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ABSTRACT
Topic modeling has been a key problem for document analysis.
One of the canonical approaches for topic modeling is Probabilistic
Latent Semantic Indexing, which maximizes the joint probability
of documents and terms in the corpus. The major disadvantage of
PLSI is that it estimates the probability distribution of each docu-
ment on the hidden topics independently and the number of param-
eters in the model grows linearly with the size of the corpus, which
leads to serious problems with overfitting. Latent Dirichlet Allo-
cation (LDA) is proposed to overcome this problem by treating the
probability distribution of each document over topics as a hidden
random variable. Both of these two methods discover the hidden
topics in the Euclidean space. However, there is no convincing evi-
dence that the document space is Euclidean, or flat. Therefore, it is
more natural and reasonable to assume that the document space is
a manifold, either linear or nonlinear. In this paper, we consider the
problem of topic modeling on intrinsic document manifold. Specif-
ically, we propose a novel algorithm called Laplacian Probabilistic
Latent Semantic Indexing (LapPLSI) for topic modeling. LapPLSI
models the document space as a submanifold embedded in the am-
bient space and directly performs the topic modeling on this doc-
ument manifold in question. We compare the proposed LapPLSI
approach with PLSI and LDA on three text data sets. Experimen-
tal results show that LapPLSI provides better representation in the
sense of semantic structure.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics—
Statistical computing; H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing—Indexing methods
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1. INTRODUCTION
Document representation has been a key problem for document

analysis and processing[8][10][11]. The Vector Space Model (VSM)
might be one of the most popular models for document represen-
tation. In VSM, each document is represented as a bag of words.
Correspondingly, the inner product (or, cosine similarity) is used as
the standard similarity measure for documents or documents and
queries. Unfortunately, it is well known that VSM has severe draw-
backs, mainly due to the ambiguity of words (polysemy) and the
personal style and individual differences in word usage (synonymy).

To deal with these problems, IR researchers have proposed sev-
eral dimensionality reduction techniques, most notably Latent Se-
mantic Indexing (LSI) [8]. LSI uses a Singular Value Decompo-
sition (SVD) of the term-document matrix X to identify a linear
subspace (so-called latent semantic space) that captures most of
the variance in the data set. The general claim is that similarities
between documents or between documents and queries can be more
reliably estimated in the reduced latent space representation than in
the original representation. LSI received a lot of attentions during
these years and many variants of LSI have been proposed [1][20].

Despite its remarkable success in different domains, LSI has a
number of deficits, mainly due to its unsatisfactory statistical for-
mulation [12]. To address this issue, Hofmann [11] proposed a
generative probabilistic model named Probabilistic Latent Seman-
tic Indexing (PLSI). PLSI models each word in a document as a
sample from a mixture model, where the mixture components are
multinomial random variables that can be viewed as representa-
tions of “topics.” Each document is represented as a list of mixing
proportions for these mixture components and thereby reduced to
a probability distribution on a fixed set of topics. This distribu-
tion is the “reduced representation” associated with the document.
The major disadvantage of PLSI is that it estimates the probability
distribution of each document on the hidden topics independently
and the number of parameters in the model grows linearly with the
size of the corpus. This leads to serious problems with overfitting
[16][5][19]. Latent Dirichlet Allocation (LDA) is then proposed to
overcome this problem by treating the probability distribution of
each document over topics as a K-parameter hidden random vari-
able rather than a large set of individual parameters, where the K
is the number of hidden topics.

Both of the above two topic modeling approaches discover the
hidden topics in the Euclidean space. However, there is no convinc-
ing evidence that the documents are actually sampled from a Eu-
clidean space. Recent studies suggest that the documents are usu-
ally sampled from a nonlinear low-dimensional manifold which is
embedded in the high-dimensional ambient space [10][23]. Thus,
the local geometric structure is essential to reveal the hidden se-
mantics in the corpora.
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In this paper, we propose a new algorithm called Laplacian
Probabilistic Latent Semantic Indexing (LapPLSI). LapPLSI con-
siders the topic modeling on the document manifold. It models the
document space as a submanifold embedded in the ambient space
and directly perform the topic modeling on this document mani-
fold in question. By discovering the local neighborhood structure,
our algorithm can have more discriminating power than PLSI and
LDA. Specifically, LapPLSI first builds an nearest neighbor graph
to model the local document manifold structure. It is natural to as-
sume that two sufficiently close documents have similar probability
distribution over different topics. The nearest neighbor graph struc-
ture is then incorporated into the log-likelihood maximization as a
regularization term for LapPLSI. In this way, the topic model esti-
mated by LapPLSI maximizes the joint probability over the corpus
and simultaneously respects the local manifold structure.

