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Abstract
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method has its merits and deficiencies. Additional infomation can be found on
element and meshless methods for several heat transfer test problems. Each
finite element scheme that employs h-adaptation are compared with boundary
schemes that are especially promising. In this study, solutions obtained using a
(h- andlor p-adaptation), boundary elements, and meshless methods are three
modeling community. Finite element methods that use some form of adaptation
numerical techniques have become particularly attractive and of interest to the
While many numerical schemes exist for solving heat transfer problems, several

1 Introduction

computing times. Today, improvements in these numerical schemes and
conventional approaches that required large storage demands and long
used for many years to model such problems. Early numerical models followed
(FDM), finite volume (FVM), and finite element methods (FEM) have been
heat transfer processes in all types of geometry is important. Finite difference
For the engineer interested in thermal analysis, the ability to accurately simulate
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and a comparison of results discussed for several heat transfer examples.
adaptive finite elements, boundary elements, and meshless methods are obtained
should be considered as viable alternatives. In this study, solutions using h-
they are strong competitors to these more classical numerical approaches and
element methods (BEM), and meshless methods (MLM) have clearly shown that
More recently, advances in the application of h-adaptive FEM, boundary
recognized standards for simulating heat transfer in academia and industry [1,2].
enhanced hardware have lead to many commercial codes that have become

2 Governing Equations

diffusion of heat, commonly written as
The governing equation consists of the terms that describe the advection and

dT+V.VT=aV2T+Q-
at

q+kVT-h(T-T_)-&o(T4 - T i ) = O (2)

T(x,0) = To (3)

coefficient, q is heat flux, and Q is heat sourcelsink.
is emissivity, CJ is the Stefan-Boltzmann constant, h is the convective film
ambient temperature, Tois initial temperature, a is thermal diffusivity (K@,), E

where V is the vector velocity, x is vector space, T(x,t) is temperature, T, is

3 Finite Element Method(FEM)

employed to cast the energy equation into integral form:
The standard weak formulation of the Galerkin weighted residual technique is

(4)
- JrcxW. (n.VT)dT =0

boundary conditions. The temperature is replaced by the trial approximation
the diffusion term, provides a natural mechanism for implementing flux
The boundary integral, which arises from the application of Green's identity on
computational domain with boundary r, and n is the unit vector normal to r.
where VW:VT = [i3W/i3xj][i3Ti/dxj]T,W is the weighting function, Q is the
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Advancc.d Computut iod Mcthods in H a t Trumfc.r 35 1

elements are used to discretize 2-D problem domains, such as shown in Fig. 1.
element. Typically triangular (3-noded) or quadrilateral isoparametric (4-noded)
where Ni is the bilinear basis function and n is the number of local nodes per

Figure 1. Irregular domain discretized using 3-noded triangular elements.

temperature is
Petrov-Galerkin weighting scheme [3,4]. The resulting matrix equation for
weighting function in the advection matrix is not set equal to N i , but rather to a

Equation (4) can be written in matrix form by setting W = Ni. Note that the

enhance solution speed.
However, in regions where elements are uniform, reduced integration is used to
Gaussian quadrature is used in the numerical evaluation of these equations.
unknowns, and the . refers to time differentiation of the nodal quantities.
where [ ] denotes an n x n sparse matrix, { } is the column vector of n

solved using an explicit Euler scheme,
matrix row values into single diagonal values. Temperature is subsequently
need for total matrix inversion. This is achieved by summing the consistent mass

Mass lumping is employed to permit explicit time integration without the

over each element, and the time step adjusted to permit global stability.
time step. To maintain stability, both Courant and diffusive limits are calculated
where superscript n indicates quantities evaluated at time t i t , with At being the

This option requires the user to specify boundary conditions for the potential.
to obtain a potential flow field from which U and v components can be extracted.
for fluid flow and convective heat transfer [S]), or solution of Laplace's equation
from solution of the equations of motion (a separate adaptive program is used

