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Abstract 

Background: Accurate genomic prediction requires a large reference population, which is problematic for traits 

that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly 

procedures and are considered to be controlled by a few quantitative trait loci of large effect. The amount of variation 

explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic 

prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved 

prediction reliability. In this study, we developed and implemented novel univariate and bivariate Bayesian predic-

tion models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data 

consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived 

for bulls. Single-nucleotide polymorphisms (SNPs), from 50K SNP arrays, were grouped into non-overlapping genome 

segments. A segment was defined as one SNP, or a group of 50, 100, or 200 adjacent SNPs, or one chromosome, or 

the whole genome. Traditional univariate and bivariate genomic best linear unbiased prediction (GBLUP) models were 

also run for comparison. Reliabilities were calculated through a resampling strategy and using deterministic formula.

Results: BayesAS models improved prediction reliability for most of the traits compared to GBLUP models and this 

gain depended on segment size and genetic architecture of the traits. The gain in prediction reliability was especially 

marked for the protein composition traits β-CN, κ-CN and β-LG, for which prediction reliabilities were improved by 49 

percentage points on average using the MT-BayesAS model with a 100-SNP segment size compared to the bivariate 

GBLUP. Prediction reliabilities were highest with the BayesAS model that uses a 100-SNP segment size. The bivariate 

versions of our BayesAS models resulted in extra gains of up to 6% in prediction reliability compared to the univariate 

versions.

Conclusions: Substantial improvement in prediction reliability was possible for most of the traits related to milk 

protein composition using our novel BayesAS models. Grouping adjacent SNPs into segments provided enhanced 

information to estimate parameters and allowing the segments to have different (co)variances helped disentangle 

heterogeneous (co)variances across the genome.
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Background
�e protein composition of milk determines its techno-

logical characteristics such as the cheese-making prop-

erties. Major proteins in milk include the caseins (αS1-, 

αS2-, β- and κ-CN) and whey proteins (α-lactalbumin, 

and β-lactoglobulin). �e heritability of the relative pro-

portion of these proteins in bovine milk is moderate to 

high [1–3], which provides the opportunity to alter the 

protein composition of milk through selective breeding. 

Prediction of genetic merit for traits related to milk pro-

tein composition has never been reported and one rea-

son for this is that measurements of the detailed protein 

composition of milk is currently limited to experimental 
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samples due to costly and time-consuming analytical 

techniques.

In livestock breeding, genomic selection has become 

a successful approach, especially for sex-limited traits, 

because it speeds up the selection process by reducing 

generation interval and enables to select new selection 

candidates at early ages. Accuracy of genomic prediction 

hinges on a number of factors including size of reference 

population, heritability of the trait, effective population 

size, marker density, and the genetic architecture of the 

trait (in particular, the number of loci that affect the trait 

and the distribution of their effects) [4–6]. �erefore, 

prediction accuracy for traits with limited records is still 

low. However, if the methodology used exploits infor-

mation about the distribution of the loci that underlie a 

trait, traits that are controlled by a few quantitative trait 

loci (QTL) with major effects can be predicted with bet-

ter accuracy than traits that have a more polygenic nature 

[7]. Several statistical models have been developed for 

genomic prediction using genome-wide single-nucleo-

tide polymorphisms (SNPs), which include the Bayesian 

models (e.g. BayesA and BayesB) of Meuwissen et al. [8], 

the genomic best linear unbiased prediction (GBLUP) 

model [9] and several extensions of these models. Com-

pared to GBLUP, the Bayesian variable selection models 

improve prediction reliability considerably for traits that 

are controlled by a few QTL with major effects [10, 11]. 

�is is mainly due to the assumption that, in the GBLUP 

model, the variance does not vary across the genome, 

i.e., it does not take heterogeneity over segments into 

account. Unlike GBLUP, Bayesian variable selection mod-

els allow the variance of SNP effects to differ among loci 

[9]. Genome-wide association studies have indicated that 

a few QTL regions underlie substantial proportions of 

the genetic variation in traits related to milk protein com-

position [12]. Hence, it is expected that, for traits related 

to milk protein composition, a model assuming SNP-spe-

cific variances in genomic prediction can result in higher 

prediction reliability than the GBLUP approach. How-

ever when the available dataset is small, as is the case for 

expensive-to-measure traits, reliable estimation of SNP-

specific variances with the Bayesian approach becomes 

problematic since there are too many parameters to 

estimate relative to the information available. In such 

situations, Gianola et  al. [13] suggested to group SNPs 

according to their common variance. Grouping adjacent 

SNPs might be advantageous for estimating variances 

reliably by enhancing the amount of information and 

reducing the number of parameters to estimate. Adja-

cent SNPs are very likely to be in linkage disequilibrium 

(LD) with the same QTL and to have the same variance, 

which allow us to account for heterogeneity between 

SNP groups. In this context, SNPs must be properly 

ordered and grouped such that they are realistically in LD 

with the same QTL while ensuring that their group size is 

optimum for the reliable estimation of variances.