It is worthwhile to highlight several aspects of our proposed al-
gorithm here:

1. The conventional generative probabilistic modeling approaches,
e.g., PLSI and LDA, discover the hidden topics in the Eu-
clidean space. Our approach considers the problem of topic
modeling directly on the document manifold in question and
discovers the hidden topics.

2. The graph Laplacian used in our algorithm is a discrete ap-
proximation to the Laplace-Beltrami operator defined on man-
ifold. By discovering the local neighborhood structure, our
algorithm can have more discriminating power than PLSI
and LDA.

3. Our algorithm constructs a nearest neighbor graph to model
the intrinsic structure in the data, which is unsupervised. When
there is network structure available, e.g. hyperlink between
Web pages, it can be naturally used to construct the graph.

The rest of the paper is organized as follows: in Section 2, we
give a brief review of topic modeling with PLSI and LDA. Section
3 introduces our algorithm and give a theoretical analysis of the
algorithm. Extensive experimental results on document modeling
and document clustering are presented in Section 4. Finally, we
provide some concluding remarks and suggestions for future work
in Section 5.

2. A BRIEF REVIEW OF PLSI AND LDA
The core of Probabilistic Latent Semantic Indexing (PLSI) is

a latent variable model for co-occurrence data which associates
an unobserved topic variable zk ∈ {z1, · · · , zK} with the occur-
rence of a word wj ∈ {w1, · · · , wM} in a particular document
di ∈ {d1, · · · , dN}. As a generative model for word/document
co-occurrences, PLSI is defined by the following scheme:

1. select a document di with probability P (di),

2. pick a latent topic zk with probability P (zk|di),

3. generate a word wj with probability P (wj |zk).

As a result one obtains an observation pair (di, wj), while the la-
tent topic variable zk is discarded. Translating the data generation
process into a joint probability model results in the expression

P (di, wj) = P (di)P (wj |di),

P (wj |di) =
K∑

k=1

P (wj |zk)P (zk|di).
(1)

The parameters can be estimated by maximizing the log-likelihood

L =
N∑

i=1

M∑

j=1

n(di, wj) log P (di, wj)

∝
N∑

i=1

M∑

j=1

n(di, wj) log
K∑

k=1

P (wj |zk)P (zk|di)

(2)

where n(di, wj) the number of occurrences of term wj in docu-
ment di. The above optimization problem can be solved by using
standard EM algorithm [9].

Notice that there are NK+MK parameters {P (wj |zk), P (zk|di)}
which are independently estimated in PLSI model. It is easy to see
that the number of parameters in PLSI grows linearly with the num-
ber of training documents (N ). The linear growth in parameters
suggests that the model is prone to overfitting [16][5].

To address this issue, Latent Dirichlet Allocation (LDA) [5] is
then proposed. LDA assumes that the probability distributions of
documents over topics are generated from the same Dirichlet dis-
tribution with K parameters. Essentially, LDA modifies the second
step of PLSI generating scheme:

1. select a document di with probability P (di),

2. pick a latent topic zk,

2.1 generate θi ∼ Dir(α),

2.2 pick a latent topic zk with probability P (zk|θi),

3. generate a word wj with probability P (wj |zk).

Dir(α) is the Dirichlet distribution with a K-dimensional param-
eter α.

The K +MK parameters in a K-topic LDA model do not grow
with the size of the corpus. Thus, LDA does not suffer from the
same overfitting issue as PLSI.

3. LAPLACIAN PROBABILISTIC LATENT
SEMANTIC INDEXING

By assuming that the probability distributions of documents over
topics are generated from the same Dirichlet distribution, LDA
avoids the overfitting problem of PLSI. However, both of these two
algorithms fail to discover the intrinsic geometrical and discrim-
inating structure of the document spare, which is essential to the
real applications. In this Section, we introduce our LapPLSI algo-
rithm which avoids this limitation by incorporating a geometrically
based regularizer.

3.1 The Latent Variable Model with Manifold
Regularization

Recall that the documents d ∈ D are drawn according to the dis-
tribution PD . One might hope that knowledge of the distribution
PD can be exploited for better estimation of the conditional distri-
bution P (z|d). Nevertheless, if there is no identifiable relation be-
tween PD and the conditional distribution P (z|d), the knowledge
of PD is unlikely to be very useful.