Velocities are assumed to be known; U and v values are typically obtained
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3.1 h-adaptation

gradients, and reduced where the flow is smooth.
time. The number of elements (and node points) are increased in regions of high
subtracting elements within the computational domain as the solution evolves in
In h-adaptation, the computational mesh refines and unrefines by adding and

discussed in Huang and Usmani [2]and Pepper and Stephenson [3].
usually sufficient). More detailed descriptions of adaptation techniques are
entire procedure is repeated until a converged mesh is obtained (several times is
grid, and the calculation procedure begun again. For steady state situations, the
made, the grid geometry is recalculated; the solution is interpolated onto the new
desired accuracy and computer time. After all the mesh changes have been
varied to cause more or less elements to be refined or unrefined, depending upon
threshold values are generally determined empirically; these values can be
proceeds from the coarsest level to the finest level. The adaptive refinement

Elements that need to be refined or unrefined are identified; refinement

be used for a wide variety of nonlinear transport-relatedproblems.
combined strength of both techniques leads to a very powerful method that can
While each method has its own particular strengths and weaknesses, the
high order numerical scheme evolves that can achieve exponential convergence.
(refining the shape functions) either alone or with h-adaptation, an especially
advection-diffusion problems [5,6]. When one elects to use p-adaptation
finite element technique, can yield very accurate solutions to a wide range of

Local mesh refinement (h-adaptation), when used with a Petrov-Galerkin

4 The Boundary Element Method (BEM)

finite element method.
discretization of the boundary domain - no internal mesh is required as in the
Employing Green's identity, the boundary element method requires only the
permits rapid and accurate solution of a specific class of equations [7,8].
The boundary element method (BEM) is a unique numerical scheme that

solution of the steady-state temperature equation [S], i.e.,
equation (Eq. 1) using a weighting function T* which is the fundamental

One begins by applying the weighted residual technique to the governing

once yields
Integrating the Laplacian by parts twice and the first order space derivatives

point 5 on the boundary, becomes
boundary gradient. The corresponding boundary integral equation, for source
where V, is the velocity normal to a boundary and an denotes the normal
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Advancc.dCompututiod Mcthods in H a t Trunsfc.r 353

expanded into the form
reciprocity approximation is introduced [g]. The time derivative term is
order to obtain a boundary integral equivalent to the domain integral, a dual
with c&) a function of the internal angle the boundary l- makes at point 5. In

fzT*dQ = k A k ( t )Jfk(x)T*dR
R at k=l R

be recast into the form
particular solution of the steady-state form of Eq. (1). The domain integral can
only on time. For each function f k there exists a related function t y k that is a
where fk are known functions dependent only on geometry and ?Lk is dependent

~zT*dC2=f:hk(t)~(aV2xyk -VWyr,)T*dR (12)
a tn k = l Q

ciT- x a I T * ~ ~ + ~ a I [ ~ + $ T * ) T d T =

of the resulting equation, the boundary integral equation becomes
Substituting Eq. (12) into Eq. (11) and applying integration by parts to the RHS

j=l an j=l r
(13)

e h ; [ ' i v i k - f :k=l 1 ana T * s d T + f : a ( $ + 2 T * ] y r k d T ]
j = l r j=l r

following matrix equivalent form of Eq. (13) is
approximated by interpolating from values at the element nodes. Hence, the
The variation of T , q = d T h , ty and q = d \ v h within each boundary element is

mlu7-CGl{ql= ~ w I [ v l - K x " r 7 m l ( 1 4 )

discrete form of the final matrix equation becomes
q, and ?L are nodal vectors. Employing a two-level time integration scheme, the
where [H], [G], [v],m d [q] are banded geometry-dependent matrices and T,

($[c]+B[H])(T)""-B[G]{q)"" =

where ?h2 0 5 1and

[Cl = -([Hl[v,l - F x m F - ' , and {h)=[F]-'{%} (16)

and FEM. Figure 2 shows an irregular domain with boundary nodes; interior
There is no need to establish an interior nodal mesh common to FDM, FVM,
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nodes are specified where desired by the user.