Another option that is widely used to deal with traits 

with limited records is to implement multi-trait mod-

els, which simultaneously use information from related 

traits and individuals [14]. In multi-trait analysis, cor-

relation structures between the traits is central to 

gaining any advantage in prediction reliability over sin-

gle-trait predictions [15]. Milk protein traits have a low 

to moderate genetic correlation with routinely recorded 

traits such as total protein yield [2]. However, while 

the genome-wide correlation is generally low, specific 

genomic segments may display high genetic correla-

tions between SNP effects for different traits. �erefore, 

modeling such heterogeneous covariance patterns may 

result in improved prediction reliability, when using 

multi-trait models.

In this study, we report genomic prediction reliabilities 

for traits related to milk protein composition using a rela-

tively small set of cow data by developing novel Bayesian 

hierarchical models that account for heterogeneous vari-

ance structures across regions of the genome. Further-

more, we extend our novel Bayesian models to bivariate 

scenarios that model heterogeneous covariance struc-

tures between milk protein composition traits measured 

on cows and a large set of bull data with highly accurate 

deregressed proofs (DRP) for total protein yield.

Methods
Animals and phenotypes

Available data comprised two datasets: a relatively small 

set of cow data with information on traits related to milk 

protein composition and a large set of bull data with 

highly accurate total protein yields from regular milk 

recordings on daughters. Individuals in the two datasets 

were genetically related i.e., all the cows had their sires in 

the bull dataset.

Single morning milk samples were collected once from 

650 Danish Holstein cows in 21 herds. Cows were sam-

pled at different stages of lactation (days 9 to 481 in milk) 

and parity (1  to 4). Liquid chromatography/electrospray 

ionization–mass spectrometry (LC/ESI–MS) methods 

were used for profiling milk proteins. Details on the iden-

tification and relative quantification of milk proteins are 

in Jensen et al. [16]. We used these methods to quantify 

milk proteins, including αS1-CN, αS2-CN, β-CN, κ-CN,  

α-LA, and β-LG, posttranslational modifications of G-κ-CN  

and αS1-CN-8P, as well as total protein percentage. In 

later analyses, β-CN was excluded from the genetic anal-

ysis due to very low estimates of its heritability across 

models (0.01  to  0.05), which made meaningful predic-

tions difficult to obtain given the small sample size.
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DRP for milk protein yield were obtained from 5326 

progeny-tested Danish Holstein bulls. Estimated breed-

ing values from the Nordic genetic evaluation in January 

2013 were used to derive DRP following the methodology 

described by Schaeffer [17].

Genotypes

Genotyping was performed using the BovineHD Illu-

mina Beadchip for 372 cows or the BovineSNP50 Bead-

chip for the remaining 278 cows and all the bulls. SNPs 

that overlapped between these two genotyping arrays 

were combined and subjected to quality control. Qual-

ity parameters used to select SNPs were: (1) minimum 

call rates of 90% for individuals and 95% for loci and (2) 

exclusion of SNPs with a minor allele frequency (MAF) 

lower than 5%. Finally, 36,000 SNPs across the 29 bovine 

autosomes were available for the analyses.

Models

Hierarchical Bayesian models based on genome segments 

of different sizes (hereafter collectively called BayesAS 

models) were developed to predict genomic breeding 

values (GBV). Univariate and bivariate GBLUP models 

were used to compare performances of the novel Bayes-

ian models.

GBLUP models

Univariate (based on cow data only) and bivariate (based 

on combined cow data and bull DRP) GBLUP models 

were implemented using DMU [18]. �e general model 

used for the univariate analysis (ST-GBLUP) was:

where yijkl are the observations on trait i from cow l, in 

parity j, and herd k; μi is the fixed mean effect for trait i; 

bi1 is the regression coefficient for DIMl in trait i, which is 

a covariate describing the effect of days in milk for each 

cow l; bi2 is the regression coefficient for the Wilmink 

adjustment (exp−0.05∗DIMl) of days in milk for trait i; e1ijkl 

is a random residual effect that is assumed to be normally 

distributed with e1 ∼ N
(

0, I1σ
2
e1

)

, where I1 is an identity 

matrix with dimensions 650 by 650. �e effect of gil is a 

random additive genetic effect for trait i of cow l with dis-

tribution N
(

0,Gσ
2
a

)

, where G is the genomic relationship 

matrix between cows with dimension 650 by 650 and σa
2 

is the genetic variation in trait i.

To run a bivariate analysis (MT-GBLUP) of DRP on pro-

tein yield and each protein composition trait, DRP were 

modelled as:

(1)
yijkl = µi + parityij + herdik + bi1DIMl

+ bi2 ∗ exp−0.05∗DIMl + gil + e1ijkl ,

(2)yDRPl = µDRP + g2l + e2l ,

where yDRPl is the DRP for bull l; and μDRP is the cor-

responding fixed mean effect. g2l is the random additive 

genetic effect for animal l for protein yield with distribution 

N
(

0,G2σ
2
a

)

, where G2 is the genomic relationship matrix 

for combined cow and bull population with dimension 5976 

by 5976. Distribution of the vectors of the two animal effects 

in the bivariate models are as follows:

where, in this case, g1 is a vector of breeding values for all 

animals for one of the cow traits based on the covariance 

matrix G2 unlike in Model (1); σ1
2 is the genetic variance for 

each cow trait and σ2
2 is the genetic variance for the bull DRP.