Therefore, we will make a specific assumption about the con-
nection between PD and the conditional distribution P (z|d). We
assume that if two documents d1, d2 ∈ D are close in the intrin-
sic geometry of PD , then the conditional distributions P (z|d1) and
P (z|d2) are similar to each other. In other words, the conditional
probability distribution P (z|d) varies smoothly along the geodesics
in the intrinsic geometry of PD . This assumption is also referred to
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as manifold assumption [3], which plays an essential rule in devel-
oping various kinds of algorithms including dimensionality reduc-
tion algorithms [3][10] and semi-supervised learning algorithms
[4][24].

Let fk(d) = P (zk|d) be the conditional Probability Distribution
Function (PDF), we use ‖fk‖2

M to measure the smoothness of fk

along the geodesics in the intrinsic geometry of PD . When we
consider the case that the support1 of PD is a compact submanifold
M ⊂ RM , a natural choice for ‖fk‖2

M is

‖fk‖2
M =

∫

d∈M
‖∇Mfk‖2dPD(d) (3)

where ∇M is the gradient of fk along the manifold M and the
integral is taken over the distribution PD .

In reality, the document manifold is usually unknown. Thus,
‖fk‖2

M in Eqn. (3) can not be computed. Recent studies on spec-
tral graph theory [7] and manifold learning theory [2] have demon-
strated that ‖fk‖2

M can be discretely approximated through a near-
est neighbor graph on a scatter of data points.

Consider a graph with N vertices where each vertex corresponds
to a document in the corpus. Define the edge weight matrix W as
follows:

Wij =

{
cos(di, dj), if di ∈ Np(dj) or dj ∈ Np(di)
0, otherwise. (4)

where Np(di) denotes the set of p nearest neighbors of di. Define
L = D − W , where D is a diagonal matrix whose entries are col-
umn (or row, since W is symmetric) sums of W , Dii =

∑
j Wij .

L is called graph Laplacian [7], which is a discrete approximation
to the Laplace-Beltrami operator (M on the manifold [2]. Thus,
the discrete approximation of ‖fk‖2

M can be computed as follows:

Rk =
1
2

N∑

i,j=1

(P (zk|di) − P (zk|dj))
2 Wij

=
N∑

i=1

P (zk|di)
2Dii −

N∑

i,j=1

P (zk|di)P (zk|dj)Wij

= fTk Dfk − fTk W fk

= fTk Lfk

(5)

where fk = [fk(d1), · · · , fk(dM )]T = [P (zk|d1), · · · , P (zk|dM )]T .
Rk can be used to measure the smoothness of conditional proba-
bility distribution function P (zk|d) along the geodesics in the in-
trinsic geometry of the document set. By minimizing Rk, we get
a conditional PDF function fk which is sufficiently smooth on the
document manifold. A intuitive explanation of minimizing Rk is
that if two documents di and dj are close (i.e. Wij is big), fk(di)
and fk(dj) are similar to each other.

Now we can define our new latent variable model. The new
model adopts the generative scheme of PLSI. It aims to maximize

1In mathematics, a support of a function f from a set X to the real
numbers R is a subset Y of X such that f(x) is zero for all x ∈ X
that are not in Y .

the regularized log-likelihood as follows:

L = L− λR = L− λ
K∑

k=1

Rk

∝
N∑

i=1

M∑

j=1

n(di, wj) log
K∑

k=1

P (wj |zk)P (zk|di)

− λ
2

K∑

k=1

N∑

i,j=1

(P (zk|di) − P (zk|dj))
2 Wij

(6)

where λ is the regularization parameter.

3.2 Model Fitting with Generalized EM
To see how we can estimate the parameters in our LapPLSI model,

we first consider the case that λ = 0. In this case, LapPLSI boils
down to the traditional PLSI model.

The standard procedure for maximum likelihood estimation in
latent variable models is the Expectation Maximization (EM) al-
gorithm [9]. EM alternates two steps: (i) an expectation (E) step
where posterior probabilities are computed for the latent variables,
based on the current estimates of the parameters, (ii) a maximiza-
tion (M) step, where parameters are updated based on maximizing
the so-called expected complete data log-likelihood which depends
on the posterior probabilities computed in the E-step.

Recall in PLSI, we have NK+MK parameters {P (wj |zk), P (zk|di)}
and the latent variables are the hidden topics zk. For simplicity, we
use Ψ to denote all the NK + MK parameters.