Figure 2. Boundary element method showing boundary and interior nodes

5 Meshless Methods (MLM)

similar formulations for 2-D and 3-D make these methods very attractive.
programming, no domain or surface discretization, no numerical integration, and
elements without requiring the need for mesh connectivity. Ease in
certain classes of equations that rival those of finite elements and boundary
Meshless methods are uniquely simple, yet provide solution accuracies for

basis functions and Kansa's approach [lo].
meshless method (MLM) examined in this study is based on the use of radial
functions. Additional references on meshless methods can be found in [g]. The
moving least square method, partition of unity methods, and radial basis

There exist several types of meshless methods, such as kernel methods,

In Kansa's method, the temperature is approximated using the expression

W4 =f$ ( m j (17)

boundary points. Some commonly used radial basis functions (RBFs) include

radial basis function where {xi};"'are interior points and {xi}:,+,are

where {Tj}are the unknown coefficients and $(x) = Qllx-xjll is some form of
j=l

Linear: r

Cubic: r3

Gaussian: ecr

Polyharmonic Splines:{
Multiquadrics (MQ): Jrz +c' where c is a shape parameter (18)

rzn-', n2 l in 3-D

r2"log r, n 2 1in 2-D

The theory of RBFs interpolation is discussed in Powell [1I].
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To illustrate the application of the MLM with RBF, consider the simple
Poisson’s equation

V 2 T = f ( x ) ( x ) E Q

T = g ( x ) ( X ) E I-
Now approximate T assuming

V x ) =tw r j v j
j=1

where r is defined as

rj = J ( x - x j ) z + ( y - y . ) 2

Using multiquadrics as a basis function, one obtains

@ ( r j ) = J Z = J ( x - x j ) 2 + ( y - y j ) 2 + c 2

Likewise, the derivatives can be expressed as
a$ x - x j a$ y - y j

-

a*@ ( y - y j ) ’ + c 2  ( x - x ~ ) ~ + c ’
-= -

ax2 JP’ ay2- JP
Substituting into the original equation set, one obtains

(23)

boundary points.
This is illustrated in Fig. 3 showing the arbitrarily distributed interior and

t $ ( r j ) T j =g(x), i = N I + 1 , N I + 2 , . - - , N

t v z @ ( r j ) T j  = f ( x ) , i =1 ,2 , - - - ,NI
j 4

(24)

j=l

0 0 l 0 0

Figure 3. Interior and boundary points for the meshless method

For the 2-D transport equation for heat transfer, the relation becomes
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~ W j ) T J "= g(x,t) , i = NI+l ,NI+2 , - . - ,N
j=l

{T,}and obtain the approximate solution at any point in the domain, Q.
from which one can solve the N X N linear system for the unknown temperature

6 Example Problems

6.1 Comparison with exact solution in a rectangular domain

with the analytical solution. The analytical solution is T(1,0.5) = 94.5"C [12].
temperature at the mid-point (1,OS) is used to compare the numerical solutions
temperatures applied along each boundary [121, as shown in Fig. 4. The
In this first problem, a two-dimensional plate is subjected to prescribed

1 FT2= 15OoC

T1= 5OoC
L = 2

Figure 4: Steady-state conduction in a two-dimensional plate (from [12]).

elements were used to discretize the boundaries for the BEM.
The same boundary and internal nodes were used in the BEM; linear 2hoded
l lists the final temperatures at the mid-point for the three numerical methods.
mesh) and resulting temperature contours obtained from the FEM model. Table
Figure 5 shows the final computational mesh (starting with an initial 10 x 10

Table l. Comparison of results for problem 1from Exact, FEM, BEM, and MFS

94.514 0 325MLM
94.47l 64 65BEM
94.605 256 289FEM
94.512 0 0Exact

mid-point ("C) Elements NodesMethod
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Number of adaptive refinements: 0
Number of coarse refinements: 3
Number of elements: 256
Number of nodes: 289

m
Isothermal C o n t o u r Lines

~ .

Figure 5 : FEM computational mesh and isotherms for two-dimensional plate.