�e random residual effect e2l, in Model (2), is assumed 

to be normally distributed with, e2 ∼ N
(

0, I2σ
2
e2

)

, where 

I2 is an identity matrix with dimension 5326 by 5326 and 

σ
2
e2

 is the residual variation for bull DRP. In the bivariate 

analysis, the residual covariance for the pair of bivariate 

traits was set to zero because the observations came from 

different individuals. �e distribution of the vectors of 

the two residual effects in the bivariate analyses can be 

described as:

�e genomic relationship matrix used in the GBLUP 

models was calculated as described in the first method 

presented by VanRaden [9].

BayesAS models

Models that were proposed initially by Janss [19] were 

implemented in the MCMC Bayesian framework of the 

Bayz program (www.bayz.biz). Adjacent SNPs were 

grouped into non-overlapping genomic segments and the 

(co)variance for each segment was estimated. Accord-

ingly, six models were implemented, in which a genome 

segment was defined as: single SNPs or groups of 50, 100, 

or 200 adjacent SNPs, a complete chromosome or all the 

SNPs in the genome. �e model that considers the whole 

genome as a segment can be considered basically as a 

GBLUP model implemented in a Bayesian manner.

Univariate (ST) and bivariate (MT) versions of the 

BayesAS models were implemented. For the ST-BayesAS 

models, each protein composition trait (yijkl) from the 

cow dataset was run as in the model described below:

(

g1
g2

)

∼ N

((

0

0

)

,Σ ⊗ G2

)

,

with Σ =

(

σ
2
1

σ1,2

σ1,2

σ
2
2

) ,

(

e1

e2

)

∼ N

((

0

0

)

,

(

I1σ
2
e1

0

0

I2σ
2
e2

))

.

(3)
yijkl = µi + parityij + herdik

+ bi1DIMl + bi2 ∗ exp−0.05∗DIMl +zlai + e1ijkl .

http://www.bayz.biz
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Model components for fixed effects, covariates and 

random residual effects are in Model (1). Z is a matrix 

with SNP covariates (centered) with dimensions of the 

number of individuals (n =  650) by the number of loci 

(m =  36,000) and zl is a row of genotypes for animal l, 

ai is a vector of SNP effects for trait i, with length m and 

with elements ai =

{

aijk
}

, such that aijk is the effect of 

SNP k in SNP group j for trait i.

For the MT-BayesAS models, an additional model 

component was included to run the DRP on total protein 

yield from bulls (yDRPl ) simultaneously with each protein 

composition trait from cows. �e following model was 

added to run the bivariate MT-BayesAS analyses:

Z in the MT-BayesAS is a matrix with SNP covariates 

(centered) with dimensions of the number of individuals 

(n = 5976) by the number of loci (m = 36,000) and zl is a 

row of genotypes for animal l, ai is a vector of SNP effects 

for trait i, with length m and with elements ai =

{

aijk
}

 

and the residual term (e2l), is as in Model (2). �e index 

“i” here refers to both cow trait and bull DRP run in each 

bivariate analysis, for sake of simplicity in describing the 

models. SNP effects between each of the two traits in the 

bivariate analyses are correlated using latent variables by 

the following hierarchical model:

where s0 =

{

s0jk
}

 and s1 =

{

s1jk
}

 are vectors of latent 

variables with length m, to model average covariance 

across SNP groups (s0) and deviations within SNP groups 

(s1) using nested regression; r0i is a regression coefficient 

of s0 for all SNPs and r1ij is a regression coefficient of s1 

for each SNP group j; and a∗

ijk is the residual SNP effect, 

which is uncorrelated across traits. �e latent variables in 

s0 and s1 are assumed to be normally distributed with a 

variance of 1:

where I is an identity matrix with dimensions of number 

of loci (m = 36,000).

Distributional prior assumptions for the regression 

coefficients of s0 and s1 are:

where U() stands for a uniform distribution across the 

given interval.

�e residual SNP effect aijk
* is assumed to be normally 

distributed with a mean of 0 and SNP-group specific var-

iance (σ 2

a∗

ij
) for which an inverse-Chi square distribution 

(4)yDRPl = µDRP + zlai + e2l ,

(5)aijk = r0i ∗ s0 + r1ij ∗ s1 + a∗

ijk ,

s0 ∼ N (0, I) and s1 ∼ N (0, I),

r0i ∼ U(− ∞,∞),

r1ij ∼ N
(

0, σ 2
r1i

)

,

σ 2
r1i

∼ U(0,∞),

was set with scale SCi
2 and degrees of freedom dfi for all 

SNP effects in group j:

�e scale parameter SCi
2 is assumed to have a uniform 

distribution. �e parameter dfi is set so that the spread of 

the variances of individual SNP-groups around the com-

mon scale is controlled (here, a value of 5 was used).

Samples of the posterior distributions of the model 

parameters are obtained using MCMC techniques, i.e., 

sampling from conditional distributions. �e conditional 

distributions for all parameters in Eqs. (3), (4) and (5) are 

normal and for variances are scale-inverse Chi squared. 

For the parameters s0 and s1, which are present in the 

expectation for multiple SNP-effects, the bayz software 

automatically combines all parts of the likelihoods and 

combines them with the prior distribution to form the 

conditional posterior.