E-step:
The posterior probabilities for the latent variables are P (zk|di, wj),

which can be computed by simply applying Bayes’ formula on Eqn.
(1):

P (zk|di, wj) =
P (wj |zk)P (zk|di)∑K
l=1 P (wj |zl)P (zl|di)

(7)

M-step:
With simple derivations [12], one can obtain the relevant part of

the expected complete data log-likelihood for PLSI:

Q(Ψ) =
N∑

i=1

M∑

j=1

n(di, wj)
K∑

k=1

P (zk|di, wj) log
[
P (wj |zk)P (zk|di)

]

Maximizing Q(Ψ) with respect to the parameters Ψ and with the
constraints that

∑K
k=1 P (zk|di) = 1 and

∑M
j=1 P (wj |zk) = 1,

one can obtain the M-step re-estimation equations [12]:

P (wj |zk) =

∑N
i=1 n(di, wj)P (zk|di, wj)∑M

m=1

∑N
i=1 n(di, wm)P (zk|di, wm)

, (8)

P (zk|di) =

∑M
j=1 n(di, wj)P (zk|di, wj)

n(di)
. (9)

With a initial random guess of {P (wj |zk), P (zk|di)}, PLSI alter-
nately applies the E-step equation (7) and M-step equations (8, 9)
until a termination condition is met.

Our LapPLSI model adopts the same generative scheme as that
of PLSI. Thus, LapPLSI has exactly the same E-step as that of
PLSI. For the M-step, it can be derived that the relevant part of
the expected complete data log-likelihood for LapPLSI is

Q(Ψ) = Q(Ψ) − λR

= Q(Ψ) − λ
2

K∑

k=1

N∑

i,j=1

(P (zk|di) − P (zk|dj))
2 Wij
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Since the regularization part R only involves the parameters P (zk|di),
we can get the same M-step re-estimation equation for P (wj |zk)
as in Eqn. (8). However, we do not have a close form re-estimation
equation for P (zk|di). In this case, the traditional EM algorithm
can not be applied.

In the following, we discuss how to use the generalized EM al-
gorithm (GEM) [14] to maximize the regularized log-likelihood of
LapPLSI in Eqn. (6). The major difference between GEM and
traditional EM is in the M-step. Instead of finding the globally op-
timal solutions for Ψ which maximize the expected complete data
log-likelihood Q(Ψ) in the M-step of EM algorithm, GEM only
needs to find a “better” Ψ. Let Ψn denote the parameter values of
the previous iteration and Ψn+1 denote the parameter values of the
current iteration. The convergence of GEM algorithm only requires
that Q(Ψn+1) ≥ Q(Ψn) [14].

In each M-step, we have parameter values Ψn and try to find
Ψn+1 which satisfy Q(Ψn+1) ≥ Q(Ψn). Apparently, Q(Ψn+1) ≥
Q(Ψn) holds if Ψn+1 = Ψn.

We have Q(Ψ) = Q(Ψ) − λR. Let us first find Ψ(1)
n+1 which

maximizes Q(Ψ) instead of the whole Q(Ψ). This can be done by
simply applying Eqn. (8) and (9). Clearly, Q(Ψ(1)

n+1) ≥ Q(Ψn)

does not necessarily hold. We then try to start from Ψ(1)
n+1 and

decrease R, which can be done through Newton-Raphson method
[17]. Notice that R only involves parameters P (zk|di), we only
need to update P (zk|di)n+1 part in Ψn+1.

Given a function f(x) and the initial value xt, the Newton-Raphson
updating formula to decrease (or increase) f(x) is as follows:

xt+1 = xt − γ
f ′(x)
f ′′(x)

(10)

where 0 ≤ γ ≤ 1 is the step parameter. Since we have

Rk =
1
2

N∑

i,j=1

(P (zk|di) − P (zk|dj))
2 Wij = fTk Lfk ≥ 0,

the Newton-Raphson method will decrease Rk in each updating
step. With Ψ(1)

n+1 and put Rk into the Newton-Raphson updating
formula in Eqn. (10), we can get the close form solution for Ψ(2)

n+1,
and then Ψ(3)

n+1, · · · , Ψ(m)
n+1, where

P (zk|di)
(t+1)
n+1 = (1−γ)P (zk|di)

(t)
n+1+γ

∑N
j=1 WijP (zk|dj)

(t)
n+1∑N

j=1 Wij

.

(11)
Clearly,

∑K
k=1 P (zk|di)

(t+1)
n+1 = 1 and P (zk|di)

(t+1)
n+1 ≥ 0 hold in

Eqn. (11) as long as
∑K

k=1 P (zk|di)
(t)
n+1 = 1 and P (zk|di)

(t)
n+1 ≥

0. Notice that the P (wj |zk)n+1 part in Ψn+1 will keep the same.
Every iteration of Eqn. (11) makes the topic distribution smoother

on the nearest neighbor graph, essentially, smoother on the docu-
ment manifold. The step parameter γ can be interpreted as a con-
trolling factor of smoothing the topic distribution among the neigh-
bors. When it is set to 1, the new topic distribution of a document
is the average of the old distributions from its neighbors. This pa-
rameter will affect the convergence speed but not the convergence
result.

