Figure 7 shows the
size distribution of biotechnology and internet stocks as of 22 August 2001. The pattern for
biotechnology and internet stocks expected by the model again emerges. Table 3 reports the
estimated parameters and R2. Note that the ‘internet bubble’ had burst by then; for example,
the American stock exchange internet index (IIX) was 688.52 on 27 March 2000 and was only
141.21 on 22 August 2001. The fitting is good even under this severe market downturn.

Remark 6.1. Although the cross-sectional R2 is encouraging for biotechnology and internet
stocks, we should be very careful in interpreting the numerical results. First, the numerical
results shown here only amount to an illustration of the cross-sectional size distribution, and they
do not serve as an empirical test of the model. Secondly, the parameter estimate of g/λ seems to
change, although perhaps slowly, over time. This may suggest some possible future research to
extend the current model to include time-varying parameters (as in stochastic volatility models).
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Figure 7: The size distribution for the recent market (22 August 2001).

Table 3: The estimated parameters and R2 for the recent market (22 August 2001).

ĝ/λ 1 − β̂ R2

Biotechnology stocks 0.192 9.23 × 10−7 96.4%
Internet stocks 0.362 3.43 × 10−6 98.5%

7. Discussion

By utilizing the high volatility of growth stocks, this paper proposes, based on both the
transient and steady-state behavior of birth–death processes, a model for growth stocks, which
are otherwise quite difficult to analyze using traditional valuation methods (partly because of
the difficulties in predicting the future growth rate of the earnings).

The main contribution of the current paper is that it provides an understanding of the size
distribution for growth stocks, by building a stochastic model. There are three useful properties
of the model. First, the model leads to a cross-sectional equation (5.8) for growth stocks,
including both biotechnology and internet stocks. Second, the cross-sectional model only uses
regression and relative ranks, and is, thus, easy to implement. Third, the cross-sectional model
remains valid irrespective to the market ups and downs, mainly because the model compares
the relative value of a stock against the other stocks within its peer group.

There are several limitations of the model, which may be of interest for future research:

(a) A problem is the possible effect of merger and acquisition. For example, currently
(as of 2001 and 2002) internet stocks have more merger and acquisition activity than
biotechnology stocks. Thus, from this point of view, the current model is perhaps more
suitable for biotechnology stocks than for internet stocks.

(b) The model only applies to growth stocks with a large enough market capitalization, i.e.
large-cap growth stocks. It does not attempt to provide a solution to small-cap growth
stocks.

(c) The model focuses on market capitalization, and does not take other possible factors (e.g.
the outstanding debt of companies) into account. One intuitive explanation of why the
fit is good without including the debt is that most growth companies may not use bonds
as a major way of financing.
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Because of these limitations, as a cautionary remark, the model is only intended to provide
a quick and first-order, cross-sectional approximation to a difficult yet important problem: how
to value volatile growth stocks without any earnings.

Appendix A. Proofs of Lemmas 3.1 and 3.2

A.1. Proof of Lemma 3.1

(i) To show that the birth–death process is positive recurrent, it is enough to check that

∞∑
n=0

1

λnπn

= ∞ and
∞∑

n=0

πn < ∞;

see Kijima (1997, p. 245). The result follows as
∑∞

n=0 1/λnπn has the same order as

∞∑
n=0

1

nλ + g

(
µ

λ

)n

n1−g/λ+h/µ = ∞,

and
∑∞

n=0 πn has the same order as

∞∑
n=0

(
λ

µ

)n

ng/λ−h/µ−1 < ∞,

thanks to the assumption that µ > λ.

(ii) The equation (3.2) follows from the fact that

lim
z→∞ zb−a �(z + a)

�(z + b)
= 1.