Zai from Models (3) and (4) computes the genomic 

values (gi) at each MCMC cycle. �e total explained 

genomic variance for trait i is computed as the variance 

of the genomic values from every MCMC cycle:

�e genomic covariance between the cow and bull 

traits can then be calculated as:

where gcow is a vector of genomic values for all individuals 

for each cow-trait and gbull is a vector of genomic values 

of all individuals for total protein yield. Similarly, genetic 

values for the individuals at SNP group j (gij) was calcu-

lated at each MCMC sample based on the genotypes and 

estimated effects of SNPs in group j as:

where Zj is a matrix of covariates for SNPs within group 

j, with size of number of individuals by number of SNPs 

at group j, and aij is a vector of effects of SNPs at group j 

for trait i. Genomic variance for trait i at SNP group j was 

then calculated from these MCMC samples of individual 

genetic values as:

�e proportion of the genomic variance explained 

by segments was computed for each trait i as 
σ
2

ij

σ
2

i

. �e 

genomic covariance for each cow and bull trait at each 

SNP group j was then calculated as:

a∗

ijk ∼ N
(

0, σ
2
a∗

ij

)

,

σ
2
a∗

ij
∼ χ

−2
(

SC2
i , dfi

)

.

(6)σ 2
i = var(Zai) = var

(

gi
)

.

(7)σcow,bull = cov
(

gcow , gbull
)

,

(8)gij = Zjaij ,

(9)σ
2
ij = var

(

gij
)

.

(10)σcowj,bullj = cov
(

gcowj , gbullj
)

.
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Inferences were based on 500,000 Gibbs samples. �e 

first 50,000 samples were discarded as burn-in, and every 

500th sample was saved for post-Gibbs analyses. �e 

mean of the variance and covariance terms, which are 

calculated in each MCMC iteration, is used later. Conver-

gence was assessed using the R package CODA [20].

�e BayesAS models presented in this study can be 

considered as extensions of the Bayes A model of Meu-

wissen et al. [8], which mainly differ in that estimates of 

variances are per SNP groups (segments) instead of per 

single SNP. In this case, taking one SNP as a segment 

might be considered as an approximation to the BayesA 

approach. However, there is still a difference in that 

the scale parameter of the χ−2
(

SC2
i , dfi

)

 prior for σ 2

a∗

ij
 is 

treated as unknown instead of being fixed. Moreover, the 

bivariate versions of BayesAS uniquely use latent vari-

ables to model covariances between traits.

Comparison of the predictive ability between models

A resampling strategy using cows in five test sets was 

implemented to compare models for prediction reliabil-

ity. Our aim was to avoid sibling relationships between 

each test set and between the training and test sets. 

Hence, 197 cows, which had no siblings in the dataset, 

were selected. In each of the resampled analyses, 100 

of the 197 cows were randomly taken for the test set, 

while the remaining 97 cows from each random sam-

pling were included in the reference population of 550 

cows. For all models, prediction reliability for cows was 

computed as the squared correlation between estimated 

GBV and the phenotype corrected for fixed effects as in 

Model (1), divided by heritability estimates [21] from the 

complete dataset of 650 cows using Model (1). Since the 

major practical implication of genomic prediction stud-

ies is to assess the predictive ability of models for young 

bulls with no phenotypic record, reliabilities of models in 

the MT-BayesAS analyses were computed for bulls using 

standard errors of predicted GBV using the following for-

mula, as described by Mrode [22]:

where SEPl is the standard error of prediction (poste-

rior standard deviations from MCMC samples) of GBV 

for each bull based on its Gibbs samples for each protein 

composition trait; and σi
2 is the total genomic variance 

calculated as in Eq. (6), which, as an approximation, was 

taken as the additive genetic variance. Model reliabilities 

were computed for all bulls, and the average was taken as 

the model reliability for the respective trait.

Further analyses were conducted using the Gibbs sam-

ples from the 100-SNP segment size MT-BayesAS model 

to assess prediction reliability when varying the propor-

tion of segments, based on ranking of explained genomic 

variance. Prediction reliabilities were, accordingly, com-

puted using the top 2% (8), 7% (26), 15% (56), 25% (93), 

50% (186), or 75% (279) of all 372 genomic segments 

included in the analyses. Segments were ranked on esti-

mated variance based on evaluation on the training data 

with all segments included. Reliabilities were computed 

for the test sets similarly as in the other BayesAS models 

and were used to compare the different scenarios.

Results
Heritability estimates for milk protein composition traits 

and genomic correlations with total protein yield

Table 1 presents heritability estimates for traits related to 

milk protein composition obtained with the ST-GBLUP 

model, their genome-wide correlations and covariances 

with total milk protein yield obtained with the MT-

GBLUP model. Heritability estimates were high for κ-CN, 

(11)1 −

SEP
2
l

σ
2
i

,

Table 1 Heritability estimates and genome-wide correlations and covariances with total milk protein yield

Heritability  (h2) estimates were from the univariate GBLUP analysis; covariances and correlations are from the bivariate GBLUP model

a Protein composition expressed as a fraction of the total milk protein percentage by weight wt (wt/wt), protein % expressed as percentage of the total milk 

yield; individual proteins comprise only the peaks identified as intact proteins and isoforms, i.e., αS1-CN (comprises αS1-CN 8P + 9P), αS2-CN (comprises αS2-CN 