We continue the iteration of Eqn. (11) untilQ(Ψ(t+1)
n+1 ) ≤ Q(Ψ(t)

n+1).
Then we test whether Q(Ψ(t)

n+1) ≥ Q(Ψn). If not, we reject the
proposal of Ψ(t)

n+1, and return the Ψn as the result of the M-step,
and continue with the next E-step. We summarize the model fitting
approach of our LapPLSI by using generalized EM algorithm in
Algorithm (1).

Algorithm 1 Generalized EM for LapPLSI

Input: N documents with a vocabulary size M
The number of topics K, The number of nearest neighbors p
Regularization parameter λ, Newton step parameter γ
Termination condition value θ

Output: P (zk|di), P (wj |zk), i = 1, · · · , N ; j = 1, · · · , M
k = 1, · · · , K

1: Compute the the graph matrix W as in Eqn. (4);
2: Initialize the probability distributions (parameters) Ψ0;

Ψ0 = {P (zk|di)0, P (wj |zk)0}
3: n ← 0;
4: while (true)
5: E-step: Compute the posterior probability as in Eqn. (7) ;

M-step:
6: Compute P (wj |zk)n+1 as in Eqn. (8);
7: Compute P (zk|di)n+1 as in Eqn. (9);
8: P (zk|di)

(1)
n+1 ← P (zk|di)n+1;

9: Compute P (zk|di)
(2)
n+1 as in Eqn. (11);

10: while
(
Q(Ψ(2)

n+1) ≥ Q(Ψ(1)
n+1)

)

11: P (zk|di)
(1)
n+1 ← P (zk|di)

(2)
n+1.

12: Compute P (zk|di)
(2)
n+1 as in Eqn. (11)

13: if
(
Q(Ψ(1)

n+1) ≥ Q(Ψn)
)

14: P (zk|di)n+1 ← P (zk|di)
(1)
n+1;

15: else
16: Ψn+1 ← Ψn;
17: if (Q(Ψn+1) −Q(Ψn) ≤ θ)
18: break;
19: n ← n + 1;
17: return Ψn+1

4. APPLICATIONS AND EMPIRICAL
RESULTS

In this section, we evaluate our LapPLSI algorithm in two appli-
cation domains: topic representation and document clustering.

In all the mixture models, the expected complete log-likelihood
of the data has local maxima at the points where all or some of
the mixture components are equal to each other. We run the EM
algorithm multiple times with random starting points to improve
the local maximum of the EM estimates. To make the comparison
fair, we use the same starting points for PLSI and LapPLSI.

We empirically set the number of nearest neighbors p to 7, the
value of the Newton step parameter γ to 0.1, the value of the regu-
larization parameter λ to 1000.

4.1 Document Modeling
In order to visualize the hidden topics discovered by LapPLSI

approach, we conduct the following experiment on TREC AP cor-
pus. We use a subset of the TREC AP corpus containing 2,246
newswire articles with 10,473 unique terms2.

To compare different approaches, we randomly pick four terms
(i.e., “film”, “school”,“space” and “computer”), and find four top-
ics that have these four terms as the most representative terms, re-
spectively. That is, for term wj , we find the topic zk such that
P (wj |zk) ≥ P (wi|zk), ∀wi -= wj . In this way, we can compare
different approaches on the same topic and evaluate the terms gen-

2This TREC AP subset can be downloaded at
http://www.cs.princeton.edu/∼blei/lda-c/
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Table 1: The 15 most representative terms generated by our
LapPLSI algorithm for four topics. The terms are selected ac-
cording to the probability P (w|z).

Topic 1 Topic 2 Topic 3 Topic 4
film school space computer

movie students launch system
films university mission technology

disney college shuttle systems
universal student earth calif

mca education nasa program
brooks schools test programs
theaters district scientists computers

mary board pictures equipment
dog public venus problem

movies class spacecraft personal
yosemite teachers engineers stations
recycling black rocket numbers

screen professor project design
entertainment teacher launched data

Table 2: The 15 most representative terms generated by the
PLSI algorithm for four topics. The terms are selected accord-
ing to the probability P (w|z).