6.2 Heat transfer with convection ina rectangular domain

near points B and E, and unrefined in areas furthest from the discontinuity.
initial values were 8 elements and 15 nodes. As expected, the FEM mesh refined
triangular mesh was 25 elements and 19 nodes; for the 4-node quadrilateral, the
the exact solution. The initial number of elements and nodes for the 3-noded
is T = 18.2535"C.Table 2 lists the results for the three methods compared with
quadrilateral elements [2]. The analytical solution for the temperature at point B
the final FEM meshes after two adaptations using bilinear triangular and
B creates a steep temperature gradient between points B and E. Figure 7 shows
comparative purposes. The severe discontinuity in boundary conditions at point
750 W/m°C and k = 52 W/m°C. The temperature at point E is used for
along side AB; a surface convection of 0°C acts along edge BC and DC with h =
h-adaptive FEM technique for accuracy. A fixed temperature of 100°C is set
Fig. 6. This problem, described in Huang and Usmani [2],was used to assess an
and Neumann boundary conditions applied along the boundaries, as shown in
In the second problem, a two-dimensional domain is prescribed with Dirichlet

Table 2. Comparison of results for problem 2 from Exact, FEM, BEM, and MFS

18.2531 0 83MLM
18.2335 32 32BEM
18.1141 256/89 155/105FEM
18.2535 0 0Exact

Point E ("C) Elements(3/4) Nodes (3/4)Method
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T,- Q"C
h = 52 Wlm%

D C

k = 52Wlm-52

E

y c r E
T = l O O C

~ h = 5 2 V m w ° C
T-= 0'C

Figure 6. Problem 2 (a) domain and (b) final FEM meshes (from [2]).

6.3 Heat transfer in an irregular domain

not evident when using BEM or MLM methods.
corners produce finer meshing as a result of steep temperature gradients; this is
meshing occurs is not initially evident. As can be seen in Fig. 8(b), three of the
shows FEM solutions for fine and adapted meshes. Exactly where adaptive
shown in Fig. 7. FEM results are displayed as contour intervals. Figure 8(a,b)
domain and accompanying boundary conditions set along each surface are
(without adaptation) are used as a reference benchmark [6]. The discretized
compared from the three methods. Results from a fine mesh FEM solution

A simple irregular domain is used for the last example problem and results

meshless points for the boundary and50 interior nodes.
and locations as used in the initial FEM mesh (Fig. 7); the MLM used 46
along with the FEM results. The BEM used the same number of boundary nodes

The BEM and MLM mid-point values at (0 .5 ,OS) are listed in Table 3

T = 7 0 o C

Tm- 1 O O a C
h = 85 W h Z - o C

O - z r

Figure 7: Problem specification for heat transfer ina user-defined domain.
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N u m b e r of adaptive refmernents: 0
Number of coarse refinements: 3
Number of elements: 3 8 4
Number of nodes: 4 3 3

N u m k r o f adaptlve refinemesra: 2
N u m b e r Of ccmrse refinements: 2
Number o f elements: 1 3 8

wm>er O f nodes: i 7 8

r r I I I

Figure 8: FEM solutions (a) fine mesh and (b) adapted mesh [6].

Table 3. Comparison of results for problem 3 from FEM, BEM, and MFS

75.893 0 96MLM
75.885 36 37BEM
75.899 3841138 4331178FEM

mid-point ("C) Elements NodesMethod

7 Conclusions

range of problems.
these two methods to eventually compete with the FEM on a much broader
However, advances now being made in BEM and meshless methods will enable
study. Each method has unique advantages along with some drawbacks.
techniques provide accurate results for the thee example cases analyzed in this
meshless method are used to calculate heat transfer in two-dimensions. All thee
An h-adapting, finite element method, a boundary element method, and a

integration to enhance overall speed. The use of local mesh refinement and
employed, along with mass lumping, Petrov-Galerkin weighting, and reduced

In the FEM model used in this study, an h-adapting technique was
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3 6 0 Advmced Compututiod Methods i t 1 H w t Trmsf?r

the FEM, while providing nearly identical results to the FEM.
BEM and MLM were clearly faster and required considerably less storage than
results in regions where high activity occurs. Even with these enhancements, the
unrefinement, coupled with Petrov-Galerkin weighting, produces very accurate

with convectiveheat transfer.
develop a set of teaching models that will simulate 2-D incompressiblefluid flow
http://www.unlv.eduResearch_Centers/NCACM. Additional work is underway to

Details regarding the three models can be obtained by accessing the web site
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