11P + 12P), κ-CN (comprises κ-CN G 1P + unglycosylated κ-CN 1P), where P = phosphorylated serine group. G-κ-CN = glycosylated-κ-CN; αS1-CN-8P = αS1-CN with 8 

phosphorylated serine groups

Traita h2 SE Covariance SE Correlation SE

αS1-CN 0.14 0.07 0.01 0.05 0.04 0.16

αS1-CN-8P 0.14 0.09 − 0.02 0.05 − 0.07 0.16

αS2-CN 0.33 0.09 − 0.08 0.06 − 0.16 0.12

κ-CN 0.69 0.09 0.06 0.05 0.09 0.07

G-κ-CN 0.41 0.09 0.0008 0.04 0.0006 0.10

α-LA 0.15 0.09 0.05 0.05 0.15 0.16

β-LG 0.52 0.10 0.04 0.05 0.07 0.09

Protein % 0.54 0.09 − 0.08 0.06 − 0.14 0.10
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G-κ-CN, β-LG, and protein percentage. Heritability esti-

mates were moderate for αS2-CN, but lower for αS1-CN, 

αS1-CN-8P, and α-LA. Milk protein composition traits 

showed very low (−  0.16 to 0.15) genomic correlations 

with total milk protein yield. Genome-wide correlations 

with protein yield were negative for αS2-CN, αS1-CN-8P, 

and protein percentage. Standard errors of the correla-

tions were higher than the correlation estimates for all 

traits except for αS2-CN and protein percentage.

Prediction reliability of the GBLUP models

Prediction reliabilities were low for all traits (0.03 to 0.21) 

when using the ST- and MT-GBLUP models (Table  2). 

Compared to the other protein composition traits, β-LG 

(0.21) and κ-CN (0.16) had the highest prediction reli-

abilities, whereas αS2-CN and αS1-CN-8P had the lowest 

(0.03) when using univariate analysis. �ere was a slight 

gain in prediction reliability for αS2-CN and protein per-

centage when bivariate analysis was used. �ere was no 

improvement in prediction reliability for κ-CN, G-κ-CN, 

β-LG, or αS1-CN-8P compared to ST-GBLUP predic-

tions. Prediction reliability was a little lower with the 

MT-GBLUP model than with univariate prediction for α

S1-CN and α-LA.

Genome segment-wise variances for milk protein 

composition traits and covariance with total protein yield

Figure  1 presents the proportion of genomic variance 

in milk composition traits explained by each chromo-

some using the ST-BayesAS model. Marked differences 

were observed in the proportion of genomic variance 

explained by genome segments across the traits. For 

some of the protein composition traits, a single chromo-

some explained up to or more than half of the genomic 

variance. For instance, Bos taurus (BTA) chromosome 6 

explained 76, 63 and 47% of the genomic variance for κ

-CN, G-κ-CN and αS2-CN, respectively. Likewise, 40% of 

the genomic variance for β-LG was explained by BTA11 

alone.

Figure  2 shows the covariances between traits related 

to milk protein composition and total protein yield 

explained by genomic segments of 100 SNPs. Across the 

traits, some segments explained a large part of the covar-

iance, whereas others accounted for nearly no covari-

ance. Covariances between total milk protein yield and 

a particular trait were positive for some segments and 

negative for others. For G-κ-CN, κ-CN, β-LG, αS2-CN, 

and protein percentage, a few segments showed peaks 

for the explained covariance. Segment 106, correspond-

ing to a group of 100 adjacent SNPs on BTA6, explained 

a large amount of positive covariance of αS2-CN, κ-CN, 

and G-κ-CN with total protein yield. Similarly, a sizable 

proportion of the covariance between β-LG and protein 

yield was explained by a single segment on BTA11. A seg-

ment on BTA14 explained a substantial part of the nega-

tive covariance between protein percentage and protein 

yield. �e same segment showed a peak for the covari-

ance between αS1-CN-8P and total milk protein yield 

compared to the rest of the segments. Although some 

segments explained relatively more covariance between α

S1-CN and total protein yield and between α-LA and total 

protein yield compared to other segments, the actual 

covariance values explained by these segments were very 

low (note the difference in y-axis scales between plots in 

Fig. 2).

Prediction reliability with BayesAS models

Prediction reliabilities for cows using the BayesAS mod-

els were generally high compared to those obtained with 

the GBLUP models across all traits. Prediction reliabili-

ties using both the MT- (Fig.  3) and ST-BayesAS mod-

els were generally high for most of the highly heritable 

traits, such as κ-CN, G-κ-CN, and β-LG, using different 

segment sizes. Using the 100-SNP segment size resulted 

in the highest prediction reliability for all studied pro-

tein composition traits in both univariate and bivariate 

versions of the BayesAS models. Prediction reliabilities 

using the 100-SNP segment size with the MT-BayesAS 

model were 0.76 for G-κ-CN, 0.68 for κ-CN, and 0.52 for 

β-LG. Expanding the segment size to include all SNPs 

on a chromosome or the whole genome resulted in the 

lowest prediction reliabilities with the BayesAS models. 