Topic 1 Topic 2 Topic 3 Topic 4
film school space computer

movie students venus time
company student earth two

disney university mission west
last schools nasa show

environmental education shuttle military
mca board spacecraft president
films teachers magellan virginia

universal college telescope virus
years teacher two told

people high astronauts system
town public launch program
year state miles computers

movies class hubble years
say parents make last

erated by them that are used to represent this particular topic. Table
1, 2 and 3 show the terms generated by the LapPLSI, PLSI, and
LDA algorithms, respectively, to represent the four topics. For all
these three algorithms, we need to pre-define the number of hidden
topics in the data set. We empirically set it to 100 as suggested in
[5].

All the three topic modeling approaches have quite good per-
formance on these four topics. For the first three topics, although
different algorithms select slightly different terms, all these terms
can describe the corresponding topic to some extent. For the forth
topic (“computer”), LapPLSI is slightly better than PLSI and LDA.
As can be seen, LapPLSI selects more terms related to “computers”
(e.g., technology, equipment) than PLSI and LDA. In the next sub-
section, we give a quantitative evaluation of these three algorithms
on document clustering.

4.2 Document Clustering
Clustering is one of the most crucial techniques to organize the

documents in an unsupervised manner. The hidden topics extracted
by the topic modeling approaches can be regarded as clusters. The
estimated conditional probability density function P (zk|di) can be

Table 3: The 15 most representative terms generated by the
LDA algorithm for four topics. The terms are selected accord-
ing to the probability P (w|z).

Topic 1 Topic 2 Topic 3 Topic 4
film school space computer

movie students shuttle says
theater education nasa system
actor schools launch program

musical university mission long
films college earth theyre

actress student venus numbers
best teachers spacecraft years
last board two time

vietnam teacher mars year
new high magellan work

theaters class rocket number
available parents telescope people

star teaching flight digital
academy officials astronauts software

Table 4: Statistics of TDT2 and Reuters corpora.
TDT2 Reuters

No. docs. used 9394 8067
No. clusters used 30 30
Max. cluster size 1844 3713
Min. cluster size 52 18
Med. cluster size 131 45
Avg. cluster size 313 269

used to infer the cluster label of each document. In this experi-
ment, we investigate the use of topic modeling approach for text
clustering.

4.2.1 Data Corpora
We conducted the performance evaluations using the TDT2 3 and

the Reuters4 document corpora. These two document corpora have
been among the ideal test sets for document clustering purposes
because documents in the corpora have been manually clustered
based on their topics and each document has been assigned one or
more labels indicating which topic/topics it belongs to.

The TDT2 corpus consists of data collected during the first half
of 1998 and taken from 6 sources, including 2 newswires (APW,
NYT), 2 radio programs (VOA, PRI) and 2 television programs
(CNN, ABC). It consists of 11201 on-topic documents which are
classified into 96 semantic categories. In this experiment, those
documents appearing in two or more categories were removed, and
only the largest 30 categories were kept, thus leaving us with 9,394
documents in total.

The Reuters corpus contains 21578 documents which are grouped
into 135 clusters. Compared with TDT2 corpus, the Reuters corpus
is more difficult for clustering. In TDT2, the content of each cluster
is narrowly defined, whereas in Reuters, documents in each cluster
have a broader variety of content. Moreover, the Reuters corpus
is much more unbalanced, with some large clusters more than 200
times larger than some small ones. In our test, we discarded doc-
uments with multiple category labels, and only selected the largest

3Nist Topic Detection and Tracking corpus at
http://www.nist.gov/speech/tests/tdt/tdt98/index.htm
4Reuters-21578 corpus is at
http://www.daviddlewis.com/resources/testcollections/reuters21578/

915



Table 5: Clustering performance on TDT2

k
Accuracy (%) Normalized Mutual Information (%)

PLSI LDA LapPLSI k-means AA NC NMF PLSI LDA LapPLSI k-means AA NC NMF
2 91.5 93.1 99.8 97.6 93.9 99.8 99.7 71.9 79.3 98.0 90.3 84.8 97.8 97.5
3 82.3 88.2 99.7 90.4 90.6 97.9 95.9 68.2 79.0 97.7 84.4 82.6 94.1 90.9
4 76.1 80.8 99.3 86.3 86.4 95.9 93.2 65.1 74.2 96.8 82.2 78.6 91.0 89.1
5 70.0 77.6 98.6 81.1 81.6 94.7 89.9 62.9 71.7 95.7 79.2 75.3 90.4 85.6
6 69.0 73.6 97.5 79.2 79.4 93.4 91.4 63.6 71.7 94.7 79.6 76.0 90.3 88.8
7 63.7 67.4 96.3 73.8 80.4 89.1 85.8 60.0 66.6 92.9 75.6 76.0 85.1 83.6
8 59.8 65.1 94.1 72.5 73.8 85.0 82.3 57.6 64.7 90.4 73.6 70.7 81.4 80.7
9 63.2 66.5 93.8 73.6 73.6 86.0 83.9 62.7 68.9 90.5 77.6 73.8 83.9 83.9