(iii) First we consider
∑∞

k=n πk , which, according to (3.1), is

α

∞∑
k=n

(
λ

µ

)k
�(k + g/λ)

�(k + 1 + h/µ)
,

where α := �(1 + h/µ)/�(g/λ). The definition of the hypergeometric function yields that

∞∑
k=n

πk = α

(
λ

µ

)n
�(n + g/λ)

�(n + 1 + h/µ)
F

(
n + g

λ
, 1; n + 1 + h

µ
; λ

µ

)

= πnF

(
n + g

λ
, 1; n + 1 + h

µ
; λ

µ

)
for n ≥ 0. (A.1)

In particular, we obtain that

S =
∞∑

n=0

πn = π0F

(
g

λ
, 1; 1 + h

µ
; λ

µ

)
= F

(
g

λ
, 1; 1 + h

µ
; λ

µ

)
.
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The moment-generating function is given by

η(θ) =
∞∑

n=0

eθnπn

S

= 1

S

∞∑
n=0

α

(
λ

µ
eθ

)n
�(n + g/λ)

�(n + 1 + h/µ)

= F(g/λ, 1; 1 + h/µ; (λ/µ)eθ )

S

= F(g/λ, 1; 1 + h/µ; (λ/µ)eθ )

F (g/λ, 1; 1 + h/µ; λ/µ)
.

The results about the mean and the second moment follow easily via the following property of
the hypergeometric function (see also Formula 15.2.1 of Abramowitz and Stegun (1972)):

d

dz
F (a, b; c; z) = ab

c
F (a + 1, b + 1; c + 1; z).

(iv) By (A.1), F(n) = πnF(n + g/λ, 1; n + 1 + h/µ; λ/µ)/S. So we only have to study the
limiting behavior of F(n + g/λ, 1; n + 1 + h/µ; λ/µ). Using Formula 15.3.5 of Abramowitz
and Stegun (1972), F(a, b; c; z) = (1 − z)−bF (b, c − a; c; z/(z − 1)), we have

F

(
n + g

λ
, 1; n + 1 + h

µ
; λ

µ

)
=

(
1 − λ

µ

)−1

F

(
1, 1 + h

µ
− g

λ
; n + 1 + h

µ
; λ

λ − µ

)
.

But from the definition of the hypergeometric function, it is easily seen that F(1, 1+h/µ−g/λ;
n+1+h/µ; λ/(λ−µ)) → 1 (see Section 2.3.2 of Erdélyi et al. (1953)). Therefore, we obtain

F(n) ∼= α

S

(
1 − λ

µ

)−1(
λ

µ

)n

ng/λ−h/µ−1,

which completes the proof of Lemma 3.1.

A.2. Proof of Lemma 3.2

We start from the forward Kolmogorov equations of a birth–death process (see Karlin and
Taylor (1975, p. 136)):

p′
i,0(t) = −λ0pi,0(t) + µ1pi,1(t),

p′
i,j (t) = λj−1pi,j−1(t) − (λj + µj )pi,j (t) + µj+1pi,j+1(t), j ≥ 1,

which in our case become

p′
i,0(t) = −gpi,0(t) + (µ + h)pi,1(t),

p′
i,j (t) = (λ(j − 1) + g)pi,j−1(t) − ((λ + µ)j + g + h)pi,j (t) + (µ(j + 1) + h)pi,j+1(t),

j ≥ 1.

Multiplying the j th equation by j and taking a sum yields m′
1(t) = (λ − µ)m1(t) + g +

h(1 −pi,0(t)), with the initial condition m1(0) = i. Similarly, multiplying the j th equation by
j2 and summing leads to m′

2(t) = 2(λ−µ)m2(t)+(λ+µ+2g−2h)m1(t)+g+h(1−pi,0(t)),
with m2(0) = i2, from which the result follows.
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Appendix B. Description of the stocks used in the numerical illustration

Except for the stocks (e.g. non-US stocks) that are not included in the Center for Research
in Security Prices (CRSP) historical database and the stocks that no longer exist because of
merger or bankruptcy, we use all the biotechnology stocks included in the Nasdaq biotechnology
index (IXBT) and the Amex biotechnology index (BTK); all the internet stocks included in the
Amex internet index (IIX), the Dow Jones composite internet index (DJINET), the Street.com
internet index (DOT), the Amex Internet Infrastructure HOLDRS (IIH), the Amex B2B Internet
HOLDRS (BHH), and the Amex Internet HOLDRS (HHH); and all the saving and loan stocks
included in the Philadelphia exchange bank index (BKX), the S&P bank index (BIX), the
regional bank HOLDRS (RKH), and the Nasdaq Financial-100 index (IXF). A detailed list of
all the stocks can be obtained from the authors.
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