�e performance of the whole-genome-based model was 

similar to that of the respective GBLUP models. With 

the MT-BayesAS model, improvement in prediction reli-

ability reached 63% for G-κ-CN, 52% for κ-CN, 31% for β

-LG, and 15% for αS2-CN when using the 100-SNP-based 

Table 2 Prediction reliability from univariate and bivari-

ate GBLUP models

a Protein composition expressed as a fraction of the total milk protein 

percentage by weight wt (wt/wt), protein % expressed as percentage of the 

total milk yield; individual proteins comprise only the peaks identified as intact 

proteins and isoforms, i.e., αS1-CN (comprises αS1-CN 8P + 9P), αS2-CN (comprises 

αS2-CN 11P + 12P), κ-CN (comprises κ-CN G 1P + unglycosylated κ-CN 1P), 

where P = phosphorylated serine group. G-κ-CN = glycosylated-κ-CN; αS1-

CN-8P = αS1-CN with 8 phosphorylated serine groups

Traita ST-GBLUP MT-GBLUP

αS1-CN 0.11 0.10

αS1-CN-8P 0.03 0.03

αS2-CN 0.03 0.06

κ-CN 0.16 0.16

G-κ-CN 0.14 0.14

α-LA 0.12 0.11

β-LG 0.21 0.21

Protein % 0.10 0.12
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Fig. 1 Proportion of genomic variance explained by each chromosome. Proportion of the genomic variance in the milk protein composition traits 

explained by each chromosome from the ST-BayesAS model taking chromosomes as segments
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model compared to the whole-genome-based model. 

Prediction reliabilities were low for αS1-CN, α-LA, and α

S1-CN-8P for all BayesAS models and improved mini-

mally by using the 100-SNP-based model compared to 

the whole-genome approach. �e 50- and 100-SNP mod-

els performed similarly well for β-LG. However, for the 

other proteins, the 100-SNP model outperformed both 

the 50- and 200-SNP based models, which generally 

showed comparable results. Using the single-SNP seg-

ment size resulted in lower performance compared to the 

50-, 100-, and 200-SNP-based models for all traits. Pre-

diction reliabilities computed for β-LG and protein per-

centage using the single-SNP-based MT-BayesAS model 

were better than when each chromosome (by 13 and 1 

percentage points) or the whole genome was used as the 

segment (by 18 and 2 percentages points), respectively.

In general, slight additional gains in prediction reli-

ability were achieved using the MT-BayesAS models 

compared to the univariate BayesAS model (Table  3), 

i.e., 6 and 5 percentage points for G-κ-CN and κ-CN 
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Fig. 2 Covariance between each protein composition trait with total protein yield explained by 100-SNP genomic segments
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using 100 SNP-segments and the average improvement 

with this segment size was 3 percentage points. How-

ever, improvement in prediction reliability from the MT-

BayesAS models declined when the whole genome was 

taken as segment, which resulted basically in similar per-

formances than the ST version except for β-LG.

Reliabilities of models for bulls

Table 4 shows the reliabilities of the MT-BayesAS mod-

els for bulls with segments of different sizes. Prediction 

reliability computed for the cow datasets was higher 

than that for bulls for G-κ-CN while the reverse was 

found for αS2-CN. Higher model reliabilities were com-

puted for bulls for αS2-CN, κ-CN, G-κ-CN and β-LG 

with the 50- and 100-SNP segments compared to the 

other MT-BayesAS models. On the contrary, prediction 

reliability did not vary much across models for αS1-CN,  

α-LA, αS1-CN-8P and protein percentage, which had rela-

tively low reliabilities. Prediction reliabilities obtained 

from the MT-GBLUP model were similar to those from 

the genome-based MT-BayesAS model for all traits and 

hence are not presented in Table 4.

Fig. 3 Prediction reliability across MT-BayesAS models. Reliability of models according to segment sizes of 1, 50, 100, and 200 SNPs, chromosome, 

and whole genome. G-κ-CN = glycosylated-κ-CN; αS1-CN-8P = αS1-CN with eight phosphorylated serine groups

Table 3 Prediction reliability from univariate and bivariate BayesAS models

a Protein composition expressed as a fraction of the total milk protein percentage by weight wt (wt/wt), protein % expressed as percentage of the total milk yield; 

individual proteins comprise only the peaks identified as intact proteins and isoforms,i.e., αS1-CN (comprises αS1-CN 8P + 9P), αS2-CN (comprises αS2-CN 11P + 12P), 

κ-CN (comprises κ-CN G 1P + unglycosylated κ-CN 1P), where P = phosphorylated serine group. G-κ-CN = glycosylated-κ-CN; αS1-CN-8P = αS1-CN with 8 

phosphorylated serine groups

Traita BayesAS-1SNP BayesAS-100SNP BayesAS-Genome

MT ST MT ST MT ST

αS1-CN 0.10 0.09 0.13 0.09 0.10 0.09

αS1-CN-8P 0.04 0.02 0.06 0.03 0.03 0.03

αS2-CN 0.03 0.03 0.18 0.16 0.03 0.03

κ-CN 0.38 0.37 0.68 0.63 0.16 0.16

G-κ-CN 0.41 0.39 0.76 0.70 0.13 0.14

α-LA 0.11 0.09 0.14 0.14 0.11 0.11

β-LG 0.39 0.39 0.52 0.50 0.21 0.19

Protein % 0.14 0.14 0.18 0.17 0.12 0.11
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Prediction reliabilities with selected genome segments

Figure  4 shows prediction reliabilities according to the 

proportion of selected 100-SNP segments used in the 

prediction. Using fewer segments that explain large pro-

portions of the variances resulted in higher predictive 

ability for G-κ-CN, κ-CN, β-LG, αS2-CN, and protein per-

centage. For these traits, prediction reliability using only 

2% (8) of the top-ranked segments resulted in the high-

est reliability, whereas prediction reliability decreased 

as more segments were added. In contrast, prediction 

reliability increased as more segments were added for α

-LA, αS1-CN, and αS2-CN-8P, with the highest reliability 

obtained when all segments were used for prediction.