10 60.7 65.8 92.8 72.3 73.5 81.4 82.6 61.8 68.7 89.8 76.5 73.4 80.5 82.9
Avg 70.7 75.3 96.9 80.8 81.5 91.5 89.4 63.8 71.6 94.1 79.9 76.8 88.3 87.0
k is the number of clusters
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Figure 1: (a) Accuracy (b) Normalized mutual information vs. the number of classes on TDT2 corpus

30 categories. This left us with 8067 documents in total. Table 4
provides the statistics of the two document corpora.

4.2.2 Evaluation Metric
The clustering result is evaluated by comparing the obtained la-

bel of each document with that provided by the document corpus.
Two metrics, the accuracy (AC) and the normalized mutual in-
formation metric (MI) are used to measure the clustering perfor-
mance [21][6]. Given a document xi, let ri and si be the obtained
cluster label and the label provided by the corpus, respectively. The
AC is defined as follows:

AC =

∑n
i=1 δ(si, map(ri))

n

where n is the total number of documents and δ(x, y) is the delta
function that equals one if x = y and equals zero otherwise, and
map(ri) is the permutation mapping function that maps each clus-
ter label ri to the equivalent label from the data corpus. The best
mapping can be found by using the Kuhn-Munkres algorithm [13].

Let C denote the set of clusters obtained from the ground truth
and C′ obtained from our algorithm. Their mutual information
metric MI(C, C′) is defined as follows:

MI(C, C′) =
∑

ci∈C,c′j∈C′

p(ci, c
′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)

where p(ci) and p(c′j) are the probabilities that a document arbi-
trarily selected from the corpus belongs to the clusters ci and c′j ,
respectively, and p(ci, c

′
j) is the joint probability that the arbitrar-

ily selected document belongs to the clusters ci as well as c′j at
the same time. In our experiments, we use the normalized mutual
information MI as follows:

MI(C, C′) =
MI(C, C′)

max(H(C), H(C′))

where H(C) and H(C′) are the entropies of C and C′, respec-
tively. It is easy to check that MI(C, C′) ranges from 0 to 1.
MI = 1 if the two sets of clusters are identical, and MI = 0
if the two sets are independent.

4.2.3 Performance Evaluations and Comparisons
To demonstrate how the document clustering performance can

be improved by topic modeling approaches, we implemented four
state-of-the-art clustering algorithms as follows.

• Canonical k-means clustering method (k-means in short).

• Two representative spectral clustering methods: Average As-
sociation (AA in short) [22], and Normalized Cut (NC in
short) [18][15]. Spectral clustering methods have recently
emerged as one of the most effective document clustering
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Table 6: Clustering performance on Reuters

k
Accuracy (%) Normalized Mutual Information (%)

PLSI LDA LapPLSI k-means AA NC NMF PLSI LDA LapPLSI k-means AA NC NMF
2 72.6 79.1 93.1 79.0 82.2 86.3 87.0 23.4 39.1 69.1 39.7 45.0 56.3 55.7
3 65.8 69.2 88.4 68.7 73.0 78.7 77.6 29.2 39.5 65.5 44.5 43.6 54.2 54.3
4 56.7 59.6 79.9 62.2 63.1 74.5 74.5 31.4 38.8 59.5 47.3 43.5 52.5 56.2
5 52.1 56.5 75.2 59.6 59.2 72.0 71.4 35.1 42.3 60.5 51.1 48.5 56.7 58.6
6 52.6 53.2 72.5 59.7 58.6 70.2 68.7 37.3 43.9 59.4 54.3 50.7 56.4 59.2
7 45.5 47.3 71.8 53.8 54.0 64.1 63.6 34.6 39.2 58.6 49.7 45.1 50.8 53.4
8 45.6 46.8 66.8 50.2 47.6 59.9 54.1 34.2 37.2 52.1 47.2 42.7 47.6 46.5
9 41.1 42.2 62.6 44.5 43.2 57.6 52.8 31.1 34.6 46.7 42.5 37.7 44.1 45.1

10 43.0 44.5 61.0 47.0 44.2 57.0 53.3 35.1 38.5 51.5 47.4 42.6 48.3 49.1
Avg 52.8 55.4 74.6 58.3 58.3 68.9 67.0 32.4 39.2 58.1 47.1 44.4 51.9 53.1
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Figure 2: (a) Accuracy (b) Normalized mutual information vs. the number of clusters on Reuters corpus

tools. These methods are based on graph partitioning theo-
ries. They model the given document set using a undirected
graph in which each node represents a document, and each
edge is assigned a weight to reflect the similarity between
two documents. The clustering task is accomplished by find-
ing the best cut of the graph with respect to the predefined
criterion function. The difference between AA and NC is the
different cut criteria they used. Interestingly, Zha et al. [22]
has shown that the AA criterion is equivalent to that of the
LSI followed by the K-means clustering method if the inner
product is used to measure the document similarity.

• Nonnegative Matrix Factorization (NMF) based clustering.
We implemented a normalized cut weighted version of NMF
(NMF in short) [21], which has been shown to be a very ef-
fective document clustering method.

Table 5 and 6 show the evaluation results using the TDT2 and the
Reuters corpus, respectively. The evaluations were conducted with
the cluster numbers ranging from two to ten. For each given clus-
ter number k, 50 test runs were conducted on different randomly
chosen clusters, and the final performance scores were obtained by
averaging the scores from the 50 tests.

These experiments reveal a number of interesting points:

• The LDA approach consistently outperforms PLSI. By as-
suming that the probability distributions of documents over

topics are generated from the same Dirichlet distribution,
LDA avoids the overfitting problem of PLSI. This can be ob-
served from our experimental results. However, both of these
two topic modeling approaches fail to outperform those stan-
dard clustering methods, especially comparing with NC and
NMF-NCW. One reason is that both PLSI and LDA discover
the hidden topics in the Euclidean space and fail to consider
the discriminant structure.

• Our LapPLSI approach gets significantly better performance
than PLSI and LDA. Moreover, LapPLSI can even achieve
better results than the state-of-the-art clustering algorithms.
This shows that by considering the intrinsic geometrical struc-
ture of the document space and directly performing topic
modeling on this document manifold, LapPLSI can have bet-
ter hidden topic modeling power in the sense of semantic
structure.

• The improvement of LapPLSI over other methods is more
significant on the TDT2 corpus than the Reuters corpus. One
possible reason is that the document clusters in TDT2 are
generally more compact and focused than the clusters in Reuters.
Thus, the nearest neighbor graph constructed over TDT2 can
better capture the geometrical structure of the document space.

4.2.4 Parameter Selection
Our LapPLSI model has two essential parameters: the number
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Figure 3: The performance of LapPLSI vs. parameter λ. The LapPLSI is very stable with respect to the parameter λ. It achieves
consistent good performance with the λ varying from 500 to 50000.

of nearest neighbors p and the regularization parameter λ. Figure
3 and Figure 4 show how the performance of LapPLSI varies with
the parameters λ and p, respectively. As we can see, the LapPLSI is
very stable with respect to both the parameter λ and p. It achieves
consistent good performance with the λ varying from 500 to 50000
and p varying from 5 to 11.

5. CONCLUSIONS AND FUTURE WORK
We have presented a novel method for topic modeling, called

Laplacian Probabilistic Latent Semantic Indexing (LapPLSI). Lap-
PLSI models the document space as a submanifold embedded in
the ambient space and directly performs the topic modeling on
this document manifold in question. As a result, LapPLSI can
have more discriminating power than traditional topic modeling ap-
proaches which discover the hidden topics in the Euclidean space,
e.g. PLSI and LDA. Experimental results on document modeling
and document clustering show that LapPLSI provides better repre-
sentation in the sense of semantic structure.

Several questions remain to be investigated in our future work:

1. There is a parameter λ which controls the smoothness of our
LapPLSI model. LapPLSI boils down to original PLSI when
λ = 0. Also, it is easy to see that P (zk|di) will be the same
for all the documents when λ = +∞. Thus, a suitable value

of λ is critical to our algorithm. It remains unclear how to do
model selection theoretically and efficiently.

2. We consider the topic modeling on document manifold and
develop our approach based on PLSI. The idea of exploit-
ing manifold structure can also be naturally incorporated into
other topic modeling algorithms, e.g., Latent Dirichlet Allo-
cation.

3. It would be very interesting to explore different ways of con-
structing the document graph to model the semantic struc-
ture in the data. There is no reason to believe that the nearest
neighbor graph is the only or the most natural choice. For
example, for web page data it may be more natural to use the
hyperlink information to construct the graph.
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Figure 4: The performance of LapPLSI vs. parameter p. LapPLSI achieves good performance with the parameter p varying from 5
to 11.
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