Discussion
ST-GBLUP versus MT-GBLUP models

Using only the cow dataset with the GBLUP model 

resulted in low prediction reliability, due to the small 

Table 4 Model reliability for bulls across the MT-BayesAS models

a Protein composition expressed as a fraction of the total milk protein percentage by weight wt (wt/wt), protein % expressed as percentage of the total milk yield; 

individual proteins comprise only the peaks identified as intact proteins and isoforms,i.e., αS1-CN (comprises αS1-CN 8P + 9P), αS2-CN (comprises αS2-CN 11P + 12P), 

κ-CN (comprises κ-CN G 1P + unglycosylated κ-CN 1P), where P = phosphorylated serine group. G-κ-CN = glycosylated-κ-CN; αS1-CN-8P = αS1-CN with 8 

phosphorylated serine groups

Traita MT-BayesAS model reliability

1 50 100 200 Chromosome Genome

αS1-CN 0.05 0.06 0.04 0.06 0.05 0.06

αS1-CN-8P 0.06 0.06 0.06 0.06 0.06 0.07

αS2-CN 0.12 0.32 0.32 0.26 0.21 0.14

κ-CN 0.56 0.71 0.71 0.68 0.56 0.21

G-κ-CN 0.42 0.56 0.56 0.54 0.39 0.15

α-LA 0.07 0.07 0.08 0.08 0.08 0.06

β-LG 0.37 0.50 0.51 0.49 0.27 0.19

Protein % 0.23 0.22 0.22 0.21 0.19 0.18

Fig. 4 Reliability of prediction using various proportions of genomic segments. Predictions were based on post-Gibbs analyses of samples from the 

MT-100-BayesA model. Segments were ranked based on explained covariance separately for each training set
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size of the training dataset. Reference population size is 

a key factor that affects reliability of genomic prediction 

in cattle [4, 7, 23]. Moreover, a small sample size may not 

sufficiently reflect the genetic variability. For instance, 

considering a subset of the cow dataset used in this study, 

Poulsen et  al. [24] showed that the genetic variation of 

the CSN1N1 gene was very low in Danish Holstein, with 

most individuals having the BB genotype, which may 

explain the lower prediction reliability for αS1-CN and its 

sub-fraction αS1-CN-8P.

Although information on total protein yield from a 

large number of bulls was added when using the MT-

GBLUP model, prediction reliabilities were as poor as, or 

even worse than, those in the univariate analysis. �us, 

addition of information from total milk protein yield 

was not sufficient to offset the computational burdens of 

the bivariate analyses, due to the low genome-wide cor-

relation between protein yield and composition traits. 

Among the milk proteins, the highest genome-wide cor-

relation with total protein yield was measured for αS2-CN 

(− 0.16) and protein percentage (− 0.14), for which the 

MT-GBLUP model resulted in slightly improved predic-

tion reliabilities for cows and bulls. Although α-LA had a 

correlation of 0.15 with total protein yield, the standard 

error of the correlation was higher than the correlation 

estimate (0.16). Although the data used was limited, our 

findings on genome-wide correlations were comparable 

to results from previous studies. In the literature, genetic 

correlations between milk protein percentage and pro-

tein yield in different dairy cattle breeds are low, in gen-

eral [25–27].

Moreover, all the bivariate analyses in our study 

involved combination of data on different scales, which 

may have influenced the computed reliabilities. DRP for 

milk protein yield were expressed on a lactation basis 

(305-day production), whereas protein composition 

traits and percentage were related to one morning milk 

sample. In our study, prediction reliabilities for the traits 

related to milk protein composition traits were expected 

to improve if both traits in the bivariate analyses were on 

a similar scale.

Predictive ability of BayesAS models

Prediction reliabilities from the resampling showed large 

improvements with the ST- and MT-BayesAS models 

compared to their GBLUP counterparts. �e BayesAS 

models allow for different variances and covariances by 

SNP groups, which can deviate from the genome-wide 

(co)variance. �is was especially important for some 

traits for which one or two key segments alone explained 

a large part of the total variance. Grouping adjacent SNPs 

seems to have helped to obtain more reliable estimates 

from a small dataset while allowing the segments to have 

different variances that disentangled heterogeneous (co)

variance patterns and improved prediction reliability. 

Similarly, a simulation study by Shariati et al. [28] showed 

that prediction reliability based on SNP grouping was 

better than that obtained by SNP-BLUP methods. SNP 

grouping in the study of Shariati et al. [28] was based on 

similar effect sizes. Other grouping options also exist, e.g. 

depending on LD between SNPs [29]. �e BayesAS mod-

els can also be used to implement such grouping strat-

egies for which segment sizes might vary depending on 

LD or effect size similarity.

Prediction reliability with the BayesAS models appears 

to depend highly on the segment sizes considered and the 

genetic architecture of the traits. Comparison between 

the BayesAS models with different segment sizes showed 

that grouping 100 adjacent SNPs resulted in superior 

performance for all proteins. Grouping 50 SNPs was as 

predictive as the models based on 100-SNP segments for 

all traits except G-κ-CN for which prediction reliability 

improved by 9 percentage points with the 100-SNP seg-

ment size model. Taking each SNP as a segment resulted 

in lower prediction reliability than groups of 50, 100, or 

200 adjacent SNPs for most traits. With our BayesAS 

models, prediction reliabilities decreased as segment size 

increased beyond 100 SNPs in both the univariate and 

bivariate analyses. �e lowest reliabilities were obtained 

when considering each chromosome or the whole 

genome as segments. In other words, the (co)variance 

between segments was diluted as segment size increased 

beyond 100 SNPs. Similarly, Brøndum et al. [30] reported 

that using a segment size of 100 SNPs resulted in the 

highest accuracy in an across-breed genomic prediction 

study for protein, fat, and milk yield using 465,000 SNPs. 

Defining the optimal segment size, in terms of number of 

adjacent SNPs, is critical to achieving meaningful gains 

from the novel models presented here. Optimal segment 

size should be established for each specific situation, for 

instance through some resampling strategy, considering 

the SNP array, species, and LD in the population.

�e gain in prediction reliability from using different 

segment sizes in the BayesAS models also varied across 

the traits. In both the ST- and MT-BayesAS models, dif-

ferences in prediction reliability between segment sizes 

were very large for G-κ-CN, κ-CN, αS2-CN, and β-LG, 

whereas across all models they were smaller for αS1-CN, 

αS1-CN-8P, or α-LA. �ese results are likely related to 

the genetic architecture of the protein composition traits 

investigated. Previous genome-wide association stud-

ies found that the proportions of κ-CN, αS2-CN, and β

-LG in milk are controlled by major QTL on BTA6 and 

11 [12], which carry the casein gene cluster and the gene 

encoding β-LG [31], respectively. On the one hand, a sin-

gle chromosome could explain a very large proportion of 
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the variance for some protein composition traits, includ-

ing G-κ-CN, κ-CN, β-LG, and αS2-CN, which showed the 

largest improvement in reliability when the heterogeneity 

of variances across the genome segments was accounted 

for. On the other hand, the proportion of explained vari-

ance by each chromosome was very small for αS1-CN 

and α-LA, which indicates that many segments contrib-

ute small proportions to the average variance. Similarly, 

Buitenhuis et al. [31] found no major region that was sig-

nificantly associated with αS1-CN in the Danish Holstein 

population, which could be associated to the low genetic 

variability of the CSN1N1 gene reported for this popula-

tion by Poulsen et al. [24]. �is result indicates that SNP 

grouping is more useful for traits that are controlled by 

QTL with major effects.

Comparison between the univariate and bivariate ver-

sions of our BayesAS models showed that for the most 

informative traits, the MT version resulted in further 

improvements in prediction reliability of up to 6 percent-

age points for segment sizes of 100 and 50. While further 

improvements in prediction reliability of up to 6% from 

the MT-BayesAS over the univariate versions are still 

important, it was generally lower than expected. Further 

investigations are required to understand the impact of 

genetic architecture of the indicator trait(s) on the poten-

tial advantages, over univariate analysis, of our bivariate 

BayesAS models.

A few segments explained a substantial proportion of 

the genomic variance for traits related to milk protein 

composition and their covariance with protein yield. 

�us, we investigated the reliability of predictions based 

on only a few of the best-explaining 100-SNP segments. 

Predictions based on only 2% (8/372) of the genome seg-

ments resulted in the highest prediction reliability for G-κ

-CN, κ-CN, β-LG, and αS2-CN. For these proteins, predic-

tion reliability decreased as more segments were added. 

Inclusion of more segments that explained a smaller 

proportion of the (co)variance added noise rather than 

meaningful information. Similarly, in a simulation study 

based on a GBLUP approach, Sarup et  al. [32] demon-

strated that including non-causal markers led to dilution 

of the effect of causal markers and reduced predictive 

ability. For other protein composition traits, includ-

ing αS1-CN-8P, αS1-CN, and α-LA, prediction reliabil-

ity improved as more segments were included, with the 

highest prediction reliability being obtained when all seg-

ments were considered. �is result is in agreement with 

our finding on the proportions of genomic covariance 

explained by 100-SNP segments, where many segments 

across the genome contributed small proportions of the 

average covariance between these traits and total protein 

yield. In this study, we have used the same dataset to rank 

the top segments and do the prediction. �is could lead 

to overestimation of reliability and introduce prediction 

bias. However, such bias is expected to be minimal as the 

SNP effects in these top segments are re-estimated for 

prediction with the different proportion of segments.

Conclusions
A novel BayesAS model, which allows exploring and 

modeling heterogeneous variance and covariance pat-

terns across genomic regions, improved prediction reli-

abilities for milk protein composition traits with a small 

dataset compared to the GBLUP and single-SNP based 

Bayesian models. �e number of adjacent SNPs grouped 

together affected prediction reliability for the BayesAS 

models. A segment size of 100 SNPs gave the highest pre-

diction reliability using 36,000 SNPs spread across the 

genome. For the most informative traits (highest genomic 

reliability), a further gain in reliability was observed when 

using the bivariate versions of our BayesAS models com-

pared to univariate counterparts. Our results also show 

that the gains in prediction reliability achieved by SNP 

grouping depend on the genetic architecture of the traits. 

A future study with simulated data would be useful to 

test our novel BayesAS models with larger datasets.
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